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1 Introduction

The theory of LP has found many applications in various disciplines. In this lecture, we will consider
some of those applications and see how the machineries developed in previous lectures can be used
to obtain some interesting results.

2 An Approximation Algorithm for Vertex Cover

The theory of LP has been employed very successfully in the design of approximation algorithms
in recent years (see, e.g., [3]). We say that an algorithm A is an α-approximation algorithm for
a minimization problem P if for every instance I of P it delivers a solution that is at most α times
the optimum in polynomial time. Clearly, we have α ≥ 1, and the closer it is to 1, the better. In
a similar fashion, one may define the notion of an α-approximation algorithm for a maximization
problem. In this section we study the so-called vertex cover problem and see how the theory of LP
can be used to obtain a 2-approximation algorithm for it.

To begin, consider a simple undirected graph G = (V,E), where each vertex vi ∈ V has an
associated cost ci ∈ R+. A vertex cover of G is a subset S ⊂ V such that for every edge
(vi, vj) ∈ E, at least one of the endpoints belongs to S. We are interested in finding a vertex cover
S of G of minimal cost.

Now, let xi ∈ {0, 1} be a binary variable indicating whether vi belongs to the vertex cover S or
not (i.e., xi = 1 iff vi ∈ S). Then, the minimum-cost vertex cover problem can be formulated as
the following integer program:

v∗ := minimize cTx =

|V |∑
i=1

cixi

subject to xi + xj ≥ 1 for (vi, vj) ∈ E,

x ∈ {0, 1}|V |.

(1)

Again, (1) is a non-convex optimization problem. Consider now the following LP relaxation of (1):

v∗r := minimize cTx

subject to xi + xj ≥ 1 for (vi, vj) ∈ E,
x ≥ 0.

(2)

Clearly, we have v∗r ≤ v∗. Suppose that x′ is an optimal solution to (2). The question now is, can
we convert x′ into a solution x′′ that is feasible for (1) such that cTx′′ ≤ αv∗r for some α > 0? Note
that if this is possible, then we would obtain an α-approximation algorithm for the minimum-cost
vertex cover problem, since we have cTx′′ ≤ αv∗r ≤ αv∗. As the following theorem shows, the
answer to the above question is indeed yes:
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Theorem 1 (cf. [2]) Let P ⊂ R|V | be the polyhedron defined by the following system:{
xi + xj ≥ 1 for (vi, vj) ∈ E,

x ≥ 0.

Suppose that x is an extreme point of P . Then, we have xi ∈ {0, 1/2, 1} for i = 1, . . . , |V |.

Proof Let x ∈ P , and consider the sets

U−1 = {i ∈ {1, . . . , |V |} : xi ∈ (0, 1/2)} ,

U1 = {i ∈ {1, . . . , |V |} : xi ∈ (1/2, 1)} .

For i = 1, . . . , |V | and k ∈ {−1, 1}, define

yi =

{
xi + kε if i ∈ Uk,

xi otherwise
; zi =

{
xi − kε if i ∈ Uk,

xi otherwise.

By definition, we have x = (y + z)/2. If either U−1 or U1 is non-empty, then we may choose ε > 0
to be sufficiently small so that y, z ∈ P , and that x, y, z are all distinct. It follows that Uk = ∅ for
k ∈ {−1, 1} if x is an extreme point of P . tu

Corollary 1 There exists a 2-approximation algorithm for the minimum-cost vertex cover problem.

Proof We first solve the LP (2) and obtain an optimal extreme point solution x′. Now, by Theorem
1, all the entries of x′ belong to {0, 1/2, 1}. Hence, the vector x′′ defined by

x′′i =

{
x′i if x′i = 0 or 1,

1 if x′i = 1/2
for i = 1, . . . , |V |

is feasible for (1). Moreover, it has objective value cTx′′ ≤ 2cTx′ = 2v∗r ≤ 2v∗. This completes the
proof. tu

3 Blind Separation of Non-Negative Sources

In various image processing applications, a problem of fundamental interest is that of separating
non-negative source signals in a blind fashion. For simplicity, consider the following linear mixture
model:

x[`] = As[`] for ` = 1, . . . , L, (3)

where s[`] ∈ Rn
+ is the `-th source vector, x[`] ∈ Rm is the `-th observation vector, and A ∈ Rm×n

is a mixing matrix describing the input-output relationship. Our goal here is to extract the source
vectors s[1], . . . , s[L] ∈ Rn from the observation vectors x[1], . . . , x[L] ∈ Rm without knowledge of
the mixing matrix A ∈ Rm×n. Note that such a task is not well-defined. For instance, if the pair(
{s[`]}L`=1, A

)
satisfies (3), then so does the pair

(
{s[`]/c}L`=1, cA

)
for any constant c > 0. Thus,

it is necessary to impose additional assumptions on the model (3). Towards that end, let us first
rewrite (3) as

xi =

n∑
j=1

aijs
j for i = 1, . . . ,m, (4)

where xi = (xi[1], . . . , xi[L]) ∈ RL is the i-th observed signal and sj = (sj [1], . . . , sj [L]) ∈ RL
+ is the

signal from the j-th source. We shall make the following assumptions:
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(a) The mixing matrix A ∈ Rm×n has full column rank (in particular, m ≥ n) and satisfies

n∑
j=1

aij = 1 for i = 1, . . . ,m.

Moreover, the number of observations L satisfies L� m.

(b) Each source signal is locally dominant; i.e., for each source j ∈ {1, . . . , n}, there exists an
(unknown) undex `(j) ∈ {1, . . . , L} such that sj [`(j)] > 0 and sk[`(j)] = 0 for all k 6= j.

The above assumptions are satisfied in a wide variety of settings; see, e.g., [1] for a more detailed
discussion. Now, observe that from Assumption (a), we have xi ∈ aff({s1, . . . , sn}) for i = 1, . . . ,m.
In fact, more can be said:

Proposition 1 Under Assumption (a), we have aff({x1, . . . , xm}) = aff({s1, . . . , sn}).

Proof Suppose that x ∈ aff({x1, . . . , xm}). Then, there exist α1, . . . , αm ∈ R such that

x =

m∑
i=1

αix
i and

m∑
i=1

αi = 1.

Substituting this into (4) yields

x =

m∑
i=1

n∑
j=1

αiaijs
j =

n∑
j=1

βjs
j ,

where βj =
∑m

i=1 αiaij , for j = 1, . . . , n. Using Assumption (a), we have

n∑
j=1

βj =

m∑
i=1

αi

 n∑
j=1

aij

 = 1.

It follows that x ∈ aff({s1, . . . , sn}).

Conversely, suppose that x ∈ aff({s1, . . . , sn}). Then, there exist β1, . . . , βn ∈ R such that

x =

n∑
j=1

βjs
j and

n∑
j=1

βj = 1.

Consider now the following system of linear equations in α = (α1, . . . , αm) ∈ Rm:

βj =

m∑
i=1

αiaij for j = 1, . . . , n. (5)

By Assumption (a), we have m ≥ n, which implies that the above system is solvable. Upon
summing (5) over j = 1, . . . , n, we have

1 =

n∑
j=1

βj =

m∑
i=1

αi

 n∑
j=1

aij

 =

m∑
i=1

αi.
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This shows that x ∈ aff({x1, . . . , xm}), as desired. tu

The upshot of Proposition 1 is that although we do not know the source vectors s1, . . . , sn ∈ RL
+,

their affine hull is completely determined by the observed vectors x1, . . . , xm ∈ RL. Such an
observation can help us in recovering the source vectors s1, . . . , sn ∈ RL

+. Indeed, consider the
polyhedron

P = aff({s1, . . . , sn}) ∩ RL
+. (6)

Since si ∈ RL
+, we have si ∈ P for i = 1, . . . , n. As the following result shows, the source vectors

can be recovered by considering the vertices of P:

Proposition 2 Under Assumption (b), we have P = conv({s1, . . . , sn}). Moreover, the vertices of
P are {s1, . . . , sn}.

Proof Suppose that x ∈ P. Then, there exist β1, . . . , βn ∈ R such that

0 ≤ x =

n∑
j=1

βjs
j and

n∑
j=1

βj = 1.

For each j ∈ {1, . . . , n}, we have 0 ≤ x[`(j)] = βjs
j [`(j)] by Assumption (b), which implies that

βj ≥ 0. Thus, we have x ∈ conv({s1, . . . , sn}).

Conversely, suppose that x ∈ conv({s1, . . . , sn}). Since s1, . . . , sn ∈ RL
+, it is clear that x ∈ P.

Lastly, for a fixed k ∈ {1, . . . , n}, suppose that sk = θx1+(1−θ)x2, where x1, x2 ∈ P and θ ∈ (0, 1).
Then, there exist α1

1, . . . , α
1
n ∈ R+ and α2

1, . . . , α
2
n ∈ R+ such that

sk =

n∑
j=1

(
θα1

j + (1− θ)α2
j

)
sj and

n∑
j=1

α1
j =

n∑
j=1

α2
j = 1.

Now, by Assumption (b), we have

sk[`(k)] =
(
θα1

k + (1− θ)α2
k

)
sk[`(k)],

which implies that θα1
k + (1− θ)α2

k = 1. This is possible if and only if α1
k = α2

k = 1, or equivalently,
x1 = x2 = sk. It follows that sk is a vertex of P, as desired. tu

To obtain a representation of P that is more amenable to computation, we first observe that
dim

(
aff({s1, . . . , sn})

)
= n − 1. Thus, by Proposition 1 and Assumption (b), there are n − 1

linearly independent vectors in the collection {xi−x1}mi=2. Now, let v1, . . . , vL−n+1 ∈ RL be a basis
of span({x2− x1, . . . , xm− x1})⊥, which can be computed by the Gram-Schmidt orthogonalization
procedure. Then, we have

aff({x1, . . . , xm}) =
{
x ∈ RL : (vi)Tx = (vi)Tx1 for i = 1, . . . , L− n+ 1

}
,

which, together with (6), implies that

P =
{
x ∈ RL

+ : (vi)Tx = (vi)Tx1 for i = 1, . . . , L− n+ 1
}
.
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