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1 Introduction

A class of optimization problems that has frequently arisen in applications is that of quadratically
constrained quadratic optimization problems (QCQPs); i.e., problems of the form

minimize zHQz

subject to zHAiz ≥ bi for i = 1, . . . ,m,
(QCQP)

where Q,A1, . . . , Am ∈ Hn are given. In general, due to the non–convexity of the objective function
and constraints, problem (QCQP) is intractable. Nevertheless, it can be tackled by the so–called
semidefinite relaxation technique. To introduce this technique, we first observe that for any
Q ∈ Hn,

zHQz = tr(zHQz) = Q • zzH .

Hence, (QCQP) is equivalent to

minimize Q • zzH

subject to Ai • zzH ≥ bi for i = 1, . . . ,m.

Now, using the spectral theorem for Hermitian matrices, one can verify that

Z = zzH ⇐⇒ Z � 0, rank(Z) ≤ 1.

It follows that (QCQP) is equivalent to the following rank–constrained SDP:

minimize Q • Z

subject to Ai • Z ≥ bi for i = 1, . . . ,m,

Z � 0, rank(Z) ≤ 1.

(RCSDP)

The advantage of the formulation in (RCSDP) over that in (QCQP) is that it reveals where the
difficulty of the problem lies; namely, in the non–convex constraint rank(Z) ≤ 1. By dropping this
constraint, we obtain the following semidefinite relaxation of (QCQP):

minimize Q • Z

subject to Ai • Z ≥ bi for i = 1, . . . ,m,

Z � 0.

(QPSDR)

Problem (QPSDR) is a (complex) SDP, which can be efficiently solved. However, an optimal
solution Z∗ to (QPSDR) may not be feasible for (QCQP), since we need not have rank(Z∗) ≤ 1.
This motivates us to consider two fundamental questions:
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1. Under what conditions would the relaxation (QPSDR) be tight? In particular, when would
it be possible to convert an optimal solution Z∗ to (QPSDR) into an optimal solution z∗ to
(QCQP)?

2. In the case where the relaxation (QPSDR) is not tight, how can we extract a feasible solution
to (QCQP) from an optimal solution to (QPSDR)? More ambitiously, can we establish any
theoretical guarantees on the approximation quality of the extracted solution?

In the sequel, we shall develop some machinery to address the above questions. As we shall see,
the CLP duality theory plays an important role in the development of those machinery.

2 Rank of SDP Solutions

2.1 Bounds via Constraint Counting

Consider the following standard form complex SDP:

v∗SDP = inf C • Z
subject to Ai • Z = bi for i = 1, . . . ,m,

Z � 0,

(SDP)

where C,A1, . . . , Am ∈ Hn and b1, . . . , bm ∈ R are given. The following theorem shows that if (SDP)
has an optimal solution, then it has an optimal solution whose rank is bounded by a function of
m, the number of constraints.

Theorem 1 Suppose that (SDP) has an optimal solution. Then, there exists an optimal solution
Z∗ to (SDP) satisfying rank (Z∗) ≤ b

√
mc. Moreover, such an optimal solution can be computed

efficiently.

Proof Let Z̄∗ be an optimal solution to (SDP). Suppose that r = rank
(
Z̄∗
)
>
√
m. Let Z̄∗ = LLH

be the Cholesky factorization of Z̄∗, where L ∈ Cn×r. Set C̄ = LHCL ∈ Hr and Āi = LHAiL ∈ Hr
for i = 1, . . . ,m, and consider the following auxiliary SDP:

v∗ASDP = inf C̄ •W
subject to Āi •W = bi for i = 1, . . . ,m,

W � 0.

(ASDP)

We claim that v∗SDP = v∗ASDP, and that W = I is an optimal solution to (ASDP). Indeed, observe
that the solution W = I is feasible for (ASDP) and has an objective value

C̄ • I = C • LLH = C • Z∗ = v∗SDP.

This implies that v∗ASDP ≤ v∗SDP. On the other hand, every feasible solution W to (ASDP) corre-
sponds to a feasible solution Z(W ) = LWLH to (SDP), which implies that v∗ASDP ≥ v∗SDP. Thus,
the claim is established.

Next, we show that every feasible solution to (ASDP) is in fact optimal for (ASDP). Towards
that end, consider the dual of (ASDP):

sup bT y

subject to C̄ −
m∑
i=1

yiĀi � 0,

y ∈ Rm.

(ASDD)
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Since (ASDP) is bounded below and strictly feasible, by the CLP Strong Duality Theorem, (ASDD)
has an optimal solution y∗. Moreover, since W = I is optimal for (ASDP), the CLP Strong Duality
Theorem yields

I •

(
C̄ −

m∑
i=1

y∗i Āi

)
= 0.

This, together with the fact that C̄ −
∑m

i=1 y
∗
i Āi � 0, implies that

C̄ −
m∑
i=1

y∗i Āi = 0.

It follows that every feasible solution W̄ to (ASDP) satisfies the complementarity condition

W̄ •

(
C̄ −

m∑
i=1

y∗i Āi

)
= 0.

Hence, by the CLP Strong Duality Theorem, we conclude that W̄ is optimal for (ASDP).
To complete the proof of Theorem 1, consider the following system of homogeneous linear

equations:
Āi •W = 0 for i = 1, . . . ,m, W ∈ Hr. (1)

Since W ∈ Hr, it is completely determined by the entries on and above the diagonal. Note that
the diagonal entries of W must be real, while the entries above the diagonal can be complex. It
follows that (1) is a system of m equations in r+ 2(r(r− 1)/2) = r2 real variables. Now, if r2 > m,
then there exists a non–zero W̄ ∈ Hr satisfying (1). We may assume without loss that W̄ has at
least one negative eigenvalue, for otherwise we can simply consider −W̄ , which also satisfies (1).
Consider the matrix W̄+ = I+(1/λmin(W̄ ))W̄ ∈ Hr, where λmin(W̄ ) < 0 is the smallest eigenvalue
of W̄ . It can be verified that W̄+ � 0 and rank

(
W̄+

)
< r. Moreover, a direct calculation yields

Āi • W̄+ = Āi • I = bi for i = 1, . . . ,m.

It follows that W̄+ is feasible and hence optimal for (ASDP). This implies that Z
(
W̄+

)
= LW̄+LH

is optimal for (SDP) and satisfies rank
(
Z
(
W̄+

))
< r.

By repeating the above procedure until W = 0 is the only solution to (1), we obtain an optimal
solution Z∗ with rank(Z∗)2 ≤ m. Since rank(Z∗) is an integer, we must have rank(Z∗) ≤ b

√
mc.

Lastly, note that an optimal solution to (SDP) and a non–zero solution to (1), if exists, can be
found efficiently. This completes the proof of Theorem 1. tu

The following is an easy corollary of Theorem 1:

Corollary 1 Consider the following SDP:

inf C • Z
subject to Ai • Z = bi for i = 1, . . . ,m′,

Ai • Z ≥ bi for i = m′ + 1, . . . ,m,

Z � 0,

(2)

where C,A1, . . . , Am ∈ Hn and b1, . . . , bm ∈ R are given. If problem (2) has an optimal solution,
then it has an optimal solution Z∗ satisfying rank(Z∗) ≤ b

√
mc. Moreover, such an optimal solution

can be found efficiently.
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Proof Let Z̄∗ be an optimal solution to (2). Then, Z̄∗ is an optimal solution to the following
SDP:

inf C • Z
subject to Ai • Z = Ai • Z̄∗ for i = 1, . . . ,m,

Z � 0.

(3)

By Theorem 1, an optimal solution Z∗ to (3) satisfying rank(Z∗) ≤ b
√
mc can be found efficiently.

To complete the proof, it suffices to note that Z∗ is also optimal for (2). tu

Using Corollary 1, we obtain our first tightness result concerning the relaxation (QPSDR).

Corollary 2 The semidefinite relaxation (QPSDR) is tight for (QCQP) when m ≤ 3.

Remark: Theorem 1 extends the corresponding result for real SDPs in [14, 1, 12] to complex
SDPs. A slightly different formulation of Theorem 1 can be found in [8, Theorem 5.1].

With minimal additional effort, one can extend Theorem 1 to cover SDPs with certain block
structure. Specifically, consider the following problem:

v∗BSDP = inf

K∑
k=1

Ck • Zk

subject to

K∑
k=1

Aik • Zk = bi for i = 1, . . . ,m,

Zk � 0 for k = 1, . . . ,K,

(BSDP)

where Ck, A1k, . . . , Amk ∈ Hnk for k = 1, . . . ,K and b1, . . . , bm ∈ R are given. We then have the
following theorem:

Theorem 2 Suppose that (BSDP) has an optimal solution. Then, there exists an optimal solution
(Z∗1 , . . . , Z

∗
K) to (BSDP) satisfying

∑K
k=1 rank (Z∗k)2 ≤ m. Moreover, such an optimal solution can

be computed efficiently.

Proof The proof essentially follows that of Theorem 1. Let (Z̄∗1 , . . . , Z̄
∗
K) be an optimal solution

to (BSDP) with rank
(
Z̄∗k
)

= rk for k = 1, . . . ,K. Consider the Cholesky factorization Z̄∗k = LkL
H
k

of Z̄∗k , where Lk ∈ Cnk×rk and k = 1, . . . ,K. Then, using similar argument as in the proof of
Theorem 1, it can be shown that every feasible solution (W1, . . . ,WK) to the auxiliary SDP

v∗ABSDP = inf
K∑
k=1

C̄k •Wk

subject to
K∑
k=1

Āik •Wk = bi for i = 1, . . . ,m,

Wk � 0 for k = 1, . . . ,K,

(ABSDP)

where C̄k = LHk CkLk ∈ Hrk and Āik = LHk AikLk ∈ Hrk for k = 1, . . . ,K, i = 1, . . . ,m, is optimal
for (ABSDP) and corresponds to an optimal solution (L1W1L

H
1 , . . . , LKWKL

H
K) to (BSDP).
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Now, consider the following system of homogeneous linear equations:

K∑
k=1

Āik •Wk = 0 for i = 1, . . . ,m, Wk ∈ Hrk for k = 1, . . . ,K. (4)

Note that the number of real variables in (4) is precisely r =
∑K

k=1 r
2
k. Thus, if r > m, then there

exist matrices W̄k ∈ Hrk for k = 1, . . . ,K, not all zero, such that (W̄1, . . . , W̄K) satisfies (4). Let

K =
{
k : W̄k 6= 0

}
.

Without loss of generality, we may assume that for k ∈ K, the matrix W̄k has at least one negative
eigenvalue. Set λ = min

{
λmin(W̄k) : k ∈ K

}
< 0 and

W̄+
k =

{
Irk + (1/λ)W̄k for k ∈ K,

Irk for k 6∈ K,

where Irk is the rk × rk identity matrix and λmin(W̄k) is the smallest eigenvalue of W̄k for k =
1, . . . ,K. It can then be verified that W̄+

k � 0 for k = 1, . . . ,K and rank
(
W̄+
k

)
< rk for some

k ∈ K. Moreover, since W̄k = 0 for k 6∈ K and (W̄1, . . . , W̄K) satisfies (4), we have

K∑
k=1

Āik • W̄+
k =

K∑
k=1

Āik • Irk +
1

λ

K∑
k=1

Āik • W̄k = bi for i = 1, . . . ,m.

It follows that
(
W̄+

1 , . . . , W̄
+
K

)
is feasible and hence optimal for (ABSDP). By setting Z∗k =

LkW̄
+
k L

H
k for k = 1, . . . ,K, we conclude that (Z∗1 , . . . , Z

∗
K) is optimal for (BSDP) and satisfies∑K

k=1 rank(Z∗k)2 < r. To complete the proof, it suffices to repeat the above procedure and follow
the argument in the proof of Theorem 1. tu

Similar to Corollary 1, we have the following immediate corollary of Theorem 2:

Corollary 3 Consider the following SDP:

inf
K∑
k=1

Ck • Zk

subject to
K∑
k=1

Aik • Zk = bi for i = 1, . . . ,m′,

K∑
k=1

Aik • Zk ≥ bi for i = m′ + 1, . . . ,m,

Z1, . . . , ZK � 0 for k = 1, . . . ,K,

(5)

where Ck, A1k, . . . , Amk ∈ Hnk and b1, . . . , bm ∈ R are given. If problem (5) has an optimal solution,
then it has an optimal solution (Z∗1 , . . . , Z

∗
K) satisfying

∑K
k=1 rank (Z∗k)2 ≤ m. Moreover, such an

optimal solution can be found efficiently.

Remark: Theorem 2 and Corollary 3 are essentially taken from [7].
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2.2 Bound via Complementarity

In the previous sub–section, we saw that a bound on the rank of an SDP solution can be obtained
by simply counting the number of constraints. In this sub–section, we describe an alternative
approach, which exploits the complementarity property of the primal and dual optimal solutions.

To begin, recall that the dual of (SDP) is given by

sup bT y

subject to C −
m∑
i=1

yiAi � 0,

y ∈ Rm.

(SDD)

Suppose that (SDP) and (SDD) have optimal solutions Z∗ and y∗, respectively. Then, by the CLP
Strong Duality Theorem, we have Z∗ • S∗ = 0, where S∗ = C −

∑m
i=1 y

∗
iAi � 0. As the following

result shows, this implies a bound on the ranks of Z∗ and S∗:

Proposition 1 Let A,B ∈ Hn+ be such that A •B = 0. Then, rank(A) + rank(B) ≤ n.

Proof Let A = UΛUH be the spectral decomposition of A. Then, we have

0 = A •B = Λ • UHBU =
n∑
i=1

Λii(U
HBU)ii.

Since B � 0, we have UHBU � 0. In particular, we have (UHBU)ii = 0 whenever Λii > 0, or
equivalently, the i–th row and i–th column of UHBU have all zero entries whenever Λii > 0. This
implies that rank(UHBU) ≤ n− rank(Λ) = n− rank(A). Since B and UHBU have the same rank,
we conclude that rank(A) + rank(B) ≤ n, as desired. tu

3 Connection to the S–Procedure

The rank bounds in the previous section can be used to develop the S–procedure, which can be
viewed as a theorem of alternatives for quadratic systems. The S–procedure plays a fundamental
role in the development of duality theory for non–convex quadratic optimization (see, e.g., [2, 9, 17])
and has applications in many areas of science and engineering (see e.g., [3]). For a historical
perspective of the S–procedure, we refer the reader to [6, 13]. In this section, let us use Theorem 1
to prove the following version of the S–procedure:

Theorem 3 Let A1, A2, Q ∈ Hn be given. Suppose there exists a z0 ∈ Cn such that zH0 A1z0 > 0
and zH0 A2z0 > 0. Then, the following statements are equivalent:

(I) For all z ∈ Cn, zHQz ≥ 0 whenever zHA1z ≥ 0 and zHA2z ≥ 0.

(II) There exist λ1, λ2 ≥ 0 such that Q− λ1A1 − λ2A2 � 0.

Proof The implication (II)⇒(I) is quite straightforward, so it remains to establish the reverse
implication. Towards that end, consider the SDP

v∗ = inf Q • Z
subject to Ai • Z ≥ 0 for i = 1, 2,

I • Z = 1,

Z � 0,

(6)
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which is a relaxation of the following QCQP:

inf zHQz

subject to zHAiz ≥ 0 for i = 1, 2,

‖z‖22 = 1.

Since the feasible region of Problem (6) is compact, there exists an optimal solution to (6). Hence,
by Theorem 1, there exists a rank–one optimal solution Z∗ = z∗(z∗)H to (6). Together with (I),
this implies that v∗ ≥ 0. Now, consider the dual of (6), which is given by

sup µ

subject to Q− λ1A1 − λ2A2 − µI � 0,

λ1, λ2 ≥ 0.

(7)

Since zH0 A1z0 > 0 and zH0 A2z0 > 0, it is easy to verify that Problem (6) is strictly feasible. Hence,
the CLP Strong Duality Theorem implies that Problem (7) has an optimal solution (µ∗, λ∗1, λ

∗
2),

and that µ∗ = v∗ ≥ 0. In particular, we have Q − λ∗1A1 − λ∗2A2 � µ∗I � 0 with λ∗1, λ
∗
2 ≥ 0. This

establishes (II). tu
With some additional, rather elementary arguments, one can derive various extensions of The-

orem 3. As an illustration, consider the following inhomogeneous version of Theorem 3:

Corollary 4 Let A1, A2, Q ∈ Hn, b1, b2, q ∈ Cn, and c1, c2, d ∈ R be given. Define the functions
f1, f2, g : Cn → R as follows:

f1(z) = zHA1z + 2 Re(bH1 z) + c1,

f2(z) = zHA2z + 2 Re(bH2 z) + c2,

g(z) = zHQz + 2 Re(qHz) + d.

Suppose there exists a z0 ∈ Cn such that f1(z0) > 0 and f2(z0) > 0. Then, the following statements
are equivalent:

(I) For all z ∈ Cn, g(z) ≥ 0 whenever f1(z) ≥ 0 and f2(z) ≥ 0.

(II) There exist λ1, λ2 ≥ 0 such that[
Q q
qH d

]
− λ1

[
A1 b1
bH1 c1

]
− λ2

[
A2 b2
bH2 c2

]
� 0.

Proof Consider the following homogenizations of f1, f2, g:

Cn × C 3 (z, t) 7→ f◦1 (z, t) = zHA1z + 2 Re(tzHb1) + c1|t|2 = (z, t)HA◦1(z, t),

Cn × C 3 (z, t) 7→ f◦2 (z, t) = zHA2z + 2 Re(tzHb2) + c2|t|2 = (z, t)HA◦2(z, t),

Cn × C 3 (z, t) 7→ g◦(z, t) = zHQz + 2 Re(tzHq) + d|t|2 = (z, t)HQ◦(z, t),

where

A◦1 =

[
A1 b1
bH1 c1

]
, A◦2 =

[
A2 b2
bH2 c2

]
, Q◦ =

[
Q q
qH d

]
.

By construction, we have f1(z) = f◦1 (z, 1), f2(z) = f◦2 (z, 1), and g(z) = g◦(z, 1). It follows that
(II)⇒(I). To prove the converse, our strategy is to show that (I) is equivalent to
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(I’) For all (z, t) ∈ Cn × C, g◦(z, t) ≥ 0 whenever f◦1 (z, t) ≥ 0 and f◦2 (z, t) ≥ 0.

The desired result would then follow from Theorem 3. Clearly, we have the implication (I’)⇒(I).
Conversely, suppose that (I) holds and (z′, t′) ∈ Cn×C is such that f◦1 (z′, t′) ≥ 0 and f◦2 (z′, t′) ≥ 0.
Consider the following two cases:

Case 1: t′ 6= 0. Then, we have

0 ≤ f◦1
(
z′, t′

)
= |t′|2f◦1

(
z′/t′, 1

)
= |t′|2f1

(
z′/t′

)
.

Similarly, f2 (z′/t′) ≥ 0. Since (I) holds, we get g (z′/t′) ≥ 0, which implies that g◦(z′, t′) ≥ 0; i.e.,
(I’) holds.

Case 2: t′ = 0. Then, we have f◦1 (z′, 0) = (z′)HA1z
′ ≥ 0 and f◦2 (z′, 0) = (z′)HA2z

′ ≥ 0. Suppose
to the contrary that g◦(z′, 0) = (z′)HQz′ < 0. Let w(t) = z0 + tz′ and note that

f1(w(t)) = f1(z0) + |t|2(z′)HA1z
′ + 2 Re

(
t(A1z0 + b1)Hz′

)
,

f2(w(t)) = f2(z0) + |t|2(z′)HA2z
′ + 2 Re

(
t(A2z0 + b2)Hz′

)
,

g(w(t)) = g(z0) + |t|2(z′)HQz′ + 2 Re
(
t(Qz0 + q)Hz′

)
.

If Re
(
(A1z0 + b1)Hz′

)
and Re

(
(A2z0 + b2)Hz′

)
have the same sign, then by taking t to be real with

the same sign as Re
(
(A1z0 + b1)Hz′

)
and letting |t| to be sufficiently large, we have f1(w(t)) ≥ 0,

f2(w(t)) ≥ 0, and g(w(t)) < 0, which contradicts (I). On the other hand, if Re
(
(A1z0 + b1)Hz′

)
and

Re
(
(A2z0 + b2)Hz′

)
have different signs, then we can find a θ ∈ [0, 2π) such that Re

(
eiθ(A1z0 + b1)Hz′

)
and Re

(
eiθ(A2z0 + b2)Hz′

)
have the same sign. It follows that by taking t = reiθ with r > 0 suffi-

ciently large, we again have f1(w(t)) ≥ 0, f2(w(t)) ≥ 0, and g(w(t)) < 0, which contradicts (I).
From the above analysis, we see that g◦(z′, 0) ≥ 0, which implies that (I’) holds. This completes

the proof. tu

As a further illustration of the power of the rank bound established in Theorem 1, let us develop
an S–procedure with both equality and inequality constraints:

Corollary 5 Let A,Q ∈ Hn, b, q ∈ Cn, and c, d ∈ R be given. Define the functions f, g : Cn → R
as follows:

f(z) = zHAz + 2 Re(bHz) + c,

g(z) = zHQz + 2 Re(qHz) + d.

Suppose there exist z0, z1 ∈ Cn such that ‖z0‖2 ≤ 1, ‖z1‖2 ≤ 1, and f(z0) < 0 < f(z1). Then, the
following statements are equivalent:

(I) For all z ∈ Cn, g(z) ≥ 0 whenever zHz ≤ 1 and f(z) = 0.

(II) There exist λ1 ≥ 0 and λ2 ∈ R such that[
Q q
qH d

]
− λ1

[
−I 0
0 1

]
− λ2

[
A b
bH c

]
� 0.
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Proof The implication (II)⇒(I) is again straightforward. To prove the converse, we follow the
idea in the proof of Theorem 3 and consider the SDP

v∗ = inf

[
Q q
qH d

]
• Z

subject to

[
I 0
0 −1

]
• Z ≤ 0,[

A b
bH c

]
• Z = 0,

Z =

[
Z11 z
zH 1

]
� 0.

(8)

Since the feasible region of Problem (8) is compact, there exists an optimal solution to (8). Hence,
by Theorem 1, there exists a rank–one optimal solution Z∗ = z∗(z∗)H to (8). Together with (I),
this implies that v∗ ≥ 0. Now, let Z0 � 0 be such that

Z0 =

[
Z01 0
0 1

]
� 0,

[
I 0
0 −1

]
• Z0 < 0.

(For instance, one can take Z01 = (n+ 1)−1I ∈ Hn.) Furthermore, let

θ =

[
A b
bH c

]
• Z0.

If θ = 0, then Z0 is a strictly feasible solution to Problem (8). Otherwise, if θ < 0, then by the
assumption on z1 ∈ Cn, there exists an α ∈ (0, 1) such that

Z−0 = αZ0 + (1− α)

[
z1z

H
1 z1

zH1 1

]
is strictly feasible for Problem (8). Similarly, if θ > 0, then the assumption on z0 ∈ Cn implies the
existence of an α ∈ (0, 1) such that

Z+
0 = αZ0 + (1− α)

[
z0z

H
0 z0

zH0 1

]
is strictly feasible for Problem (8). Summarizing the above discussion, we see that Problem (8) is
strictly feasible. Thus, by the CLP Strong Duality Theorem, the dual of (8), which is given by

sup µ

subject to

[
Q q
qH d

]
− λ1

[
−I 0
0 1

]
− λ2

[
A b
bH c

]
− µ

[
0 0
0 1

]
� 0,

λ1 ≥ 0,

has an optimal solution (µ∗, λ∗1, λ
∗
2), and that v∗ = µ∗ ≥ 0. It then follows that (II) holds. tu

Remark: In general, the question of whether an S–procedure exists for systems with quadratic
equality constraints is a delicate one. For some recent progress in this direction, see [20].
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4 Applications

4.1 Unicast Transmit Downlink Beamforming

Consider the scenario in which a base station equipped with Nt antennae is transmitting individual
data streams to M single–antenna users. The signal transmitted by the base station is modeled as

x(t) =
M∑
i=1

si(t)wi for t = 1, . . . , T,

where si(t) and wi ∈ CNt are the stream of unit–power data symbols and beamforming vector for
user i, respectively. The signal received by the i–th user is given by

yi(t) = hHi x(t) + ni(t)

= hHi wisi(t) +
∑
j 6=i

hHi wjsj(t) + ni(t) for t = 1, . . . , T, (9)

where hi ∈ CNt is the channel vector of user i and ni(t) ∼ CN (0, σ2
i ) is the additive noise at user

i with power σ2
i . Based on (9), a design problem of interest is that of signal–to–interference–and–

noise (SINR) balancing; namely, to minimize the total transmit power while guaranteeing a certain
level of received SINR for each user. Assuming that the channels {hi}Mi=1 are randomly fading and
only the second–order statistics Ri = E

[
hih

H
i

]
, where i = 1, . . . ,M , are known, the SINR balancing

problem can be formulated as follows:

minimize
M∑
i=1

‖wi‖22

subject to SINRi =
wHi Riwi∑

j 6=iw
H
j Riwj + σ2

i

≥ γi for i = 1, . . . ,M,

wi ∈ CNt for i = 1, . . . ,M ;

(10)

see, e.g., [5]. It is easy to see that Problem (10) is a QCQP. Thus, using the techniques introduced
in Section 1, we obtain the following SDR of Problem (10):

minimize

M∑
i=1

I •Wi

subject to Ri •Wi − γi
∑
j 6=i

Ri •Wj ≥ γiσ2
i for i = 1, . . . ,M,

Wi � 0 for i = 1, . . . ,M.

(11)

It can be shown that the dual of (11) is strictly feasible. Hence, if Problem (11) is feasible, then by
the CLP Strong Duality Theorem, it has an optimal solution. In this case, Theorem 2 implies that
Problem (11) has an optimal solution (W ∗1 , . . . ,W

∗
M ) satisfying

∑M
i=1 rank(W ∗i )2 ≤ M . However,

this is only possible when rank(W ∗i ) ≤ 1 for i = 1, . . . ,M . It follows that the SDR (11) is tight for
the SINR balancing problem (10).
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4.2 Transmit Design for MISO Channel Secrecy

Consider the scenario in which a base station equipped with Nt antennae is transmitting a data
stream to a legitimate single–antenna receiver, but is being eavesdropped by M illegitimate multi–
antenna receivers. We assume that the i–th illegitimate receiver has Ne,i antennae, where i =
1, . . . ,M . In the literature, the base station, the legitimate receiver, and the illegitimate receiver
(or eavesdropper) are commonly called Alice, Bob, and Eve, respectively. A fundamental problem
in such a scenario is to design a transmit scheme for the base station so that it can reliably commu-
nicate with the legitimate receiver while preventing the eavesdroppers from obtaining information
from the transmitted signals. To begin, let

yb(t) = hHx(t) + n(t) for t = 1, . . . , T,

ye,i(t) = GHi x(t) + vi(t) for t = 1, . . . , T ; i = 1, . . . ,M

be the received signal of Bob and the i–th Eve, respectively, where x(t) ∈ CNt is the signal trans-
mitted by Alice; h ∈ CNt is the multiple–input single–output (MISO) channel between Alice and
Bob; Gi ∈ CNt×Ne,i is the multiple–input multiple–output (MIMO) channel between Alice and the
i–th Eve; n(t) ∈ C and vi(t) ∈ CNe,i are additive white Gaussian noise at Bob and the i–th Eve,
respectively. Without loss of generality, we assume that the n(t) and vi(t) have unit variance.
Furthermore, let W = E

[
x(t)x(t)H

]
be the transmit covariance. We can then formulate the afore-

mentioned problem using the notion of physical–layer secrecy (see, e.g., [10]). Specifically, we are
interested in minimizing the average transmit power while guaranteeing a certain level of minimum
achievable secrecy rate, viz.

minimize tr(W )

subject to min
i=1,...,M

fi(W ) ≥ R,

W � 0.

(12)

Here, fi(W ) = log(1+hHWh)−log det(I+GHi WGi) is the so–called secrecy rate function associated
with the i–th Eve and R > 0 is a given minimum secrecy rate threshold.

Problem (12) is not an SDP, as it is non–convex. The main difficulty lies in the log det function.
To circumvent such difficulty, let us prove the following lemma:

Lemma 1 Let A ∈ Hn+ be given. Then, we have

det(I +A) ≥ 1 + tr(A)

and equality holds iff rank(A) ≤ 1.

Proof Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A. Then, we have

det(I +A) =

n∏
i=1

(1 + λi) ≥ 1 +

n∑
i=1

λi = 1 + tr(A),

as desired. tu
Armed with the above lemma, we can relax Problem (12) as follows:

minimize tr(W )

subject to 1 + hHWh ≥ 2R
(
1 + tr(GHi WGi)

)
for i = 1, . . . ,M,

W � 0.

11



Note that the above problem is an SDP, as it can be rewritten as

minimize I •W
subject to

(
hhH − 2RGiG

H
i

)
•W ≥ 2R − 1 for i = 1, . . . ,M,

W � 0.

(13)

The dual of (13) is given by

maximize (2R − 1)eT y

subject to S(y) = I −
M∑
i=1

yi
(
hhH − 2RGiG

H
i

)
� 0,

y ≥ 0.

(14)

Observe that if W̄ is feasible for Problem (13), then there exist α > 1 and β > 0 such that
W̄+ = αW̄ + βI is strictly feasible for (13). Moreover, if we let

λ = 1 + max

{
max

i=1,...,M
λmax

(
hhH − 2RGiG

H
i

)
, 0

}
and set ȳ = (1/Mλ)e > 0, then (S(ȳ), ȳ) is strictly feasible for Problem (14). Hence, by the CLP
Strong Duality Theorem and Proposition 1, there exists an optimal solution W ∗ to (13) and an
optimal solution (S(y∗), y∗) to (14) such that rank(W ∗) + rank(S(y∗)) ≤ Nt. Now, observe that

B = I + 2R
M∑
i=1

y∗iGiG
H
i � 0.

This yields

rank(S(y∗)) = rank
(
B−1/2S(y∗)B−1/2

)
= rank

(
I −

(
M∑
i=1

y∗i

)(
B−1/2h

)(
B−1/2h

)H)
≥ Nt − 1.

Hence, we conclude that rank(W ∗) ≤ 1.

4.3 Robust Unicast Downlink Precoder Design

In this sub–section, let us revisit the scenario considered in Section 4.1. In practice, the channel
vector of each user (i.e., hi ∈ CNt , where i = 1, . . . ,M) needs to be estimated by the base station
and thus is not accurately known. In order to account for the channel estimation errors in our
design process, we need to first specify a model of the channel errors. A popular choice is the so–
called norm–bounded error model (see, e.g., [15, 18]), in which the actual channel vector of user i
(where i = 1, . . . ,M) is given by

hi = h̄i + ei.

12



Here, h̄i ∈ CNt is the base station’s estimate of user i’s channel vector and ei ∈ CNt is the channel
error vector satisfying ‖ei‖2 ≤ εi for some given threshold εi ≥ 0. Then, the robust precoder design
problem can be formulated as

minimize

M∑
i=1

I •Wi

subject to (h̄i + ei)
HWi(h̄i + ei)

−γi
∑
j 6=i

(h̄i + ei)
HWj(h̄i + ei)

H ≥ γiσ2
i for all ‖ei‖2 ≤ εi, i = 1, . . . ,M, (15a)

Wi � 0 for i = 1, . . . ,M. (15b)

Note that Problem (15) is similar to Problem (11), except that it contains the semi–infinite con-
straints (15a). Thus, Problem (15) is not an SDP. Nevertheless, it can be converted into an SDP
using the S–procedure. Indeed, observe that for i = 1, . . . ,M ,

(h̄i + ei)
HWi(h̄i + ei)− γi

∑
j 6=i

(h̄i + ei)
HWj(h̄i + ei)

H − γiσ2
i

= eHi

Wi − γi
∑
j 6=i

Wj

 ei + 2 Re

h̄Hi
Wi − γi

∑
j 6=i

Wj

 ei


+ h̄Hi

Wi − γi
∑
j 6=i

Wj

 h̄i − γiσ2
i .

Hence, by taking

A1 = −I, b1 = 0, c1 = ε2i ,

A2 = 0, b2 = 0, c2 = 1,

Q = Wi − γi
∑
j 6=i

Wj , q =

Wi − γi
∑
j 6=i

Wj

 h̄i, d = h̄Hi

Wi − γi
∑
j 6=i

Wj

 h̄i − γiσ2
i

in Corollary 4, we see that constraint (15a) is equivalent to Wi − γi
∑

j 6=iWj

(
Wi − γi

∑
j 6=iWj

)
h̄i

h̄Hi

(
Wi − γi

∑
j 6=iWj

)
h̄Hi

(
Wi − γi

∑
j 6=iWj

)
h̄i − γiσ2

i

− λi [−I 0
0 ε2i

]
� 0, (16a)

λi ≥ 0. (16b)

It follows that Problem (15) can be reformulated as

minimize

M∑
i=1

I •Wi

subject to (15b), (16a), and (16b),

(17)

13



which is an SDP. An interesting open question here is whether Problem (17) always admits an
optimal solution (W ∗1 , . . . ,W

∗
M ) satisfying rank(W ∗i ) ≤ 1 for i = 1, . . . ,M . Some partial results can

be found in [4, 16, 19].
Recently, Medra et al. [11] have considered a frequency division duplex (FDD) system with

structured vector quantization and proposed a channel error model that can more accurately reflect
the nature of estimation errors in such system. Specifically, let h̄i ∈ CNt be the base station’s
estimate of user i’s channel, where i = 1, . . . ,M . The base station uses a Grassmannian codebook
C = {v1, . . . , vP }, where vj ∈ CNt with ‖vj‖2 = 1 is given for j = 1, . . . , P , to determine the
direction of user i’s channel via

di = arg min
v∈C

{
1− |h̄

H
i v|2

‖h̄i‖22

}
.

Under suitable conditions, the actual channel vector of user i can then be expressed as

hi = ‖h̄i‖2(di + ei),

where ei ∈ CNt is the channel error vector, whose statistics depend both on the statistics of the
channel and the codebook used. As is often the case, the statistics of ei are difficult to characterize.
Thus, let us assume for simplicity that ei lies in a region defined by the following system:

‖ei‖2 ≤ ε, ‖di + ei‖2 = 1. (18)

Typically, ε ≥ 0 is regarded as a given parameter, and a robust precoder design problem similar
to Problem (15) can then be formulated. However, let us explore another possibility; namely, we
treat ε ≥ 0 as a decision variable and use it to determine the largest region in which the error
vectors can reside without compromising the quality–of–service to the users. Specifically, consider
the following formulation (see [11]):

maximize ε

subject to (di + ei)
HWi(di + ei)

−γi
∑
j 6=i

(di + ei)
HWj(di + ei)

H ≥ γiσ
2
i

‖h̄i‖2
for all ei satisfying (18), i = 1, . . . ,M,

(19a)

M∑
i=1

I •Wi ≤ P , (19b)

Wi � 0 for i = 1, . . . ,M. (19c)

Again, Problem (19) contains semi–infinite constraints (see (19a)). To tackle them, we first observe
that since ‖di‖2 = 1, we have

1 = ‖di + ei‖2 ⇐⇒ eHi ei + 2Re(dHi ei) = 0.
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In particular, for any ε > 0, there exist e0
i , e

1
i ∈ CNt such that ‖e0

i ‖2 < ε, ‖e1
i ‖2 < ε, and (e0

i )
He0

i +
2Re(dHi e

0
i ) < 0 < (e1

i )
He1

i + 2Re(dHi e
1
i ). Now, by taking

A = I, b = di, c = 0,

Q = Wi − γi
∑
j 6=i

Wj , q =

Wi − γi
∑
j 6=i

Wj

 di, d = dHi

Wi − γi
∑
j 6=i

Wj

 di −
γiσ

2
i

‖h̄i‖2

in Corollary 5, we see that constraint (19a) is equivalent to Wi − γi
∑

j 6=iWj

(
Wi − γi

∑
j 6=iWj

)
di

dHi

(
Wi − γi

∑
j 6=iWj

)
dHi

(
Wi − γi

∑
j 6=iWj

)
di −

γiσ
2
i

‖h̄i‖2

− λ1,i

[
−I 0
0 ε2

]
− λ2,i

[
I di
dHi 0

]
� 0,

(20a)

λ1,i ≥ 0.
(20b)

Hence, Problem (19) can be reformulated as

maximize ε

subject to (19b), (19c), (20a), and (20b).
(21)

It should be noted that Problem (21) is still not an SDP, as constraint (20a) involves the nonlinear
term λ1,iε

2. However, for a fixed ε ≥ 0, Problem (21) is an SDP. Thus, we can approximate the
optimal solution to Problem (21) to arbitrary accuracy efficiently by performing a bisection search
on ε.
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