
X2TE2109: Convex Optimization and Its Applications in Signal Processing

Handout 2: Elements of Convex Analysis

Instructor: Anthony Man–Cho So January 18, 2022

As briefly mentioned in Handout 1, the notion of convexity plays a very important role in both
the theoretical and algorithmic aspects of optimization. Before we discuss in depth the relevance
of convexity in optimization, however, let us first introduce the notions of convex sets and convex
functions and study some of their properties.

1 Affine and Convex Sets

1.1 Basic Definitions and Properties

We begin with some definitions.

Definition 1 Let S ⊆ Rn be a set. We say that

1. S is affine if αx+ (1− α)y ∈ S whenever x, y ∈ S and α ∈ R;

2. S is convex if αx+ (1− α)y ∈ S whenever x, y ∈ S and α ∈ [0, 1].

Given x, y ∈ Rn and α ∈ R, the vector z = αx + (1 − α)y is called an affine combination of x
and y. If α ∈ [0, 1], then z is called a convex combination of x and y.

Geometrically, when x and y are distinct points in Rn, the set

L = {z ∈ Rn : z = αx+ (1− α)y, α ∈ R}

of all affine combinations of x and y is simply the line determined by x and y, and the set

S = {z ∈ Rn : z = αx+ (1− α)y, α ∈ [0, 1]}

is the line segment between x and y. By convention, the empty set ∅ is affine and hence also convex.
The notion of an affine (resp. convex) combination of two points can be easily generalized to

any finite number of points. In particular, an affine combination of the points x1, . . . , xk ∈ Rn is a
point of the form z =

∑k
i=1 αixi, where

∑k
i=1 αi = 1. Similarly, a convex combination of the points

x1, . . . , xk ∈ Rn is a point of the form z =
∑k

i=1 αixi, where
∑k

i=1 αi = 1 and α1, . . . , αk ≥ 0.

The following proposition reveals the structure of a non–empty affine set.

Proposition 1 Let S ⊆ Rn be non–empty. Then, the following are equivalent:

(a) S is affine.

(b) Any affine combination of points in S belongs to S.

(c) S is the translation of some linear subspace V ⊆ Rn; i.e., S is of the form {x}+V = {x+v ∈
Rn : v ∈ V } for some x ∈ Rn.
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Proof We first establish (a)⇒(b) by induction on the number of points k ≥ 1 in S used to form
the affine combination. The case where k = 1 is trivial, and the case where k = 2 follows from the
assumption that S is affine. For the inductive step, let k ≥ 3 and suppose that x =

∑k
i=1 αixi,

where x1, . . . , xk ∈ S and
∑k

i=1 αi = 1. If αi = 0 for some i ∈ {1, . . . , k}, then x is an affine
combination of k− 1 points in S and hence x ∈ S by the inductive hypothesis. On the other hand,
if αi 6= 0 for all i ∈ {1, . . . , n}, then we may assume without loss of generality that α1 6= 1 and
write

x = α1x1 + (1− α1)

k∑
i=2

αi
1− α1

xi.

Since
∑k

i=2(αi/(1− α1)) = 1, the point x̄ =
∑k

i=2(αi/(1− α1))xi is an affine combination of k − 1
points in S. Hence, we have x̄ ∈ S by the inductive hypothesis. Since S is affine by assumption
and x is an affine combination of x1 ∈ S and x̄ ∈ S, we conclude that x ∈ S, as desired.

Next, we establish (b)⇒(c). Let x ∈ S and set V = S − {x}. Our goal is to show that V ⊆ Rn
is a linear subspace. Towards that end, let v1, v2 ∈ V and α, β ∈ R. By definition of V , there exist
z1, z2 ∈ S such that v1 = z1 − x and v2 = z2 − x. Using the fact that z(t) = tz1 + (1− t)z2 ∈ S for
any t ∈ R, we have

αv1 + βv2 = α(β + (1− β))z1 + β(α+ (1− α))z2 + (1− α− β)x− x

= α((1− β)z1 + βz2) + β(αz1 + (1− α)z2) + (1− α− β)x− x

= αz(1− β) + βz(α) + (1− α− β)x− x

= z̄ − x,

where z̄ = αz(1−β)+βz(α)+(1−α−β)x is an affine combination of the points z(1−β), z(α), x ∈ S
and hence belongs to S. It follows that αv1 + βv2 ∈ V , as desired.

Lastly, we establish (c)⇒(a). Suppose that S = {x} + V for some vector x ∈ Rn and linear
subspace V ⊆ Rn. Then, for any z1, z2 ∈ S, there exist v1, v2 ∈ V such that z1 = x + v1 and
z2 = x + v2. Since V is linear, for any α ∈ R, we have z(α) = αz1 + (1 − α)z2 = x + v(α) with
v(α) = αv1 + (1− α)v2 ∈ V . This shows that z(α) ∈ S. tu

Proposition 1 provides alternative characterizations of an affine set and furnishes examples of
affine sets in Rn. Motivated by the equivalence of (a) and (c) in Proposition 1, we shall also refer
to an affine set as an affine subspace.

Let us now turn our attention to convex sets. In view of Proposition 1, the following proposition
should come as no surprise. We leave its proof to the reader.

Proposition 2 Let S ⊆ Rn be arbitrary. Then, the following are equivalent:

(a) S is convex.

(b) Any convex combination of points in S belongs to S.

Before we proceed, it is helpful to have some concrete examples of convex sets.

Example 1 (Some Examples of Convex Sets)

1. Non–Negative Orthant: Rn+ = {x ∈ Rn : x ≥ 0}
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2. Hyperplane: H(s, c) = {x ∈ Rn : sTx = c}

3. Halfspaces: H−(s, c) = {x ∈ Rn : sTx ≤ c}, H+(s, c) = {x ∈ Rn : sTx ≥ c}

4. Euclidean Ball: B(x̄, r) = {x ∈ Rn : ‖x− x̄‖2 ≤ r}

5. Ellipsoid: E(x̄, Q) =
{
x ∈ Rn : (x− x̄)TQ(x− x̄) ≤ 1

}
, where Q is an n × n symmetric,

positive definite matrix (i.e., xTQx > 0 for all x ∈ Rn\{0} and denoted by Q ∈ Sn++)

6. Simplex: ∆ = {
∑n

i=0 αixi :
∑n

i=0 αi = 1, αi ≥ 0 for i = 0, 1, . . . , n}, where x0, x1, . . . , xn
are vectors in Rn such that the vectors x1 − x0, x2 − x0, . . . , xn − x0 are linearly indepen-
dent (equivalently, the vectors x0, x1, . . . , xn are affinely independent)

7. Convex Cone: A set K ⊆ Rn is called a cone if {αx : α > 0} ⊆ K whenever x ∈ K. If K
is also convex, then K is called a convex cone.

8. Positive Semidefinite Cone: Sn+ = {Q ∈ Sn : xTQx ≥ 0 for all x ∈ Rn}

The convexity of the sets in Example 1 can be easily established by first principles. We leave this
task to the reader.

It is clear from the definition that the intersection of an arbitrary family of affine (resp. convex)
sets is an affine (resp. convex) set. Thus, for any arbitrary S ⊆ Rn, there is a smallest (by
inclusion) affine (resp. convex) set containing S; namely, the intersection of all affine (resp. convex)
sets containing S. This leads us to the following definitions:

Definition 2 Let S ⊆ Rn be arbitrary.

1. The affine hull of S, denoted by aff(S), is the intersection of all affine subspaces containing
S. In particular, aff(S) is the smallest affine subspace that contains S.

2. The convex hull of S, denoted by conv(S), is the intersection of all convex sets containing
S. In particular, conv(S) is the smallest convex set that contains S.

The above definitions can be viewed as characterizing the affine hull and convex hull of a set S
from the outside. However, given a point in the affine or convex hull of S, it is not immediately clear
from the above definitions how it is related to the points in S. This motivates our next proposition,
which in some sense provides a characterization of the affine hull and convex hull of S from the
inside.

Proposition 3 Let S ⊆ Rn be arbitrary. Then, the following hold:

(a) aff(S) is the set of all affine combinations of points in S.

(b) conv(S) is the set of all convex combinations of points in S.

Proof Let us prove (a) and leave the proof of (b) as a straightforward exercise to the reader. Let
T be the set of all affine combinations of points in S. Since S ⊆ aff(S), every x ∈ T is an affine
combination of points in aff(S). Hence, by Proposition 1, we have T ⊆ aff(S).

To establish the reverse inclusion, we show that T is an affine subspace containing S. As aff(S)
is the smallest affine subspace that contains S, this would show that aff(S) ⊆ T . To begin, we
note that S ⊆ T . Thus, it remains to show that T is an affine subspace. Towards that end, let
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x1, x2 ∈ T . By definition, there exist y1, . . . , yp, yp+1, . . . , yq ∈ S and α1, . . . , αp, αp+1, . . . , αq ∈ R
such that

x1 =

p∑
i=1

αiyi, x2 =

q∑
i=p+1

αiyi

and
p∑
i=1

αi =

q∑
i=p+1

αi = 1.

It follows that for any β ∈ R, we have

x̄ = βx1 + (1− β)x2 =

p∑
i=1

βαiyi +

q∑
i=p+1

(1− β)αiyi

with
p∑
i=1

βαi +

q∑
i=p+1

(1− β)αi = 1.

In other words, x̄ is an affine combination of points in S. Thus, we have x̄ ∈ T , which shows that
T is an affine subspace, as desired. tu

Since an affine subspace is a translation of a linear subspace and the dimension of a linear
subspace is a well–defined notion, we can define the dimension of an affine subspace as the dimension
of its underlying linear subspace (see Section 1.5 of Handout B). This, together with the definition
of affine hull, makes it possible to define the dimension of an arbitrary set in Rn. Specifically, we
have the following definition:

Definition 3 Let S ⊆ Rn be arbitrary. The dimension of S, denoted by dim(S), is the dimension
of the affine hull of S.

Given a non–empty set S ⊆ Rn, we always have 0 ≤ dim(S) ≤ n. Roughly speaking, dim(S) is
the intrinsic dimension of S. As we shall see, this quantity plays a fundamental role in optimization.
To better understand the notion of the dimension of a set, let us consider the following example:

Example 2 (Dimension of a Set) Consider the two–point set S = {(1, 1), (3, 2)} ⊆ R2. By
Proposition 3(a), we have aff(S) = {α(1, 1) + (1− α)(3, 2) : α ∈ R} ⊆ R2. It is easy to verify that
aff(S) = {(0, 1/2)}+V , where V = {t(1, 1/2) : t ∈ R} is the linear subspace generated by the vector
(1, 1/2). Hence, we have dim(S) = dim(V ) = 1.

1.2 Convexity–Preserving Operations

Although in theory one can establish the convexity of a set from the definition directly, in practice
this may not be the easiest route to take. Moreover, in many occasions, we need to apply certain
operation to a collection of convex sets, and we would like to know whether the resulting set is
convex. Thus, it is natural to ask which set operations are convexity–preserving. We have already
seen that the intersection of an arbitrary family of convex sets is convex. Thus, set intersection
is convexity–preserving. However, it is easy to see that set union is not. In the following, let us
introduce some other convexity–preserving operations.
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1.2.1 Affine Functions

We say that a map A : Rn → Rm is affine if

A(αx1 + (1− α)x2) = αA(x1) + (1− α)A(x2)

for all x1, x2 ∈ Rn and α ∈ R. It can be shown that A is affine iff there exist A0 ∈ Rm×n and
y0 ∈ Rm such that A(x) = A0x+ y0 for all x ∈ Rn. As the following proposition shows, convexity
is preserved under affine mappings.

Proposition 4 Let A : Rn → Rm be an affine mapping and S ⊆ Rn be a convex set. Then, the
image A(S) = {A(x) ∈ Rm : x ∈ S} is convex. Conversely, if T ⊆ Rm is a convex set, then the
inverse image A−1(T ) = {x ∈ Rn : A(x) ∈ T} is convex.

Proof The proposition follows from the easily verifiable fact that for any x1, x2 ∈ Rn, A([x1, x2]) =
[A(x1), A(x2)] ⊆ Rm. tu

Example 3 (Convexity of the Ellipsoid) Consider the ball B(0, r) =
{
x ∈ Rn : xTx ≤ r2

}
⊆

Rn, where r > 0. Clearly, B(0, r) is convex. Now, let Q be an n×n symmetric positive definite ma-
trix. Then, it is well–known that Q is invertible and the n×n symmetric matrix Q−1 is also positive
definite. Moreover, there exists an n × n symmetric matrix Q−1/2 such that Q−1 = Q−1/2Q−1/2.
(See [6, Chapter 7] if you are not familiar with these facts.) Thus, we may define an affine mapping
A : Rn → Rn by A(x) = Q−1/2x+ x̄. We claim that

A(B(0, r)) =
{
x ∈ Rn : (x− x̄)TQ(x− x̄) ≤ r2

}
= E(x̄, Q/r2).

Indeed, let x ∈ B(0, r) and consider the point A(x). We compute

(A(x)− x̄)TQ(A(x)− x̄) = xTQ−1/2QQ−1/2x = xTx ≤ r2;

i.e., A(B(0, r)) ⊆ E(x̄, Q/r2). Conversely, let x ∈ E(x̄, Q/r2). Consider the point y = Q1/2(x −
x̄) = A−1(x). Then, we have yT y ≤ r2, which implies that E(x̄, Q/r2) ⊆ A(B(0, r)). Hence, we
conclude from the above calculation and Proposition 4 that E(x̄, Q/r2) is convex.

1.2.2 Perspective Functions

Define the perspective function P : Rn×R++ → Rn by P (x, t) = x/t. The following proposition
shows that convexity is preserved by perspective functions.

Proposition 5 Let P : Rn×R++ → Rn be the perspective function and S ⊆ Rn×R++ be a convex
set. Then, the image P (S) = {x/t ∈ Rn : (x, t) ∈ S} is convex. Conversely, if T ⊆ Rn is a convex
set, then the inverse image P−1(T ) = {(x, t) ∈ Rn × R++ : x/t ∈ T} is convex.

Proof For any x1 = (x̄1, t1) ∈ Rn × R++, x2 = (x̄2, t2) ∈ Rn × R++, and α ∈ [0, 1], we have

P (αx1 + (1− α)x2) =
αx̄1 + (1− α)x̄2
αt1 + (1− α)t2

= βP (x1) + (1− β)P (x2),

where

β =
αt1

αt1 + (1− α)t2
∈ [0, 1].
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Moreover, as α increases from 0 to 1, β increases from 0 to 1. It follows that P ([x1, x2]) =
[P (x1), P (x2)] ⊆ Rn. This completes the proof. tu

The following result, which is a straightforward application of Propositions 4 and 5, shows that
convexity is also preserved under linear–fractional mappings (also known as projective mappings).

Corollary 1 Let A : Rn → Rm+1 be the affine map given by

A(x) =

[
Q

cT

]
x+

[
u

d

]
,

where Q ∈ Rm×n, c ∈ Rn, u ∈ Rm, and d ∈ R. Furthermore, let D =
{
x ∈ Rn : cTx+ d > 0

}
.

Define the linear–fractional map f : D → Rm by f = P ◦A, where P : Rm × R++ → Rm is the
perspective function. If S ⊆ D is convex, then the image f(S) is convex. Conversely, if T ⊆ Rm is
convex, then the inverse image f−1(T ) is convex.

1.3 Topological Properties

Given an arbitrary set S ⊆ Rn, recall that its interior is defined by

int(S) = {x ∈ S : B(x, ε) ⊆ S for some ε > 0}.

The notion of interior is intimately related to the space in which the set S lies. For instance,
consider the set S = [0, 1]. When viewed as a set in R, then int(S) = (0, 1). However, if we treat
S as a set in R2, then int(S) = ∅, since no 2–dimensional ball of positive radius is contained in S.
Such ambiguity motivates the following definition.

Definition 4 Let S ⊆ Rn be arbitrary. We say that x ∈ S belongs to the relative interior of S,
denoted by x ∈ rel int(S), if there exists an ε > 0 such that B(x, ε) ∩ aff(S) ⊆ S. The relative
boundary of S, denoted by rel bd(S), is defined by rel bd(S) = cl(S) \ rel int(S).

The following result demonstrates the relevance of the above definition when S is convex.

Theorem 1 Let S ⊆ Rn be non–empty and convex. Then, rel int(S) is non–empty.

Proof Let k = dim(S) ≥ 0. Then, S contains k + 1 affinely independent points x0, x1, . . . , xk,
which generate the simplex ∆ = conv({x0, . . . , xk}). Clearly, we have ∆ ⊆ S. Moreover, since
dim(∆) = k, we have aff(∆) = aff(S). Thus, it suffices to show that rel int(∆) is non–empty.
Towards that end, let

x̄ =
1

k + 1

k∑
i=0

xi.

Clearly, we have x̄ ∈ aff(∆) = aff(S). Now, define V i = aff({x0, x1, . . . , xi−1, xi+1, . . . , xk}) and let
εi = minx∈V i ‖x− x̄‖2. Then, we have εi > 0 for i = 0, 1, . . . , k. Upon setting ε = min0≤i≤m εi, we
conclude that B(x̄, ε) ∩ aff(S) ⊆ S, as required. tu

As one would expect, if we move from a point in the relative interior of a non–empty convex set
S to any other point in S, then all the intermediate points should remain in the relative interior of
S. Such observation is made precise in the following proposition.
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Proposition 6 Let S ⊆ Rn be non–empty and convex. For any x ∈ cl(S) and x′ ∈ rel int(S), we
have

(x, x′] =
{
αx+ (1− α)x′ ∈ Rn : α ∈ [0, 1)

}
⊆ rel int(S).

Proof Let α ∈ [0, 1) be fixed and consider x̄ = αx+ (1− α)x′. Since x ∈ cl(S), for any ε > 0, we
have x ∈ S + (B(0, ε) ∩ aff(S)). Now, we compute

B(x̄, ε) ∩ aff(S) =
{
αx+ (1− α)x′

}
+ (B(0, ε) ∩ aff(S))

⊆
{

(1− α)x′
}

+ αS + (1 + α)(B(0, ε) ∩ aff(S))

= αS + (1− α)

[
B

(
x′,

1 + α

1− α
ε

)
∩ aff(S)

]
.

Since x′ ∈ rel int(S), by taking ε > 0 to be sufficiently small, we have

B

(
x′,

1 + α

1− α
ε

)
∩ aff(S) ⊆ S.

It follows that for sufficiently small ε > 0, we have B(x̄, ε) ∩ aff(S) ⊆ αS + (1 − α)S = S, where
the last equality is due to the convexity of S. This implies that x̄ ∈ rel int(S), as desired. tu

Another topological concept of interest is that of compactness. Recall that a set S ⊆ Rn is
compact if it is closed and bounded. In the context of optimization, compactness of the feasible
set, together with the continuity of the objective function, allows us to establish the existence of
an optimal solution. Specifically, we have the Weierstrass theorem, which asserts that if S ⊆ Rn
is a non–empty compact set and f : S → R is a continuous function, then f attains its maximum
and minimum on S (see, e.g., [10, Chapter 7, Theorem 18] or Section 3.1 of Handout C).

1.4 Projection onto Closed Convex Sets

Given a non–empty set S ⊆ Rn and a point x ∈ Rn \ S, a natural problem is to find a point in S
that is closest, say, in the Euclidean norm, to x. However, it is easy to see that such a point may
not exist (e.g., when S is open) or may not be unique (e.g., when S is an arc on a circle and x is
the center of the circle). Nevertheless, as the following result shows, the aforementioned difficulties
do not arise when S is closed and convex.

Theorem 2 Let S ⊆ Rn be non–empty, closed, and convex. Then, for every x ∈ Rn, there exists
a unique point z∗ ∈ S that is closest (in the Euclidean norm) to x.

Proof Let x′ ∈ S be arbitrary and consider the set T = {z ∈ S : ‖x − z‖2 ≤ ‖x − x′‖2}. Note
that T is compact, as it is closed and bounded. Since the function z 7→ ‖x − z‖22 is continuous,
we conclude by Weierstrass’ theorem that its minimum over the compact set T is attained at some
z∗ ∈ T . Clearly, z∗ is a point in S that is closest to x. This establishes the existence.

Now, let µ∗ = ‖x− z∗‖2 and suppose that z1, z2 ∈ S are such that µ∗ = ‖x− z1‖2 = ‖x− z2‖2.
Consider the point z̄ = 1

2(z1 + z2). By Pythagoras’ theorem, we have

‖z̄ − x‖22 = (µ∗)2 − ‖z1 − z̄‖22 = (µ∗)2 − 1

4
‖z1 − z2‖22.

In particular, if z1 6= z2, then ‖z̄ − x‖22 < (µ∗)2, which is a contradiction. This establishes the
uniqueness and completes the proof of the theorem. tu
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In the sequel, we shall refer to the point z∗ in Theorem 2 as the projection of x on S and
denote it by ΠS(x). In other words, we have

ΠS(x) = arg min
z∈S
‖x− z‖22.

The following theorem provides a useful characterization of the projection.

Theorem 3 Let S ⊆ Rn be non–empty, closed, and convex. Given any x ∈ Rn, we have z∗ = ΠS(x)
iff z∗ ∈ S and (z − z∗)T (x− z∗) ≤ 0 for all z ∈ S.

Proof Let z∗ = ΠS(x) and z ∈ S. Consider points of the form z(α) = αz + (1 − α)z∗, where
α ∈ [0, 1]. By convexity, we have z(α) ∈ S. Moreover, we have ‖z∗ − x‖2 ≤ ‖z(α) − x‖2 for all
α ∈ [0, 1]. On the other hand, note that

‖z(α)− x‖22 = (z∗ + α(z − z∗)− x)T (z∗ + α(z − z∗)− x)

= ‖z∗ − x‖22 + 2α(z − z∗)T (z∗ − x) + α2‖z − z∗‖22.

Thus, we see that ‖z(α) − x‖22 ≥ ‖z∗ − x‖22 for all α ∈ [0, 1] iff (z − z∗)T (z∗ − x) ≥ 0. This is
precisely the stated condition.

Conversely, suppose that for some z′ ∈ S, we have (z− z′)T (x− z′) ≤ 0 for all z ∈ S. Upon setting
z = ΠS(x), we have

(ΠS(x)− z′)T (x− z′) ≤ 0. (1)

On the other hand, by our argument in the preceding paragraph, the point ΠS(x) satisfies

(z′ −ΠS(x))T (x−ΠS(x)) ≤ 0. (2)

Upon adding (1) and (2), we obtain

(ΠS(x)− z′)T (ΠS(x)− z′) = ‖ΠS(x)− z′‖22 ≤ 0,

which is possible only when z′ = ΠS(x). tu

We remark that the projection operator ΠS plays an important role in many optimization
algorithms. In particular, the efficiency of those algorithms depends in part on the efficient com-
putability of ΠS . We refer the interested reader to the recent paper [4] for details and further
references.

1.5 Separation Theorems

The results in the previous sub–section allow us to establish various separation theorems of convex
sets, which are of fundamental importance in convex analysis and optimization. We begin with the
following simple yet powerful result.

Theorem 4 Let S ⊆ Rn be non–empty, closed, and convex. Furthermore, let x ∈ Rn \ S be
arbitrary. Then, there exists a y ∈ Rn such that

max
z∈S

yT z < yTx.
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Proof Since S is a non–empty closed convex set, by Theorem 2, there exists a unique point z∗ ∈ S
that is closest to x. Set y = x − z∗. By Theorem 3, for all z ∈ S, we have (z − z∗)T y ≤ 0, which
implies that

yT z ≤ yT z∗ = yTx+ yT (z∗ − x) = yTx− ‖y‖22.

Since x 6∈ S, we have y 6= 0. It follows that

max
z∈S

yT z = yT z∗ = yTx− ‖y‖22 < yTx,

as desired. tu

To demonstrate the power of Theorem 4, we shall use it to establish two useful results. The
first states that every closed convex set can be represented as an intersection of halfspaces that
contain it.

Theorem 5 A closed convex set S ⊆ Rn is the intersection of all the halfspaces containing S.

Proof We may assume that ∅ ( S ( Rn, for otherwise the theorem is trivial. Let x ∈ Rn \ S
be arbitrary. Then, by Theorem 4, there exist y ∈ Rn and c = maxz∈S y

T z ∈ R such that the
halfspace H−(y, c) = {z ∈ Rn : yT z ≤ c} contains S but not x. It follows that the intersection of
all the halfspaces containing S is precisely S itself. tu

To motivate the second result, observe that Theorem 4 is a result on point–set separation. A
natural question is whether we can derive an analogous result for set–set separation. In other
words, given two non–empty and non–intersecting convex sets, is it possible to separate them using
a hyperplane? As it turns out, under suitable conditions, we can reduce this question to that
of point–set separation. Consequently, we can apply Theorem 4 to obtain the desired separation
result.

Theorem 6 Let S1, S2 ⊆ Rn be non–empty, closed, and convex with S1 ∩ S2 = ∅. Furthermore,
suppose that S2 is bounded. Then, there exists a y ∈ Rn such that

max
z∈S1

yT z < min
u∈S2

yTu.

Proof First, note that the set S1 − S2 = {z − u ∈ Rn : z ∈ S1, u ∈ S2} is non–empty and convex.
Moreover, we claim that it is closed. To see this, let x1, x2, . . . be a sequence in S1 − S2 such that
xk → x. We need to show that x ∈ S1 − S2. Since xk ∈ S1 − S2, there exist zk ∈ S1 and uk ∈ S2
such that xk = zk − uk for k = 1, 2, . . .. Since S2 is compact, there exists a subsequence {uki} such
that uki → u ∈ S2. Since xki → x, we conclude that zki → x + u. Since S1 is closed, we conclude
that x+ u ∈ S1. It then follows that x = (x+ u)− u ∈ S1 − S2, as desired.

We are now in a position to apply Theorem 4 to the non–empty closed convex set S1−S2. Indeed,
since S1∩S2 = ∅, we see that 0 6∈ S1−S2. By Theorem 4, there exist y ∈ Rn, z∗ ∈ S1, and u∗ ∈ S2
such that

yT (z∗ − u∗) = max
v∈S1−S2

yT v < 0.

Since S2 is compact, we have yTu∗ = minu∈S2 y
Tu. This implies that yT z∗ = maxz∈S1 y

T z. Hence,
we obtain

max
z∈S1

yT z < min
u∈S2

yTu,

as desired. tu
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2 Convex Functions

2.1 Basic Definitions and Properties

Let us now turn to the notion of a convex function.

Definition 5 Let f : Rn → R ∪ {+∞} be an extended real–valued function that is not identically
+∞.

1. We say that f is convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (3)

for all x1, x2 ∈ Rn and α ∈ [0, 1]. We say that f is concave if −f is convex.

2. The epigraph of f is the set epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t}.

3. The effective domain of f is the set dom(f) = {x ∈ Rn : f(x) < +∞}.

A major advantage of allowing f to take the value +∞ is that we do not need to explicitly specify
the domain of f . Indeed, if the function f is defined on a set S ⊆ Rn, then we may simply extend
f to Rn by setting f(x) = +∞ for all x 6∈ S and obtain dom(f) = S.

The relationship between convex sets and convex functions is explained in the following propo-
sition, whose proof is left as an exercise to the reader.

Proposition 7 Let f : Rn → R ∪ {+∞} be as in Definition 5. Then, f is convex (as a function)
iff epi(f) is convex (as a set).

A simple consequence of Proposition 7 is that if f is convex, then dom(f) is convex. This follows
from Proposition 4 and the observation that dom(f) is the image of the convex set epi(f) under a
projection (which is a linear mapping). Another useful consequence of Proposition 7 is the following
inequality.

Corollary 2 (Jensen’s Inequality) Let f : Rn → R ∪ {+∞} be as in Definition 5. Then, f is
convex iff

f

(
k∑
i=1

αixi

)
≤

k∑
i=1

αif(xi)

for any x1, . . . , xk ∈ Rn and α1, . . . , αk ∈ [0, 1] such that
∑k

i=1 αi = 1.

Proof The “if” part is clear. To prove the “only if” part, we may assume without loss of generality
that x1, . . . , xk ∈ dom(f). Then, we have (xi, f(xi)) ∈ epi(f) for i = 1, . . . , k. Since epi(f) is convex
by Proposition 7, we may invoke Proposition 2 to conclude that

k∑
i=1

αi(xi, f(xi)) =

(
k∑
i=1

αixi,
k∑
i=1

αif(xi)

)
∈ epi(f).

However, this is equivalent to

f

(
k∑
i=1

αixi

)
≤

k∑
i=1

αif(xi),

10



which completes the proof. tu

The epigraph epi(f) of f is closely related to, but not the same as, the t–level set Lt(f) of f ,
where Lt(f) = {x ∈ Rn : f(x) ≤ t} and t ∈ R is arbitrary. One obvious difference is that epi(f) is
a subset of Rn×R, but Lt(f) is a subset of Rn. However, there is another, more subtle, difference:
Even if Lt(f) is convex for all t ∈ R, the function f may not be convex. This can be seen, e.g.,
from the function x 7→ x3. A function whose domain is convex and whose t–level sets are convex
for all t ∈ R is called a quasi–convex function. The class of quasi–convex functions possesses nice
properties and is important in its own right. We refer the interested reader to [5, 8] for details.

Now, let f : Rn → R ∪ {+∞} be a convex function, so that epi(f) is a non–empty convex set
by Proposition 7. Suppose in addition that epi(f) is closed. By Theorem 5, we know that epi(f)
can be represented as an intersection of all the halfspaces containing it. Such halfspaces take the
form H−((y, y0), c) = {(x, t) ∈ Rn × R : yTx + y0t ≤ c} for some y ∈ Rn and y0, c ∈ R. In fact, it
suffices to use only those halfspaces with y0 = −1 in the representation. To see this, suppose that
epi(f) ⊆ H−((y, y0), c) and consider the following cases:

Case 1: y0 6= 0. Then, we must have y0 < 0 (since we can fix x ∈ dom(f) and take t ≥ f(x) to be
arbitrarily large), in which case we may assume without loss that y0 = −1 (by scaling y and c).

Case 2: y0 = 0. We claim that there exists another halfspace H−((ȳ,−1), c̄) such that epi(f) ⊆
H−((ȳ,−1), c̄). Indeed, if this is not the case, then every halfspace containing epi(f) is of the form
H−((y, 0), c) for some y ∈ Rn and c ∈ R. This implies that f = −∞, which is impossible.

Next, we show that for every (x̄, t̄) 6∈ H−((y, 0), c), there exists a halfspace H−((y′,−1), c′)
with y′ ∈ Rn, c′ ∈ R such that epi(f) ⊆ H−((y′,−1), c′) and (x̄, t̄) 6∈ H−((y′,−1), c′). This
would imply that halfspaces of the form H−((y, 0), c) with y ∈ Rn and c ∈ R are not needed in the
representation of epi(f). To begin, observe that for any (x, t) ∈ epi(f), we have (x, t) ∈ H−((y, 0), c)
and (x, t) ∈ H−((ȳ,−1), c̄), which means that yTx− c ≤ 0 and ȳTx− c̄ ≤ t. It follows that for any
λ ≥ 0,

λ(yTx− c) + ȳTx− c̄ ≤ t.

Moreover, since yT x̄ − c > 0, for sufficiently large λ ≥ 0, we have λ(yT x̄ − c) + ȳT x̄ − c̄ > t̄.
Thus, by setting y′ = λy + ȳ and c′ = λc + c̄, we conclude that epi(f) ⊆ H−((y′,−1), c′) and
(x̄, t̄) 6∈ H−((y′,−1), c′), as desired.

It is not hard to see that the halfspace H−((y,−1), c) is the epigraph of the affine function
h : Rn → R given by h(x) = yTx − c. Moreover, if epi(f) ⊆ H−((y,−1), c), then h(x) ≤ f(x)
for all x ∈ Rn. (This is obvious for x 6∈ dom(f). For x ∈ dom(f), note that (x, f(x)) ∈ epi(f) ⊆
H−((y,−1), c) implies yTx − f(x) ≤ c, or equivalently, h(x) ≤ f(x).) Since the intersection of
halfspaces yields the epigraph of the pointwise supremum of the affine functions induced by those
halfspaces, we obtain the following theorem:

Theorem 7 Let f : Rn → R∪ {+∞} be a convex function such that epi(f) is closed. Then, f can
be represented as the pointwise supremum of all affine functions h : Rn → R satisfying h ≤ f .

Motivated by Theorem 7, given a convex function f : Rn → R ∪ {+∞}, we consider the set

Sf =
{

(y, c) ∈ Rn × R : yTx− c ≤ f(x) for all x ∈ Rn
}
,

which consists of the coefficients of those affine functions h : Rn → R satisfying h ≤ f . Clearly,
we have yTx − c ≤ f(x) for all x ∈ Rn iff supx∈Rn

{
yTx− f(x)

}
≤ c. This shows that Sf is the
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epigraph of the function f∗ : Rn → R ∪ {+∞} given by

f∗(y) = sup
x∈Rn

{
yTx− f(x)

}
.

Moreover, observe that Sf is closed and convex. This implies that f∗ is convex. The function f∗

is called the conjugate of f . It plays a very important role in convex analysis and optimization.
We shall study it in greater detail later.

2.2 Convexity–Preserving Transformations

As in the case of convex sets, it is sometimes difficult to check directly from the definition whether a
given function is convex or not. In this sub–section we describe some transformations that preserve
convexity.

Theorem 8 The following hold:

(a) (Non–Negative Combinations) Let f1, . . . , fm : Rn → R ∪ {+∞} be convex functions
satisfying ∩mi=1dom(fi) 6= ∅. Then, for any α1, . . . , αm ≥ 0, the function f : Rn → R ∪ {+∞}
defined by

f(x) =
m∑
i=1

αifi(x)

is convex.

(b) (Pointwise Supremum) Let I be an index set and {fi}i∈I , where fi : Rn → R∪{+∞} for all
i ∈ I, be a family of convex functions. Define the pointwise supremum f : Rn → R∪{+∞}
of {fi}i∈I by

f(x) = sup
i∈I

fi(x).

Suppose that dom(f) 6= ∅. Then, the function f is convex.

(c) (Affine Composition) Let g : Rn → R∪{+∞} be a convex function and A : Rm → Rn be an
affine mapping. Suppose that range(A)∩dom(g) 6= ∅. Then, the function f : Rm → R∪{+∞}
defined by f(x) = g(A(x)) is convex.

(d) (Composition with an Increasing Convex Function) Let g : Rn → R ∪ {+∞} and
h : R → R ∪ {+∞} be convex functions that are not identically +∞. Suppose that h is
increasing on dom(h). Define the function f : Rn → R ∪ {+∞} by f(x) = h(g(x)), with the
convention that h(+∞) = +∞. Suppose that dom(f) 6= ∅. Then, the function f is convex.

(e) (Restriction on Lines) Given a function f : Rn → R ∪ {+∞} that is not identically +∞,
a point x0 ∈ Rn, and a direction h ∈ Rn, define the function f̃x0,h : R → R ∪ {+∞} by
f̃x0,h(t) = f(x0 + th). Then, the function f is convex iff the function f̃x0,h is convex for any
x0 ∈ Rn and h ∈ Rn.

The above results can be derived directly from the definition. We shall prove (e) and leave the rest
as exercises to the reader.
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Proof of Theorem 8(e) Suppose that f is convex. Let x0, h ∈ Rn be arbitrary. Then, for any
t1, t2 ∈ R and α ∈ [0, 1], we have

f̃x0,h(αt1 + (1− α)t2) = f(x0 + (αt1 + (1− α)t2)h)

= f(α(x0 + t1h) + (1− α)(x0 + t2h))

≤ αf(x0 + t1h) + (1− α)f(x0 + t2h)

= αf̃x0,h(t1) + (1− α)f̃x0,h(t2);

i.e., f̃x0,h is convex. Conversely, suppose that f̃x0,h is convex for any x0, h ∈ Rn. Let x1, x2 ∈ S
and α ∈ [0, 1]. Upon setting x0 = x1 ∈ Rn and h = x2 − x1 ∈ Rn, we have

f((1− α)x1 + αx2) = f̃x0,h(α)

= f̃x0,h(α · 1 + (1− α) · 0)

≤ αf̃x0,h(1) + (1− α)f̃x0,h(0)

= αf(x2) + (1− α)f(x1);

i.e., f is convex. This completes the proof. tu

2.3 Differentiable Convex Functions

When a given function is differentiable, it is possible to characterize its convexity via its derivatives.
We begin with the following result, which makes use of the gradient of the given function.

Theorem 9 Let f : Ω → R be a differentiable function on the open set Ω ⊆ Rn and S ⊆ Ω be a
convex set. Then, f is convex on S (i.e., the inequality (3) holds for all x1, x2 ∈ S and α ∈ [0, 1])
iff

f(x) ≥ f(x̄) + (∇f(x̄))T (x− x̄)

for all x, x̄ ∈ S.

To appreciate the geometric content of the above theorem, observe that x 7→ f(x̄)+(∇f(x̄))T (x−x̄)
is an affine function whose level sets are hyperplanes with normal ∇f(x̄) and takes the value f(x̄)
at x̄. Thus, Theorem 9 stipulates that at every x̄ ∈ S, the function f is minorized by an affine
function that coincides with f at x̄.

Proof Suppose that f is convex on S. Let x, x̄ ∈ S and α ∈ (0, 1). Then, we have

f(x) ≥ f(αx+ (1− α)x̄)− (1− α)f(x̄)

α
= f(x̄) +

f(x̄+ α(x− x̄))− f(x̄)

α
. (4)

Now, recall that

lim
α↘0

f(x̄+ α(x− x̄))− f(x̄)

α

is the directional derivative of f at x̄ in the direction x − x̄ and is equal to (∇f(x̄))T (x − x̄) (see
Section 3.2.2 of Handout C). Hence, upon letting α↘ 0 in (4), we have

f(x) ≥ f(x̄) + (∇f(x̄))T (x− x̄),
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as desired.

Conversely, let x1, x2 ∈ S and α ∈ (0, 1). Then, we have x̄ = αx1 + (1 − α)x2 ∈ S, which implies
that

f(x1) ≥ f(x̄) + (1− α)(∇f(x̄))T (x1 − x2), (5)

f(x2) ≥ f(x̄) + α(∇f(x̄))T (x2 − x1). (6)

Upon multiplying (5) by α and (6) by 1− α and summing, we obtain the desired result. tu

In the case where f is twice continuously differentiable, we have the following characterization:

Theorem 10 Let f : S → R be a twice continuously differentiable function on the open convex set
S ⊆ Rn. Then, f is convex on S iff ∇2f(x) � 0 for all x ∈ S.

Proof Suppose that ∇2f(x) � 0 for all x ∈ S. Let x1, x2 ∈ S. By Taylor’s theorem, there exists
an x̄ ∈ [x1, x2] ⊆ S such that

f(x2) = f(x1) + (∇f(x1))
T (x2 − x1) +

1

2
(x2 − x1)T∇2f(x̄)(x2 − x1). (7)

Since ∇2f(x̄) � 0, we have (x2 − x1)T∇2f(x̄)(x2 − x1) ≥ 0. Upon substituting this inequality
into (7) and invoking Theorem 9, we conclude that f is convex on S.

Conversely, suppose that ∇2f(x̄) 6� 0 for some x̄ ∈ S. Then, there exists a v ∈ Rn such
that vT∇2f(x̄)v < 0. Since S is open and ∇2f is continuous, there exists an ε > 0 such that
x̄′ = x̄ + εv ∈ S and vT∇2f(x̄ + α(x̄′ − x̄))v < 0 for all α ∈ [0, 1]. This implies (by taking x1 = x̄
and x2 = x̄′ in (7)) that f(x̄′) < f(x̄) + (∇f(x̄))T (x̄′ − x̄). Hence, by Theorem 9, we conclude that
f is not convex on S. This completes the proof. tu

We point out that Theorem 10 only applies to functions f that are twice continuously differen-
tiable on an open convex set S. This should be contrasted with Theorem 9, where the function f
needs only be differentiable on a convex subset S′ of an open set. In particular, the set S′ need not
be open. To see why S must be open in Theorem 10, consider the function f : R2 → R given by
f(x, y) = x2 − y2. This function is convex on the set S = R× {0}. However, its Hessian, which is
given by

∇2f(x, y) =

[
2 0
0 −2

]
for (x, y) ∈ R2,

is nowhere positive semidefinite.

2.4 Establishing Convexity of Functions

Armed with the tools developed in previous sub–sections, we are already able to establish the
convexity of many functions. Here are some examples.

Example 4 (Some Examples of Convex Functions)

1. Let f : Rn × Sn++ → R be given by f(x, Y ) = xTY −1x. We compute

epi(f) =
{

(x, Y, r) ∈ Rn × Sn++ × R : Y � 0, xTY −1x ≤ r
}

=

{
(x, Y, r) ∈ Rn × Sn++ × R :

[
Y x
xT r

]
� 0, Y � 0

}
,
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where the last equality follows from the Schur complement (see, e.g., [2, Section A.5.5]). This
shows that epi(f) is a convex set, which implies that f is convex on Rn × Sn++.

2. Let f : Rm×n → R+ be given by f(X) = ‖X‖2, where ‖ · ‖2 denotes the spectral norm or
largest singular value of the m× n matrix X. It is well known that (see, e.g., [6])

f(X) = sup
{
uTXv : ‖u‖2 = 1, ‖v‖2 = 1

}
.

This shows that f is a pointwise supremum of a family of linear functions of X. Hence, f is
convex.

3. Let ‖ · ‖ : Rn → R+ be a norm on Rn and f : Rn → R+ be given by f(x) = ‖x‖p, where p ≥ 1.
Then, for any x ∈ Rn, we have f(x) = g(‖x‖), where g : R+ → R+ is given by g(z) = zp.
Clearly, g is increasing on R+ and convex on R++ (e.g., by verifying g′′(z) ≥ 0 for all z > 0).
To show that g is convex on R+, it remains to verify that for any z ∈ R+ and α ∈ [0, 1],

g(α · 0 + (1− α)z) = (1− α)pzp ≤ (1− α)zp = αg(0) + (1− α)g(z).

Hence, by Theorem 8(d), we conclude that f is convex.

4. Let f : Rn → R be given by f(x) = log (
∑n

i=1 exp(xi)). We compute

∂2f

∂xixj
=


exp(xi)∑n
i=1 exp(xi)

− exp(2xi)

(
∑n

i=1 exp(xi))
2 if i = j,

− exp(xi + xj)

(
∑n

i=1 exp(xi))
2 if i 6= j.

This gives

∇2f(x) =
1

(eT z)2
((
eT z
)

diag(z)− zzT
)
,

where z = (exp(x1), . . . , exp(xn)). Now, for any v ∈ Rn, we have

vT∇2f(x)v =
1

(eT z)2

( n∑
i=1

zi

)(
n∑
i=1

ziv
2
i

)
−

(
n∑
i=1

zivi

)2


=
1

(eT z)2

( n∑
i=1

(
√
zi)

2

)(
n∑
i=1

(
√
zivi)

2

)
−

(
n∑
i=1

√
zi · (
√
zivi)

)2


≥ 0

by the Cauchy–Schwarz inequality. Hence, f is convex.

5. ([2, Chapter 3, Exercise 3.17]) Suppose that p ∈ (0, 1). Let f : Rn++ → R be given by

f(x) = (
∑n

i=1 x
p
i )

1/p
. We compute

∂2f

∂xixj
=


(1− p)

(
n∑
i=1

xpi

)p−1−2 [
−

(
n∑
i=1

xpi

)
xp−2i + x

2(p−1)
i

]
if i = j,

(1− p)

(
n∑
i=1

xpi

)p−1−2

xp−1i xp−1j if i 6= j.
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This gives

∇2f(x) = (1− p)

(
n∑
i=1

xpi

)p−1−2 [
−

(
n∑
i=1

xpi

)
diag

(
xp−21 , . . . , xp−2n

)
+ zzT

]
,

where zi = xp−1i for i = 1, . . . , n. Now, for any v ∈ Rn, we have

vT∇2f(x)v = (1− p)

(
n∑
i=1

xpi

)p−1−2
−( n∑

i=1

xpi

)(
n∑
i=1

v2i x
p−2
i

)
+

(
n∑
i=1

vix
p−1
i

)2
 ≤ 0,

since

−

(
n∑
i=1

xpi

)(
n∑
i=1

v2i x
p−2
i

)
+

(
n∑
i=1

(
vix

(p−2)/2
i

)(
x
p/2
i

))2

≤ 0

by the Cauchy–Schwarz inequality. It follows that f is concave on Rn++.

6. Let f : Sn++ → R be given by f(X) = − ln detX. For those readers who are well versed in
matrix calculus (see, e.g., [7] for a comprehensive treatment), the following formulas should
be familiar:

∇f(X) = −X−1, ∇2f(X) = X−1 ⊗X−1.

Here, ⊗ denotes the Kronecker product. Since X−1 � 0, it can be shown that X−1⊗X−1 � 0.
It follows that f is convex on Sn++.

Alternatively, we can establish the convexity of f on Sn++ by applying Theorem 8(e). To
begin, let X0 ∈ Sn++ and H ∈ Sn. Define the set D = {t ∈ R : X0 + tH � 0} = {t ∈ R :
λmin(X0 + tH) > 0}. Since λmin is continuous (see, e.g., [12, Chapter IV, Theorem 4.11]),
we see that D is open and convex. Now, consider the function f̃X0,H : D → R given by
f̃X0,H(t) = f(X0 + tH). For any t ∈ D, we compute

f̃X0,H(t) = − ln det(X0 + tH)

= − ln det
(
X

1/2
0

(
I + tX

−1/2
0 HX

−1/2
0

)
X

1/2
0

)
= −

(
n∑
i=1

ln(1 + tλi) + ln detX0

)

and

f̃ ′′X0,H(t) =
n∑
i=1

λ2i
(1 + tλi)2

≥ 0,

where λ1, . . . , λn are the eigenvalues of X
−1/2
0 HX

−1/2
0 . It follows that f̃X0,H is convex on D.

This, together with Theorem 8(e), implies that f is convex on Sn++.
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2.5 Non–Differentiable Convex Functions

In previous sub–sections we developed techniques to check whether a differentiable convex function
is convex or not. In particular, we showed that a differentiable function f : Rn → R is convex iff
at every x̄ ∈ Rn, we have f(x) ≥ f(x̄) + (∇f(x̄))T (x − x̄). The latter condition has a geometric
interpretation, namely, the epigraph of f is supported by its tangent hyperplane at every (x̄, f(x̄)) ∈
Rn × R. Of course, as can be easily seen from the function x 7→ |x|, not every convex function
is differentiable. However, the above geometric interpretation seems to hold for such functions as
well. In order to make such an observation rigorous, we need to first generalize the notion of a
gradient to that of a subgradient.

Definition 6 Let f : Rn → R ∪ {+∞} be as in Definition 5. A vector s ∈ Rn is called a subgra-
dient of f at x̄ if

f(x) ≥ f(x̄) + sT (x− x̄) for all x ∈ Rn. (8)

The set of vectors s such that (8) is called the subdifferential of f at x̄ and is denoted by ∂f(x̄).

Note that ∂f(x̄) may not be empty even though f is not differentiable at x̄. For example, consider
the function f : R→ R given by f(x) = |x|. Clearly, f is not differentiable at the origin, but it can
be easily verified from the definition that ∂f(0) = [−1, 1].

In many ways, the subdifferential behaves like a derivative, although one should note that the
former is a set, while the latter is a unique element. Here we state some important properties of
the subdifferential without proof. For details, we refer the reader to [11, Chapter 2, Section 2.5].

Theorem 11 Let f : Rn → R ∪ {+∞} be a convex function that is not identically +∞.

(a) (Subgradient and Directional Derivative) Let

f ′(x, d) = lim
t↘0

f(x+ td)− f(x)

t

be the directional derivative of f at x ∈ Rn in the direction d ∈ Rn\{0}, and let x ∈
int dom(f). Then, ∂f(x) is a non–empty compact convex set. Moreover, for any d ∈ Rn,
we have f ′(x, d) = maxs∈∂f(x) s

Td.

(b) (Subdifferential of a Differentiable Function) The convex function f is differentiable at
x ∈ Rn iff the subdifferential ∂f(x) is a singleton, in which case it consists of the gradient of
f at x.

(c) (Additivity of Subdifferentials) Suppose that f = f1 + f2, where f1 : Rn → R ∪ {+∞}
and f2 : Rn → R ∪ {+∞} are convex functions that are not identically +∞. Furthermore,
suppose that there exists an x0 ∈ dom(f) such that f1 is continuous at x0. Then, we have

∂f(x) = ∂f1(x) + ∂f2(x) for all x ∈ dom(f).

Theorem 11(a) states that the subdifferential ∂f of a convex function f is non–empty at any
x ∈ int dom(f). This leads to the natural question of what happens when x ∈ bd dom(f). The
following example shows that ∂f can be empty at such points.
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Example 5 (A Convex Function with Empty Subdifferential at a Point) Let f : Rn →
R ∪ {+∞} be given by

f(x) =

 −
√

1− ‖x‖22 if ‖x‖2 ≤ 1,

+∞ otherwise.

It is clear that f is a convex function with dom(f) = B(0, 1) and is differentiable on int dom(f) =
{x ∈ Rn : ‖x‖2 < 1}. It is also clear that ∂f(x) = ∅ for all x 6∈ dom(f). Now, let x̄ ∈ bd dom(f) =
{x ∈ Rn : ‖x‖2 = 1} be arbitrary. If s ∈ ∂f(x̄), then we must have

f(x) = −
√

1− ‖x‖22 ≥ s
T (x− x̄) for all x ∈ B(0, 1). (9)

Without loss of generality, we may assume that x̄ = e1. For α ∈ [−1, 1], define x(α) = αe1 ∈
B(0, 1). From (9), we see that s ∈ Rn satisfies

f(x(α)) = −
√

1− α2 ≥ αs1 − s1 for all α ∈ [−1, 1].

However, this implies that s1 ≥
√

(1 + α)/(1− α) for all α ∈ [−1, 1), which is impossible. Hence,
we have ∂f(x̄) = ∅ for all x̄ ∈ bd dom(f).

To further illustrate the concepts and results discussed above, let us compute the subdifferential
of the Euclidean norm.

Example 6 (Subdifferential of the Euclidean Norm) Let f : Rn → R be given by f(x) =
‖x‖2. Note that f is differentiable whenever x 6= 0. Hence, by Theorem 11(b) we have ∂f(x) =
{∇f(x)} = {x/‖x‖2} for all x ∈ Rn \ {0}.

Now, recall from Definition 6 that s ∈ Rn is a subgradient of f at 0 iff ‖x‖2 ≥ sTx for all
x ∈ Rn. It follows that ∂f(0) = B(0, 1).

3 Further Reading

Convex analysis is a rich subject with many deep and beautiful results. For more details, one can
consult the general references listed on the course website and/or the books [3, 13, 9, 5, 1, 11].
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[11] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, Princeton, New Jersey,
2006.

[12] G. W. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

[13] G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer–
Verlag, New York, revised first edition, 1995.

19


