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1 Basic Definitions and Properties

We now turn to the study of a very important class of optimization problems, namely that of Linear
Programming (LP) problems. To begin, let us recall the following definitions from Handout 2:

Definition 1 Let s ∈ Rn\{0} and c ∈ R be given. Then, the set of solutions to the linear equation
sTx = c, namely,

H =
{
x ∈ Rn : sTx = c

}
,

is called a hyperplane in Rn. Associated with every hyperplane H are the two halfspaces

H− =
{
x ∈ Rn : sTx ≤ c

}
and H+ =

{
x ∈ Rn : sTx ≥ c

}
.

Clearly, we have H = H+∩H− and Rn = H+∪H−. Also, note that H, H+, and H− are all closed
convex sets.

Geometrically, a hyperplane is an (n− 1)–dimensional affine subspace; i.e., it could be put into
the form H = {x̄} + V for some vector x̄ ∈ Rn and linear subspace V of dimension n − 1. To see
this, let H =

{
x ∈ Rn : sTx = c

}
be a hyperplane, where s ∈ Rn\{0} and c ∈ R are given. Define

V =
{
x ∈ Rn : sTx = 0

}
, x̄ =

c

sT s
s.

Since V is the set of vectors that are orthogonal to s, it is a linear subspace of dimension n − 1.
Moreover, a simple calculation shows that sT x̄ = c (i.e., x̄ ∈ H) and x̄ + x ∈ H for any x ∈ V .
Thus, we have H ⊃ {x̄} + V . Conversely, for any y ∈ H, we have x = y − x̄ ∈ V , which implies
that H ⊂ {x̄}+ V . It follows that H = {x̄}+ V , as desired. From such a representation of H, we
can see that s is a normal of H.

Now, let us introduce the main geometric object of interest in the study of LP.

Definition 2 A polyhedron is the intersection of a finite set of halfspaces. A bounded polyhedron
is called a polytope.

Recall from Handout 2 that a closed convex set is the intersection of all the halfspaces containing
it. However, this does not imply that any closed convex set is a polyhedron, as Definition 2 requires
the intersection to be finite. In particular, a closed convex set P is a polyhedron if and only if it
can be represented as

P =
{
x ∈ Rn : aTi x ≤ bi for i = 1, . . . ,m

}
(1)

for some given a1, . . . , am ∈ Rn and b1, . . . , bm ∈ R.
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2 Extremal Elements of a Polyhedron

Consider now a point x̄ ∈ P , where P ⊂ Rn is a polyhedron of the form (1). If the index
i ∈ {1, . . . ,m} is such that aTi x̄ = bi, then we say that the corresponding constraint is active or
binding at x̄. The following theorem is rather elementary. We leave the proof as an exercise to
the reader.

Theorem 1 Let P ⊂ Rn be a polyhedron of the form (1), and consider a point x̄ ∈ P . Let
I =

{
i : aTi x̄ = bi

}
be the set of indices of constraints that are active at x̄. Then, the following are

equivalent:

(a) There exist n vectors in the set {ai ∈ Rn : i ∈ I} that are linearly independent.

(b) The point x̄ ∈ Rn is the unique solution to the following system of linear equations:

aTi x = bi for i ∈ I.

Since any set of n linearly independent vectors in Rn forms a basis of Rn, we are led to the
following definition:

Definition 3 Let P ⊂ Rn be a polyhedron and x ∈ Rn be arbitrary. The vector x is called a basic
solution if there are n linearly independent active constraints at x. If in addition we have x ∈ P ,
then we say that x is a basic feasible solution.

Note that the definition of a basic solution is algebraic in nature. However, it seems to coincide
with the notion of an extreme point, which is geometric in nature (recall that a point x ∈ P is called
an extreme point if there does not exist two different points x1, x2 ∈ P such that x = (x1 + x2)/2).
It turns out that these two notions are indeed equivalent, as the following theorem shows:

Theorem 2 Let P ⊂ Rn be a polyhedron of the form (1) and x ∈ P be arbitrary. Then, the
following are equivalent:

(a) x is an extreme point.

(b) x is a basic feasible solution.

Remark: In the sequel we shall also use the term vertex to mean an extreme point/basic feasible
solution.

Proof Suppose that x ∈ P is not a basic feasible solution. Let I = {i : aTi x = bi}. Then, the
family {ai ∈ Rn : i ∈ I} does not contain n linearly independent vectors. Hence, there exists a
non–zero vector d ∈ Rn such that aTi d = 0 for all i ∈ I. Now, let ε > 0 be a parameter to be
determined, and set x1 = x − εd ∈ Rn and x2 = x + εd ∈ Rn. Clearly, for any i ∈ I, we have
aTi x1 = aTi x2 = aTi x = bi. Moreover, for any i 6∈ I, we have aTi x < bi because x ∈ P . It follows
that for sufficiently small ε > 0, we have aTi x1 < bi and aTi x2 < bi for any i 6∈ I. Hence, x1, x2 ∈ P .
Since x = (x1 + x2)/2 and x1 6= x2, we conclude that x is not an extreme point.

Conversely, suppose that x ∈ P is not an extreme point. Let x1, x2 ∈ P be such that x1 6= x2
and x = (x1 +x2)/2, and let I = {i : aTi x = bi}. Since x1, x2 ∈ P , we have aTi x1 ≤ bi and aTi x2 ≤ bi
for i = 1, . . . ,m, which yields aTi x1 = aTi x2 = aTi x = bi for all i ∈ I. This implies that the system
of linear equations

aTi z = bi for i ∈ I
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has more than one solution in z ∈ Rn. Hence, by Theorem 1, x is not a basic feasible solution. tu
One of the applications of Theorem 2 is to establish the non–polyhedrality of certain closed

convex sets:

Example 1 (Non–Polyhedrality of the Euclidean Ball) Consider the Euclidean ball B(0, 1) ⊂
Rn, which is a closed convex set. For the sake of contradiction, suppose that B(0, 1) is a polyhe-
dron. Then, it admits a representation of the form (1). Observe that the maximum number of basic
feasible solutions in such a representation is

(
m
n

)
, which is finite. By Theorem 2, this is also the

maximum number of extreme points of B(0, 1). However, this contradicts the result in Example 4
of Handout 2, which shows that the number of extreme points of B(0, 1) is infinite. Thus, we con-
clude that B(0, 1) is non–polyhedral. It is worth noting that B(0, 1) can be written as the infinite
intersection of halfspaces

⋂
d∈Rn:‖d‖2=1

{
x ∈ Rn : dTx ≤ 1

}
.

It is clear that not every polyhedron has a vertex. For instance, a halfspace in Rn, where n ≥ 2,
has no vertex. Thus, it is natural to ask whether one can characterize those polyhedra that have
vertices. As it turns out, the answer is affirmative. Let us begin with the following definition:

Definition 4 A polyhedron P ⊂ Rn contains a line if there exists a point x ∈ P and a vector
d ∈ Rn \ {0} such that x+ αd ∈ P for all α ∈ R.

We then have the following simple characterization:

Theorem 3 Let P ⊂ Rn be a polyhedron of the form (1). Then, the following are equivalent:

(a) P has at least one vertex.

(b) P does not contain a line.

(c) There exist n linearly independent constraints.

Proof The equivalence of (a) and (c) follows from Theorems 1 and 2. Now, suppose that P does
not contain a line. We show that P has at least one vertex. Let x ∈ P be arbitrary, and set
I = {i : aTi x = bi}. If the family F = {ai ∈ Rn : i ∈ I} contains n linearly independent vectors,
then by Theorem 2 we conclude that x is a vertex of P . Hence, suppose that F does not contain
n linearly independent vectors. Then, there exists a non–zero vector d ∈ Rn such that aTi d = 0
for all i ∈ I. Now, consider the line L = {x + αd : α ∈ R}. Clearly, for any y ∈ L and i ∈ I, we
have aTi y = aTi x = bi. However, since P does not contain a line, there must exist a scalar ᾱ ∈ R
and an index j 6∈ I such that aTj (x+ ᾱd) = bj . We claim that aj ∈ Rn is not a linear combination

of the vectors in F . Indeed, since j 6∈ I, we have aTj x < bj . Moreover, since aTj (x + ᾱd) = bj , we

must have aTj d 6= 0. However, if aj is a linear combination of the vectors in F , then we must have

aTj d = 0, since aTi d = 0 for all i ∈ I. Thus, we conclude that aj cannot be a linear combination of
the vectors in F . As a corollary, we see that the number of linearly independent active constraints
increases by at least one as we move from x ∈ P to x+ ᾱd ∈ P . By repeating the above argument,
we will eventually end up with a point x̄ ∈ P at which there are n linearly independent active
constraints. By Theorem 2, x̄ is then a vertex of P .

Now, suppose that there exist n linearly independent constraints, say a1, . . . , an ∈ Rn. We
show that P cannot contain a line. Suppose to the contrary that P contains the line {x + αd :
α ∈ R}, where d ∈ Rn is some non–zero vector. Then, for any α ∈ R and i = 1, . . . ,m, we have
aTi (x+ αd) ≤ bi. It follows that aTi d = 0 for i = 1, . . . ,m. Since the vectors a1, . . . , an are linearly
independent, we conclude that d = 0, which is a contradiction. Hence, P does not contain a line,
and the proof is completed. tu

3



3 Existence of Optimal Solutions to Linear Programs

Now, let P ⊂ Rn be a non–empty polyhedron of the form (1) and h ∈ Rn be a given vector.
Consider the LP

min
x∈P

hTx. (∗)

A natural first question concerning (∗) is whether it always has an optimal solution. Clearly, the
answer is negative, as the optimal value of (∗) can be −∞. On the other hand, if the optimal value
of (∗) is finite, then intuitively one should be able to find an optimal solution. Note, however, that
since P need not be bounded, we cannot apply Weierstrass’ theorem to prove this. Rather, we will
first use the techniques developed in the proof of Theorem 3 to prove the following:

Theorem 4 Consider the LP (∗). Suppose that P has at least one vertex. Then, either the optimal
value is −∞, or there exists a vertex that is optimal.

Proof The proof is similar to that of Theorem 3, except we also ensure that as we move towards
a vertex, the optimal value does not increase. Before we proceed, let us introduce a definition. We
say that x ∈ P has rank k ≥ 0 if there are exactly k linearly independent active constraints at x.
Now, suppose that the optimal value is finite. Consider an x ∈ P of rank k < n. Our goal is to
show that there exists some y ∈ P of greater rank and satisfies hT y ≤ hTx. We can then repeat
the process until we reach an optimal vertex.

As usual, let I = {i : aTi x = bi}. Since there are only k < n linearly independent vectors in the
family {ai ∈ Rn : i ∈ I}, there exists a d ∈ Rn \ {0} such that aTi d = 0 for all i ∈ I. Without loss
of generality, we may assume that hTd ≤ 0. Consider the following cases:

Case 1: hTd < 0.
Consider the half–line L+ = {x+αd : α > 0}. Clearly, for any y ∈ L+ and i ∈ I, we have aTi y = bi.
Now, if L+ ⊂ P , then the optimal value would be −∞, which we have assumed not to be the case.
Hence, there exist a scalar ᾱ > 0 and an index j 6∈ I such that aTj (x + ᾱd) = bj . Let y = x + ᾱd.

Then, we have hT y < hTx. Moreover, upon following the argument in the proof of Theorem 3, we
see that the family {ai : i ∈ I} ∪ {aj} is linearly independent, which implies that y ∈ P has rank
at least k + 1.

Case 2: hTd = 0.
Consider the line L = {x+αd : α ∈ R}. Since P does not contain a line, there exist a scalar ᾱ 6= 0
and an index j 6∈ I such that aTj (x + ᾱd) = bj . Let y = x + ᾱd. Then, we have hT y = hTx, and
the rank of y ∈ P is at least k + 1.

In either case, we obtain a y ∈ P whose rank is greater than that of x ∈ P and satisfies hT y ≤ hTx.
By repeating the above process, we will end up with a z ∈ P whose rank is n (i.e., z is a vertex of
P ) and satisfies hT z ≤ hTx. To complete the proof of the theorem, let z1, . . . , zr be the vertices of
P and set i∗ = arg min1≤i≤r h

T zi. Our argument above shows that for every x ∈ P , there exists an
i ∈ {1, . . . , r} such that hT zi ≤ hTx. It follows that hT zi∗ ≤ hTx for all x ∈ P ; i.e., zi∗ ∈ P is an
optimal vertex. tu

Now, in order to apply Theorem 4, the polyhedron P must have at least one vertex. This is
not a serious restriction, however, since we can transform (∗) into an equivalent LP problem whose
feasible set has at least one vertex. To see this, consider the polyhedron P ′ given by

P ′ =
{(
x+, x−, s

)
∈ Rn × Rn × Rm : aTi

(
x+ − x−

)
+ si = bi for i = 1, . . . ,m; x+, x−, s ≥ 0

}
.
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Note that if x ∈ P , then by setting

x+i =

{
xi if xi ≥ 0,
0 otherwise

for i = 1, . . . , n,

x−i =

{
0 if xi ≥ 0,
−xi otherwise

for i = 1, . . . , n,

sj = bj − aTj x for j = 1, . . . ,m,

we see that (x+, x−, s) ∈ P ′. Conversely, if (x+, x−, s) ∈ P ′, then by setting x = x+ − x−, we have
x ∈ P . It follows that

min
x∈P

hTx = min
(x+,x−,s)∈P ′

hT
(
x+ − x−

)
; (2)

i.e., minimizing hTx over P is equivalent to minimizing hT (x+ − x−) over P ′. Furthermore, note
that the polyhedron P ′ does not contain a line, and thus by Theorem 3, P ′ has at least one vertex.
In particular, we obtain the following corollary to Theorem 4:

Corollary 1 Consider the LP (∗). Suppose that P is non–empty. Then, either the optimal value
is −∞, or there exists an optimal solution.

Corollary 1 is one of the many nice regularity properties enjoyed by the class of LPs. By contrast,
the example infx≥1 x

−1 shows that nonlinear optimization problems need not have such a property.
To simplify notation in the sequel, let us write the problem on the right–hand side of (2) in a

more compact fashion. Specifically, let y = (x+, x−, s) ∈ Rn × Rn × Rm ∼= R2n+m. Define

A =


aT1 −aT1 1 0 · · · 0

aT2 −aT2 0 1 · · · 0

...
...

...
...

. . .
...

aTm −aTm 0 0 · · · 1

 ∈ Rm×(2n+m), b = (b1, . . . , bm) ∈ Rm, c = (h,−h,0) ∈ R2n+m.

Then, the problem of minimizing hT (x+ − x−) over P ′ can be written as

minimize cT y

subject to Ay = b,

y ≥ 0.

(3)

We shall call an LP problem of the form (3) a standard form problem.
Before we proceed, let us illustrate the above construction by considering a simple example.

Example 2 (Conversion to Standard Form LP) Let P = {x ∈ R2 : eT1 x ≥ 1} ⊂ R2 and
h = e1 ∈ R2 in the LP (∗). It is clear that (1, x2) is an optimal solution for any x2 ∈ R. The
polyhedron P ′ is given by

P ′ = {(x+1 , x
+
2 , x

−
1 , x

−
2 , s) ∈ R5

+ : x+1 − x
−
1 − s = 1} ⊂ R5

and the LP (∗) is equivalent to
min

(x+
1 ,x+

2 ,x−1 ,x−2 ,s)∈P ′
x+1 − x

−
1 . (4)
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Since P ′ has at least one vertex, by Theorem 4, the LP (4) has a vertex optimal solution. This
is given by y∗ = (1, 0, 0, 0, 0). To verify that y∗ is a vertex of P ′, it suffices to verify that the five
active constraints

x+1 = 1, x+2 = 0, x−1 = 0, x−2 = 0, s = 0

are linearly independent; see Theorem 2.

4 Theorems of Alternatives

Recall that the development in the previous section assumes the non–emptiness of the polyhedron
P . This raises the next natural question in the study of LPs: Given a system of linear inequalities,
how do we determine whether it is feasible or not? Clearly, it is easy to certify that a given system
is feasible, for one can simply exhibit a feasible solution. On the other hand, it is not so obvious
how to certify that a given system is infeasible. An answer to this problem is provided by the
following theorem of Farkas, which is better known as Farkas’ Lemma in the literature. The idea is
to construct an alternative system of linear inequalities such that the original system is infeasible if
and only if the alternative system is feasible. Then, one can certify the infeasibility of the original
system by exhibiting a feasible solution to the alternative system.

Theorem 5 (Farkas’ Lemma) Let A ∈ Rm×n and b ∈ Rm be given. Then, exactly one of the
following systems has a solution:

Ax = b, x ≥ 0. (5)

AT y ≤ 0, bT y > 0. (6)

Proof We first show that it is impossible for both (5) and (6) to have solutions. Indeed, suppose
to the contrary that x̄ ∈ Rn is a solution to (5) and ȳ ∈ Rm is a solution to (6). We compute

0 ≥
(
ȳTA

)
x̄ = ȳT (Ax̄) = ȳT b > 0,

which is a contradiction. Hence, we conclude that at most one of (5) and (6) has a solution.
Now, it remains to show that if (5) has no solution, then (6) has a solution. Consider the set
S = {Ax : x ≥ 0}. Since (5) has no solution, we have b 6∈ S. Now, in order to invoke the
Separation Theorem (Theorem 7 of Handout 2), we need to first prove the following lemma:

Lemma 1 S is a non–empty closed convex set.

Proof It is clear that S is convex. Moreover, since 0 ∈ S, we see that S is non–empty. Thus, it
remains to show that S is closed. Towards that end, let

{
yk
}

be a sequence in S such that yk → y.
Our goal is to show that y ∈ S. Consider the following optimization problem:

minimize ‖y −Ax‖∞
subject to x ≥ 0.

Using the techniques introduced in Handout 1, we can rewrite the above problem as follows:

minimize t

subject to t ≥ yi − (Ax)i for i = 1, . . . ,m,

t ≥ −yi + (Ax)i for i = 1, . . . ,m,

x ≥ 0.

(7)
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Note that the feasible set of (7) is a polyhedron with no lines. Hence, by Theorems 3 and 4, there
exists an optimal solution (x∗, t∗) whose optimal value is t∗ ≥ 0. We claim that t∗ = 0. Indeed,
suppose that t∗ > 0. Then, since yk → y, there exists an index k′ such that ‖y − yk′‖∞ = t′ < t∗.
Since yk

′ ∈ S, there exists an x′ ≥ 0 such that yk
′

= Ax′. It follows that (x′, t′) is a feasible solution
to (7), which contradicts the optimality of (x∗, t∗). Hence, we have t∗ = 0, from which it follows
that y = Ax∗; i.e., y ∈ S as desired. tu

Now, by Theorem 7 of Handout 2, there exists a y ∈ Rm such that yTAx < yT b for all x ≥ 0.
Since 0 ∈ S, we have bT y > 0. We further claim that AT y ≤ 0. Suppose that this is not the
case. Then, there exists an index i ∈ {1, . . . , n} such that

(
AT y

)
i
> 0. Consider the vector

x′ = λei, where λ > 0 and ei is the i–th basis vector. Clearly, we have x′ ≥ 0. Moreover, we have
yT b > yTAx′ = λ

(
AT y

)
i

for all λ > 0, which is impossible. Hence, we have AT y ≤ 0 as claimed,
and this completes the proof. tu

Note that a crucial step in our proof of Farkas’ lemma is to show that the image of the closed cone
{x ∈ Rn : x ≥ 0} under the mapping A is closed. Such a step should not be taken for granted, as
the image of a closed cone under an affine map need not be closed. For more information, see [? ].

Once we have proven Farkas’ lemma, we can use it to establish a variety of theorems of alter-
natives. As an illustration, let us use Farkas’ lemma to prove the following theorem of Gordan:

Corollary 2 (Gordan’s Theorem) Let A ∈ Rm×n be given. Then, exactly one of the following
systems has a solution:

Ax > 0. (8)

AT y = 0, y ≥ 0, y 6= 0. (9)

Proof Again, it is clear that (8) and (9) cannot both have solutions, for otherwise there would
exist x̄ ∈ Rn and ȳ ∈ Rm such that

0 =
(
yTA

)
x = yT (Ax) > 0,

which is a contradiction. Now, note that (8) is equivalent to Ax ≥ e, since we can scale both sides
of (8) by any positive scalar. On the other hand, the system Ax ≥ e is equivalent to the system
Ãz = e, z ≥ 0, where Ã = [ A −A −I ] ∈ Rm×(2n+m) and z = (x+, x−, s) ∈ R2n+m. Now, by

Farkas’ lemma, if the system Ãz = e, z ≥ 0 has no solution, then there exists a y ∈ Rm such that
ÃT y ≤ 0 and eT y > 0. From the definition of Ã, we see that AT y = 0 and y ≥ 0. Moreover, since
eT y > 0, we conclude that y 6= 0. This completes the proof. tu

5 LP Duality Theory

In view of the developments in Sections 3 and 4, it remains to understand when a feasible LP has
a finite optimal value. Towards that end, let us recall the standard form LP:

v∗p = minimize cTx

subject to Ax = b,

x ≥ 0.

(P )
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One obvious idea for assessing whether (P ) has finite optimal value is to develop a lower bound on
v∗p. However, this seems more difficult than finding an upper bound on v∗p, which simply involves
taking a feasible solution to (P ) and evaluating its corresponding objective value. Nevertheless, we
can proceed as follows. Suppose that we can find a vector y ∈ Rm such that AT y ≤ c. Then, for
any x ∈ Rn that is feasible for (P ), we have

bT y = xTAT y ≤ cTx,

where the equality is due to Ax = b and the inequality is due to x ≥ 0 and AT y ≤ c. Since the
above inequality holds for any feasible solution x ∈ Rn to (P ), it follows that bT y provides a lower
bound on v∗p for any y ∈ Rm satisfying AT y ≤ c. Naturally, we are interested in finding the largest
lower bound on v∗p. This motivates us to consider the following optimization problem:

v∗d = maximize bT y

subject to AT y ≤ c.
(D)

Note that (D) is also an LP. In the sequel we shall call (P ) the primal problem and (D) its
dual problem. Our discussion above concerning the construction of (D) immediately leads to the
following result:

Theorem 6 (LP Weak Duality) Let x̄ ∈ Rn be feasible for (P ) and ȳ ∈ Rm be feasible for (D).
Then, we have bT ȳ ≤ cT x̄. In particular, v∗p ≥ v∗d.

Even though the LP weak duality theorem is almost trivial, it has some useful corollaries.

Corollary 3 The following hold:

(a) If the optimal value of (P ) is −∞, then (D) must be infeasible.

(b) If the optimal value of (D) is +∞, then (P ) must be infeasible.

(c) Let x̄ ∈ Rn and ȳ ∈ Rm be feasible for (P ) and (D), respectively. Suppose that the duality gap
∆(x̄, ȳ) = cT x̄− bT ȳ = 0. Then, x̄ and ȳ are optimal solutions to (P ) and (D), respectively.

Motivated by Corollary 3, it is natural to ask whether it is possible to have an optimal solution
x̄ ∈ Rn to (P ) and an optimal solution ȳ ∈ Rm to (D) such that the duality gap is non–zero. As it
turns out, the answer is negative. Consequently, our construction of the dual problem (D) gives a
tight lower bound on the primal objective value v∗p.

Theorem 7 (LP Strong Duality) Suppose that (P ) has an optimal solution x∗ ∈ Rn. Then, (D)
also has an optimal solution y∗ ∈ Rm, and cTx∗ = bT y∗.

Proof Suppose that (P ) has an optimal solution x∗ ∈ Rn. Then, the system

Ax = b, x ≥ 0, cTx < cTx∗ (10)

does not have a solution in x ∈ Rn. To apply Farkas’ lemma, we first homogenize the above system
to get

Ax− bt = 0, cTx−
(
cTx∗

)
t = −1 < 0, (x, t) ≥ 0. (11)
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We claim that (11) has no solution in (x, t) ∈ Rn×R. Indeed, if (x′, t′) is a feasible solution to (11)
with t′ > 0, then x′/t′ is a solution to (10), which is a contradiction. On the other hand, if t′ = 0,
then we have A(x∗ + x′) = b, x∗ + x′ ≥ 0, and cT (x∗ + x′) = cTx∗ − 1 < cTx∗. This shows that
x∗ + x′ is a solution to (10), which again is a contradiction. Thus, the claim is established. Now,
by Farkas’ lemma, there exists a y∗ ∈ Rm such that c−AT y∗ ≥ 0 and −cTx∗+ bT y∗ ≥ 0. It follows
that y∗ is feasible for (D). Moreover, by the LP weak duality theorem, we have cTx∗ = bT y∗. This
completes the proof. tu

Together with Theorem 4, we have the following corollary:

Corollary 4 Suppose that both (P ) and (D) are feasible. Then, both (P ) and (D) have optimal
solutions, and their respective optimal values are equal.

One important consequence of the LP strong duality theorem is that the task of finding optimal
solutions to (P ) and (D) is equivalent to that of finding a feasible solution to the following linear
system in (x, y) ∈ Rn × Rm:

Ax = b, x ≥ 0, (primal feasibility)

AT y ≤ c, (dual feasibility)

cTx = bT y. (zero duality gap)

In particular, the problem of linear optimization is no harder than that of linear feasibility.
Using the LP strong duality theorem, one can derive another important relation between the

primal and dual optimal solutions.

Theorem 8 (Complementary Slackness) Let x̄ ∈ Rn and ȳ ∈ Rm be feasible for (P ) and (D),
respectively. Then, the vectors x̄ and ȳ are optimal for their respective problems iff x̄i

(
c−AT ȳ

)
i

= 0
for i = 1, . . . , n.

Proof Using the fact that Ax̄ = b, we have

cT x̄− bT ȳ = cT x̄− x̄TAT ȳ = x̄T
(
c−AT ȳ

)
=

n∑
i=1

x̄i
(
c−AT ȳ

)
i
. (12)

Now, if x̄i
(
c−AT ȳ

)
i

= 0 for i = 1, . . . , n, then we have cT x̄ = bT ȳ. By the LP strong duality
theorem, we conclude that x̄ and ȳ are optimal for their respective problems. Conversely, if x̄
and ȳ are optimal for their respective problems, then by the LP strong duality theorem, we have
cT x̄ − bT ȳ = 0. Since x̄ ≥ 0 and c − AT ȳ ≥ 0 by the feasibility of x̄ and ȳ, we conclude by (12)
that x̄i

(
c−AT ȳ

)
i

= 0 for i = 1, . . . , n. tu

From Theorem 8, we see that another way of solving (P ) and (D) is to solve the following (nonlinear)
system in (x, y, s) ∈ Rn × Rm × Rn:

Ax = b, x ≥ 0, (primal feasibility)

AT y + s = c, (dual feasibility)

xisi = 0 for i = 1, . . . , n. (complementarity)

Although the above system is nonlinear, it plays an important role in the development of efficient
interior–point algorithms for LP. We refer the interested reader to [? ? ] for details.

As an illustration of LP duality, let us consider the following example:
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Example 3 (A Simple LP) Consider the following LP:

minimize x1 + 2x2 + x3

subject to x1 − 2x2 + x3 ≥ 2,

−x1 + + x3 ≥ 4,

2x1 + + x3 ≥ 6,

x1 + x2 + x3 ≥ 2,

x ≥ 0.

(13)

To derive the dual of (13), we first put it into standard form by introducing suitable slack variables:

minimize (1, 2, 1, 0, 0, 0, 0)T (x1, x2, x3, s1, s2, s3, s4)

subject to


1 −2 1

−I−1 0 1
2 0 1
1 1 1



x1
x2
x3
s

 =


2
4
6
2

 ,
(x, s) ≥ 0.

(14)

Using (D), we obtain the dual of (13) as follows:

maximize (2, 4, 6, 2)T (y1, y2, y3, y4)

subject to


1 −1 2 1
−2 0 0 1
1 1 1 1

−I



y1
y2
y3
y4

 ≤


1
2
1
0

 . (15)

Now, consider the point

(x̄, s̄) = (x̄1, x̄2, x̄3, s̄1, s̄2, s̄3, s̄4) =

(
2

3
, 0,

14

3
,
10

3
, 0, 0,

10

3

)
,

which, as can be easily verified, is feasible for Problem (14). By Theorem 8, the point (x̄, s̄) is
optimal for Problem (14) iff there exists a feasible solution ȳ ∈ R4 to Problem (15) such that

ȳ1 = ȳ4 = 0, (since s̄1, s̄4 > 0)

−ȳ2 + 2ȳ3 = 1 (since x̄1 > 0)

ȳ2 + ȳ3 = 1, (since x̄3 > 0)

ȳ2, ȳ3 ≥ 0, (dual feasibility)

or equivalently, the point

ȳ =

(
0,

1

3
,
2

3
, 0

)
is feasible for Problem (15). The latter can be easily verified to be the case. Hence, we have certified
the optimality of the primal–dual pair of solutions (x̄, s̄, ȳ). Note that we also have

(1, 2, 1, 0, 0, 0, 0)T (x̄1, x̄2, x̄3, s̄1, s̄2, s̄3, s̄4) =
16

3
= (2, 4, 6, 2)T (ȳ1, ȳ2, ȳ3, ȳ4);
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i.e., the duality gap is zero.
By Theorems 4 and 6, we know that Problem (13) has a vertex optimal solution. Recall from

Definition 3 that each vertex of the feasible region of Problem (13) should have three linearly inde-
pendent active constraints. Since the active constraints at x̄ are

(−1, 0, 1)T (x̄1, x̄2, x̄3) = 4,

(2, 0, 1)T (x̄1, x̄2, x̄3) = 6,

(0, 1, 0)T (x̄1, x̄2, x̄3) = 0,

which are linearly independent (they correspond to the coefficient vectors (−1, 0, 1), (2, 0, 1), and
(0, 1, 0)), we conclude that x̄ is a vertex optimal solution to Problem (13).

For further reading on linear programming, we refer the reader to the books [? ? ].
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