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1 Introduction

In previous lectures, we considered linear and conic linear optimization problems and derived con-
ditions that characterize their optimal solutions. For instance, for the pair of primal–dual LPs

(P )

minimize cTx

subject to Ax = b,

x ≥ 0,

(D)

maximize bT y

subject to AT y + s = c,

s ≥ 0,

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given, we have shown that the solutions x∗ and (y∗, s∗) are
optimal for (P ) and (D), respectively, if and only if they satisfy the following optimality conditions:

x∗i s
∗
i = 0 for i = 1, . . . , n, (complementarity)

Ax∗ = b, x∗ ≥ 0, (primal feasiblity)

AT y∗ + s∗ = c, s∗ ≥ 0. (dual feasibility)

(1)

Such conditions are useful as they reduce the problem of finding optimal solutions to (P ) and (D)
to that of finding a solution to a system of equations. Now, a natural question arises whether we
can find similar conditions for general nonlinear optimization problems. To motivate our discussion,
let us first consider a univariate, twice continuously differentiable function f : R→ R. From basic
calculus, if x̄ ∈ R is a local minimum1 of f , then we must have

df(x)

dx

∣∣∣
x=x̄

= 0. (2)

In other words, condition (2) is a necessary condition for x̄ to be a local minimum. However, it is
not a sufficient condition, as an x̄ ∈ R that satisfies (2) can be a local maximum or just a stationary
point. In order to certify that x̄ is indeed a local minimum, one could check, in addition to (2),
whether

d2f(x)

dx2

∣∣∣
x=x̄

> 0. (3)

In particular, condition (3) is a sufficient condition for x̄ to be a local minimum.
It turns out that conditions (2) and (3) can be generalized to multivariate twice continuously

differentiable functions. In the following section, we shall first consider optimality conditions for
unconstrained optimization of such functions. The main technical tool needed for establishing those
conditions is the following (see, e.g., [6, Theorem 5.15]):

1Recall that for a generic optimization problem minx∈X⊆Rn f(x), a point x∗ ∈ X is called a global minimum
if f(x∗) ≤ f(x) for all x ∈ X. On the other hand, if there exists an ε > 0 such that the point x∗ ∈ X satisfies
f(x∗) ≤ f(x) for all x ∈ X ∩B◦(x∗, ε), then it is called a local minimum. Here, B◦(x̄, ε) = {x ∈ Rn : ‖x− x̄‖2 < ε}
denotes the open ball centered at x̄ ∈ Rn of radius ε > 0.
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Theorem 1 (Taylor’s Theorem) Let a, b ∈ R be such that a < b and let n ≥ 1 be an integer.
Suppose that the function f : [a, b]→ R satisfies the following properties:

1. f (n−1) is continuous on [a, b],

2. f (n)(t) exists for every t ∈ (a, b).

Let a ≤ t1 < t2 ≤ b, and define

P (t) =

n−1∑
j=0

f (j)(t1)

j!
(t− t1)j .

Then, there exists a t0 ∈ [t1, t2] such that

f(t2) = P (t2) +
f (n)(t0)

n!
(t2 − t1)n.

2 Unconstrained Optimization Problems

Armed with Theorem 1, we are ready to prove the following result:

Proposition 1 Suppose that f : Rn → R is continuously differentiable at x̄ ∈ Rn. If there exists
a d ∈ Rn such that ∇f(x̄)Td < 0, then there exists an α0 > 0 such that f(x̄ + αd) < f(x̄) for all
α ∈ (0, α0). In other words, d is a descent direction of f at x̄.

Proof Since ∇f is continuous at x̄ ∈ Rn and ∇f(x̄)Td < 0, there exists an α0 > 0 such that
∇f(x̄ + αd)Td < 0 for all α ∈ [0, α0). Now, consider the function f̃ : R → R defined by f̃(α) =
f(x̄+ αd). By the Chain Rule, we have

df̃(α)

dα
= ∇f(x̄+ αd)Td.

Thus, by Theorem 1, for any α ∈ (0, α0), there exists a t0 ∈ [0, α0) such that

f(x̄+ αd) = f̃(α) = f̃(0) + α∇f(x̄+ t0d)Td < f̃(0) = f(x̄),

as desired. tu

Proposition 1 has the following immediate corollary, which is a generalization of (2) to multivariate
differentiable functions:

Corollary 1 (First Order Necessary Condition for Unconstrained Optimization) Sup-
pose that f : Rn → R is continuously differentiable at x̄ ∈ Rn. If x̄ is a local minimum, then we
have ∇f(x̄) = 0. In particular, we have

{
d ∈ Rn : ∇f(x̄)Td < 0

}
= ∅.

Proof Suppose to the contrary that ∇f(x̄) 6= 0. Let d = −∇f(x̄). Then, we have ∇f(x̄)Td =
−‖∇f(x̄)‖22 < 0. Hence, by Proposition 1, there exists an α0 > 0 such that f(x̄ + αd) < f(x̄) for
all α ∈ (0, α0), which contradicts the fact that x̄ is a local minimum. Thus, we have ∇f(x̄) = 0.
This completes the proof. tu

It turns out that if f is convex, then the above necessary condition is also sufficient:
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Proposition 2 Let S ⊆ Rn be an open convex set. Suppose that f : Rn → R is convex on S and
continuously differentiable at x̄ ∈ S. Then, x̄ is a global minimum in S iff ∇f(x̄) = 0.

Proof By virtue of Corollary 1, it suffices to show that if ∇f(x̄) = 0, then x̄ is a global minimum
in S. Indeed, if ∇f(x̄) = 0, then we have ∇f(x̄)T (x − x̄) = 0 for all x ∈ S. By Theorem 14 of
Handout 2, we conclude that f(x) ≥ f(x̄) for all x ∈ S, which completes the proof. tu

An inspection of the proof of Proposition 2 reveals that its essential ingredient is the minorization
of convex functions by affine functions (i.e., Theorem 14 of Handout 2). This suggests that the
result of Proposition 2 can be extended to non–differentiable functions. One way to formalize this
observation is to use the notion of subdifferentials (see Definition 10 of Handout 2).

Proposition 3 Let f : Rn → R be arbitrary. Then, x̄ is a global minimum iff 0 ∈ ∂f(x̄).

Proof Recall that

∂f(x̄) =
{
s ∈ Rn : f(x) ≥ f(x̄) + sT (x− x̄) for all x ∈ Rn

}
,

and that x̄ is a global minimum if and only if f(x) ≥ f(x̄) = f(x̄) + 0T (x− x̄) for all x ∈ Rn. This
completes the proof. tu

Although Proposition 3 may seem very powerful, it is often difficult to compute ∂f for an
arbitrary f . Moreover, it is important to note that even if f is differentiable at x̄, we may not have
∇f(x̄) ∈ ∂f(x̄) if f is not convex at x̄.

Similar to the univariate case, even if x̄ ∈ Rn satisfies ∇f(x̄) = 0, we cannot conclude that
x̄ is a local minimum. However, if x̄ also satisfies ∇2f(x̄) � 0, then it would indeed be a local
minimum. Specifically, we have the following proposition, which generalizes conditions (2) and (3)
for the univariate case:

Proposition 4 (Second Order Sufficient Condition for Unconstrained Optimization)
Suppose that f : Rn → R is twice continuously differentiable at x̄ ∈ Rn. If ∇f(x̄) = 0 and ∇2f(x̄)
is positive definite, then x̄ is a local minimum.

Proof For any d ∈ Rn such that ‖d‖22 = 1, consider the function f̃d : R → R given by f̃d(α) =
f(x̄+ αd). By the Chain Rule, we have

df̃(α)

dα
= ∇f(x̄+ αd)Td,

d2f̃(α)

dα2
= dT∇2f(x̄+ αd)d. (4)

Since ∇2f is continuous at x̄ ∈ Rn and ∇2f(x̄) � 0, there exists an α0 > 0 such that for all unit
vectors d ∈ Rn and for all α ∈ [0, α0), we have ∇2f(x̄ + αd) � 0. Now, suppose that x̄ is not a
local minimum. Then, there exists an x̄′ ∈ Rn such that ‖x̄′ − x̄‖2 < α0 and f(x̄′) < f(x̄). Let
d = (x̄′ − x̄)/‖x̄′ − x̄‖2 and α = ‖x̄′ − x̄‖2. Then, by (4), Theorem 1, and the fact that ∇f(x̄) = 0,
we have

f(x̄) > f(x̄′) = f(x̄+ αd) = f̃d(α) = f̃d(0) +
α2

2
dT∇2f(x̄+ t0d)d > f̃d(0) = f(x̄)

for some t0 ∈ (0, α0), which is a contradiction. This completes the proof. tu

Remarks: With slightly more effort, one can show that whenever the conditions in Proposition 4
hold, then x̄ is a strict local minimum; i.e., there exists an ε > 0 such that f(x̄) < f(x) for all
x ∈ B◦(x̄, ε)\{x̄}. We refer the readers to [1, Theorem 4.1.4] for details.
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3 Constrained Optimization Problems

In this section we turn our attention to optimization problems with both equality and inequality
constraints. Specifically, let f, g1, . . . , gm1 , h1, . . . , hm2 : Rn → R be functions that are continuously
differentiable on the non–empty open subset X of Rn. Consider the following class of optimization
problems:

inf f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m1,

hj(x) = 0 for j = 1, . . . ,m2,

x ∈ X.

(5)

Let
S = {x ∈ X : gi(x) ≤ 0 for i = 1, . . . ,m1; hj(x) = 0 for j = 1, . . . ,m2}

be the feasible region of (5). Our primary goal in this section is to prove the following theorem:

Theorem 2 (The Fritz John Necessary Conditions) Let x̄ ∈ S be a local minimum of pro-
blem (5). Then, there exist u ∈ R, v1, . . . , vm1 ∈ R, and w1, . . . , wm2 ∈ R such that

u∇f(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0,

u, vi ≥ 0 for i = 1, . . . ,m1,

(u, v1, . . . , vm1 , w1, . . . , wm2) 6= 0.

(6)

Furthermore, in every neighborhood N of x̄, there exists an x′ ∈ N such that vigi(x
′) > 0 for all

i ∈ {1, . . . ,m1} with vi 6= 0, and wjhj(x
′) > 0 for all j ∈ {1, . . . ,m2} with wj 6= 0.

Remarks:

(a) The last statement in Theorem 2 actually implies the complementary slackness condition (i.e.,
vigi(x̄) = 0 for i = 1, . . . ,m1), since if vi > 0, then the corresponding constraint gi(x) ≤ 0
will be violated by points arbitrarily close to x̄. This implies that gi(x̄) = 0.

(b) In Theorem 2, the scalar vi (resp. wj) is usually called the Lagrange multiplier of the corre-
sponding constraint gi(x) ≤ 0, where i = 1, . . . ,m1 (resp. hj(x) = 0, where j = 1, . . . ,m2). In
a fashion reminiscent to the case of LP, we may summarize the Fritz John necessary conditions
in (6) as follows:

gi(x̄) ≤ 0 for i = 1, . . . ,m1, (primal feasibility I)

hj(x̄) = 0 for j = 1, . . . ,m2, (primal feasibility II)

u∇f(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0, (dual feasibility I)

u, vi ≥ 0 for i = 1, . . . ,m1, (dual feasibility II)

(u, v1, . . . , vm1 , w1, . . . , wm2) 6= 0, (dual feasibility III)

vigi(x̄) = 0 for i = 1, . . . ,m1. (complementary slackness)
(7)
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Proof We shall use the penalty function approach (see, e.g, [2]) to prove Theorem 2. The idea is
to disregard the constraints in (5) while adding to the objective a high penalty for violating them.
By doing so, we obtain an unconstrained optimization problem, which we could tackle using the
appropriate optimality conditions. As we increase the penalty and pass to the limit, the desired
optimality conditions for the original problem would then follow.

To realize the above idea, consider the following sequence of “penalized” problems, where k =
1, 2, . . .:

minimize F k(x) ≡ f(x) +
k

2

m1∑
i=1

(
g+
i (x)

)2
+
k

2

m2∑
j=1

(hj(x))2 +
1

2
‖x− x̄‖22

subject to x ∈ B(x̄, ε).

(8)

Here, g+
i (x) = max{gi(x), 0} for i = 1, . . . ,m1, and ε > 0 is such that B(x̄, ε) ⊆ X and f(x̄) ≤ f(x)

for all x ∈ S ∩ B(x̄, ε). Note that such an ε > 0 exists, since X is open and x̄ ∈ S is a local

minimum of (5). To gain some intuition on problem (8), observe that the term (k/2)
(
g+
i (x)

)2
can

be viewed as a penalty for violating the constraint gi(x) ≤ 0. Similarly, the term (k/2)(hj(x))2 can
be viewed as a penalty for violating the constraint hj(x) = 0. Finally, since we are only interested
in the points that lie in a neighborhood of the local minimum x̄, we introduce the proximity term
(1/2)‖x − x̄‖22, so that points far away from x̄ will be penalized. As we shall see, such a property
will be useful in our analysis.

Let xk be an optimal solution to (8), where k = 1, 2, . . .. Note that such an xk exists by
Weierstrass’ theorem. Let us first prove that the sequence {xk}k converges to x̄. By definition of
F k and the feasibility of x̄, we have

F k(xk) = f(xk) +
k

2

m1∑
i=1

(
g+
i (xk)

)2
+
k

2

m2∑
j=1

(
hj(x

k)
)2

+
1

2
‖xk − x̄‖22 ≤ F k(x̄) = f(x̄). (9)

We claim that

lim
k→∞

m1∑
i=1

(
g+
i (xk)

)2
= 0, lim

k→∞

m2∑
j=1

(
hj(x

k)
)2

= 0. (10)

Indeed, upon dividing both sides of (9) by k, we see that

f(xk)

k
≤ f(xk)

k
+

1

2

m1∑
i=1

(
g+
i (xk)

)2
+

1

2

m2∑
j=1

(
hj(x

k)
)2

+
1

2k
‖xk − x̄‖22 ≤

f(x̄)

k
. (11)

Since the sequence {f(xk)}k is bounded over B(x̄, ε), we have limk→∞ f(xk)/k = 0. It follows
from (11) that

lim
k→∞

f(xk)

k
+

1

2

m1∑
i=1

(
g+
i (xk)

)2
+

1

2

m2∑
j=1

(
hj(x

k)
)2

+
1

2k
‖xk − x̄‖22

 = 0.

Moreover, since ‖xk − x̄‖2 ≤ ε for k = 1, 2, . . ., we have limk→∞ ‖xk − x̄‖22/(2k) = 0. It follows
that (10) holds as claimed.
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Now, let x̃ be a limit point of the sequence {xk}k.2 Note that such a point exists, since the
sequence {xk}k belongs to the compact setB(x̄, ε) and hence has a convergent subsequence. By (10),
we see that the limit point x̃ satisfies gi(x̃) ≤ 0 for i = 1, . . . ,m1 and hj(x̃) = 0 for j = 1, . . . ,m2.
Moreover, (9) implies that

f(xk) +
1

2
‖xk − x̄‖22 ≤ f(x̄)

for k = 1, 2, . . .. Hence, upon taking k →∞ and using the continuity of f , we obtain

f(x̃) +
1

2
‖x̃− x̄‖22 ≤ f(x̄). (12)

On the other hand, since x̃ ∈ S ∩ B(x̄, ε), we have f(x̄) ≤ f(x̃), which, when combined with
(12), yields ‖x̃ − x̄‖22 = 0. This shows that the sequence {xk}k actually converges to x̄. In
particular, when k is sufficiently large, xk is an interior point of B(x̄, ε), which implies that xk

is an unconstrained local minimum of F k. For such k, we can apply the necessary condition for
unconstrained optimization (Corollary 1) and conclude that ∇F k(xk) = 0. To compute ∇F k(xk),
we need the following lemma:

Lemma 1 Let q : R→ R+ be the function defined by q(x) = (max{0, x})2. Then, q is continuously
differentiable, with dq/dx = 2 max{0, x}.

Proof We prove the statement via first principles. Specifically, let x, t ∈ R. We compute

q(x+ t)− q(x)

t
=

(max{0, x+ t}+ max{0, x}) (max{0, x+ t} −max{0, x})
t

=


2x+ t if x > 0 and − |x| ≤ t ≤ |x|,

0 if x < 0 and − |x| ≤ t ≤ |x|,
(max{0, t})2 /t if x = 0.

It follows that

lim
t→0+

q(x+ t)− q(x)

t
= lim

t→0−

q(x+ t)− q(x)

t
=

{
2x if x > 0,

0 if x ≤ 0;

i.e., dq/dx = 2 max{0, x}. It is now clear that dq/dx is continuous. This completes the proof. tu

By Lemma 1 and the Chain Rule, we see that the function x 7→
(
g+
i (x)

)2
is continuously differen-

tiable with gradient 2g+
i (x)∇gi(x). Thus, we conclude that

0 = ∇F k(xk) = ∇f(xk) +

m1∑
i=1

(
kg+

i (xk)
)
∇gi(xk) +

m2∑
j=1

(
khj(x

k)
)
∇hj(xk) + xk − x̄. (13)

Now, for k = 1, 2, . . ., let

δk =

√√√√1 +

m1∑
i=1

(
kg+

i (xk)
)2

+

m2∑
j=1

(khj(xk))
2

2Recall that p is a limit point of a set S if every neighborhood of p contains a point q 6= p such that q ∈ S.
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and

uk =
1

δk
≥ 0; vki =

kg+
i (xk)

δk
≥ 0 for i = 1, . . . ,m1; wk

j =
khj(x

k)

δk
for j = 1, . . . ,m2. (14)

Then, upon dividing both sides of (13) by δk, we obtain

uk∇f(xk) +

m1∑
i=1

vki∇gi(xk) +

m2∑
j=1

wk
j∇hj(xk) +

1

δk

(
xk − x̄

)
= 0. (15)

Note that by construction, we have(
uk
)2

+

m1∑
i=1

(
vki

)2
+

m2∑
j=1

(
wk
j

)2
= 1. (16)

This implies that the sequence
{(
uk, vk1 , . . . , v

k
m1
, wk

1 , . . . , w
k
m2

)}
k

is bounded. In particular, by ta-
king a subsequence if necessary, the sequence converges to some limit (u, v1, . . . , vm1 , w1, . . . , wm2).
The FJ conditions (6) then follow from (15), (14) and (16). To prove the last statement in The-
orem 2, let I = {i ∈ {1, . . . ,m1} : vi > 0} and J = {j ∈ {1, . . . ,m2} : wj 6= 0}. Then, for all
sufficiently large k, we must have viv

k
i > 0 for all i ∈ I and wjw

k
j > 0 for all j ∈ J . This, together

with (14), implies that vigi(x
k) > 0 for all i ∈ I and wjhj(x

k) > 0 for all j ∈ J . Since every
neighborhood of x̄ must contain some xk, the proof is completed. tu

For any x̄ ∈ Rn, if there exist Lagrange multipliers u, {vi}m1
i=1, {wj}m2

j=1 that solve system (7),
then we say that x̄ is a Fritz John (FJ) point. We remark that an FJ point need not be a local
minimum, as the Fritz John conditions (7) are only necessary conditions for local optimality.

The above formulation of Fritz John’s theorem is very general and can be used to derive many
necessary conditions for optimization problems of the form (5). For instance, we can use it to derive
the Karush–Kuhn–Tucker theorem:

Theorem 3 (The Karush–Kuhn–Tucker Necessary Conditions) Let x̄ ∈ S be a local mi-
nimum of problem (5). Let I = {i ∈ {1, . . . ,m1} : gi(x̄) = 0} be the index set for the active
constraints. Suppose that x̄ is regular; i.e., the family {∇gi(x̄)}i∈I ∪ {∇hj(x̄)}m2

j=1 of vectors is
linearly independent. Then, there exist v1, . . . , vm1 ∈ R and w1, . . . , wm2 ∈ R such that

∇f(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0,

vi ≥ 0 for i = 1, . . . ,m1.

(17)

Furthermore, in every neighborhood N of x̄, there exists an x′ ∈ N such that vigi(x
′) > 0 for all

i ∈ {1, . . . ,m1} with vi 6= 0, and wjhj(x
′) > 0 for all j ∈ {1, . . . ,m2} with wj 6= 0.

We leave the proof of Theorem 3 as an easy exercise to the reader. Similar to the notion of an FJ
point, we say that x̄ ∈ Rn is a Karush–Kuhn–Tucker (KKT) point if (i) x̄ ∈ S and (ii) there
exist Lagrange multipliers {vi}m1

i=1, {wj}m2
j=1 that solve system (17).

We remark that if the gradient vectors of the active constraints are not linearly independent,
then the KKT conditions are not necessary for local optimality, even when the optimization problem
is convex. The following example demonstrates such possibility.
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Example 1 (Failure of the KKT Conditions in the Absence of Regularity) Consider the
following problem:

min x1

subject to (x1 − 1)2 + (x2 − 1)2 ≤ 1,

(x1 − 1)2 + (x2 + 1)2 ≤ 1.

(18)

Since there is only one feasible solution (i.e., (x1, x2) = (1, 0)), it is automatically optimal. Besides
the primal feasibility condition, the KKT conditions of (18) are given by[

1

0

]
+ 2v1

[
x1 − 1

x2 − 1

]
+ 2v2

[
x1 − 1

x2 + 1

]
= 0,

v1

(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0,

v2

(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0,

v1, v2 ≥ 0.

However, it is clear that there is no solution (v1, v2) ≥ 0 to the above system when (x1, x2) = (1, 0).

Note that in Theorem 3 we express the regularity condition in terms of the gradient vectors
of the active constraints. There are other regularity conditions, a more well–known one is the
following:

Theorem 4 Consider problem (5), where g1, . . . , gm1 are convex and h1, . . . , hm2 are affine. Let
x̄ ∈ S be a local minimum and I = {i ∈ {1, . . . ,m1} : gi(x̄) = 0}. Suppose that the Slater condition
is satisfied; i.e., there exists an x′ ∈ S such that gi(x

′) < 0 for i ∈ I. Then, x̄ satisfies the KKT
conditions (17).

Proof Since h1, . . . , hm2 are affine, we may assume without loss that the family {∇hj(x̄)}j of
vectors is linearly independent. Now, by Theorem 2, we have

u∇f(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0 (19)

for some u, v1, . . . , vm1 ≥ 0 and w1, . . . , wm2 ∈ R, where not all of them are zero. We claim that
u > 0. Suppose that this is not the case. Then, we have

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0. (20)

Since not all of v1, . . . , vm1 , w1, . . . , wm2 are zero, we conclude that there exists an i′ ∈ I with
vi′ > 0, for otherwise we would have

∑m2
j=1wj∇hj(x̄) = 0 with some wj 6= 0, which contradicts the

linear independence of {∇hj(x̄)}j .
Now, by the Slater condition and the convexity of g1, . . . , gm1 , we have

0 > gi(x
′) ≥ gi(x̄) +∇gi(x̄)T (x′ − x̄) = ∇gi(x̄)T (x′ − x̄) for i ∈ I. (21)

Moreover, by the feasibility of x′ and the affinity of h1, . . . , hm2 , we have

0 = ∇hj(x̄)T (x′ − x̄) for j = 1, . . . ,m2. (22)
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Let d = x′ − x̄. Since v1, . . . , vm1 ≥ 0, vi = 0 for i 6∈ I, and vi′ > 0, by (21) and (22), we havem1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄)

T

d =

m1∑
i=1

vi∇gi(x̄)Td ≤ vi′∇gi′(x̄)Td < 0,

which contradicts (20). It follows that u > 0 as claimed. Now, upon dividing both sides of (19) by
u, the desired result follows. tu

As the following theorem shows, the situation is even simpler when g1, . . . , gm1 are concave and
h1, . . . , hm2 are affine.

Theorem 5 Consider problem (5), where g1, . . . , gm1 are concave and h1, . . . , hm2 are affine. Let
x̄ ∈ S be a local minimum. Then, x̄ satisfies the KKT conditions (17).

Proof By Theorem 2, we have

u∇f(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄) = 0 (23)

for some u, v1, . . . , vm1 ≥ 0 and w1, . . . , wm2 ∈ R, where not all of them are zero. We claim that
u > 0. Suppose that this is not the case; i.e., u = 0. By the concavity of g1, . . . , gm1 and affinity of
h1, . . . , hm2 , for any x ∈ Rn, we have

gi(x) ≤ gi(x̄) +∇gi(x̄)T (x− x̄) for i = 1, . . . ,m1,

hj(x) = hj(x̄) +∇hj(x̄)T (x− x̄) for j = 1, . . . ,m2.

Since vigi(x̄) = 0 for i = 1, . . . ,m1 and hj(x̄) = 0 for j = 1, . . . ,m2, it follows that

m1∑
i=1

vigi(x) +

m2∑
j=1

wjhj(x)

≤
m1∑
i=1

vigi(x̄) +

m2∑
j=1

wjhj(x̄) +

m1∑
i=1

vi∇gi(x̄) +

m2∑
j=1

wj∇hj(x̄)

T

(x− x̄)

= 0. (24)

Now, since u = 0, we either have vi > 0 for some i = 1, . . . ,m1 or wj 6= 0 for some j = 1, . . . ,m2.
Thus, by Theorem 2, there exists an x′ ∈ Rn such that vigi(x

′) > 0 for all i with vi > 0 and
wjhj(x

′) > 0 for all j with wj 6= 0. However, such an x′ satisfies

m1∑
i=1

vigi(x
′) +

m2∑
j=1

wjhj(x
′) > 0,

which contradicts (24). tu

In particular, Theorem 5 implies that the KKT conditions (17) are necessary for local optimality
in a linearly constrained optimization problem.

Let us now illustrate the above results via some examples.
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Example 2 (Optimality Conditions of Some Optimization Problems)

1. Linear Programming. Consider the standard form LP:

minimize cTx

subject to Ax = b,

x ≥ 0,

(25)

where, as usual, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. Since problem (25) contains only
linear constraints, the KKT conditions are necessary for optimality. Upon letting v ∈ Rn

(resp. w ∈ Rm) be the vector of Lagrange multipliers associated with the inequality constraint
(resp. equality constraint), we may write the KKT conditions as follows:

c︸︷︷︸
∇(cT x)

+

n∑
i=1

vi (−ei)︸ ︷︷ ︸
∇(−eTi x)

+
m∑
j=1

wj (−aj)︸ ︷︷ ︸
∇(bj−aTj x)

= 0,

v ≥ 0,

vixi = 0 for i = 1, . . . , n.

Here, aj ∈ Rn is the j–th row of A, where j = 1, . . . ,m. The above can be expressed more
compactly as

v = c−ATw ≥ 0, vTx = 0,

which, as the reader may readily recognize, correspond to the dual feasibility and complemen-
tarity conditions for LP. It follows from the results in Handout 3 that the KKT conditions
are also sufficient for optimality in this case.

2. Smallest Eigenvalue of a Symmetric Matrix. Let A ∈ Sn be given. Consider the
following problem:

minimize xTAx

subject to ‖x‖22 = 1.
(26)

Since the feasible set is compact and the objective function is continuous, problem (26) has
an optimal solution. Moreover, since the constraint gradient ∇(1− ‖x‖22) does not vanish at
any feasible solution to (26), the regularity condition in Theorem 3 is satisfied. Hence, the
KKT conditions are necessary for optimality. Upon letting w ∈ R be the Lagrange multiplier
associated with the equality constraint, we can write the KKT condition of (26) as

2Ax︸︷︷︸
∇(xTAx)

− w 2x︸︷︷︸
∇(1−‖x‖22)

= 0.

This yields Ax = wx, which shows that x has to be an eigenvector of A with eigenvalue w.
To determine the optimal value w∗ of and optimal solution x∗ to problem (26), note that
(x∗)TA(x∗) = w∗‖x∗‖22 = w∗. This implies that the objective value is smallest when w∗ is the
smallest eigenvalue of A, and the optimal solution x∗ is an eigenvector of A corresponding to
the eigenvalue w∗.
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3. Optimization of a Matrix Function. Let A ∈ Sn++ and b ∈ R++ be given. Consider the
following problem:

inf − log detZ

subject to A • Z ≤ b,
Z ∈ Sn++.

(27)

Note that (27) is an instance of problem (5). We claim that problem (27) has an optimal
solution. To see this, observe that Z = (b/tr(A))I is feasible for (27). Thus, problem (27) is
equivalent to

inf
Z∈F
− log detZ, (28)

where
F =

{
Z ∈ Sn+ : A • Z ≤ b, − log detZ ≤ −n log(b/tr(A))

}
.

Now, for any Z ∈ F , we have λmin(A)tr(Z) ≤ A •Z ≤ b. This implies that F is bounded and
λi(Z) ≤ b/λmin(A) for i = 1, . . . , n. On the other hand, for i = 1, . . . , n, we have

−n log(b/tr(A)) ≥ − log detZ = −
n∑

i=1

log λi(Z) ≥ − log λi(Z)− (n− 1) log(b/λmin(A)),

which yields λi(Z) ≥ exp(n log(b/tr(A)) − (n − 1) log(b/λmin(A)) > 0. In particular, we see
that Z 7→ − log detZ is continuous on F and hence F is closed. Since problem (28) involves
optimizing a continuous function over a compact set, it has an optimal solution. This implies
that (27) has an optimal solution as claimed.

Since problem (27) contains only linear constraints, the KKT conditions are necessary for
optimality. It is known that

∇(− log detZ) = −Z−1, ∇(A • Z − b) = A;

see, e.g., [3]. Upon letting v ∈ R be the Lagrange multiplier associated with the inequality
constraint, we can write the KKT conditions of (27) as

−Z−1 + vA = 0,

v ≥ 0,

v(A • Z − b) = 0.

From the first equality, we must have v > 0 and Z = A−1/v. This, together with the third
equality, implies that

b = A • Z =
1

v
(A •A−1) =

n

v
.

Hence, we obtain v = n/b. Since the above KKT conditions admit a unique solution, we
conclude that Z∗ = bA−1/n must be the optimal solution to (27).

In the case where (5) is a convex optimization problem, the KKT conditions are sufficient for
optimality as well. To prove this, let us first define the Lagrangian function L : X×Rm1×Rm2 →
R associated with problem (5) by

L(x, v, w) = f(x) +

m1∑
i=1

vigi(x) +

m2∑
j=1

wjhj(x).

We then have the following theorem:
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Theorem 6 Consider problem (5), where X is open and convex, f, g1, . . . , gm1 are convex on X,
and h1, . . . , hm2 are affine. Suppose that (x̄, v̄, w̄) ∈ X × Rm1 × Rm2 is a solution to the KKT
conditions

gi(x̄) ≤ 0 for i = 1, . . . ,m1, (a)

hj(x̄) = 0 for j = 1, . . . ,m2, (b)

∇f(x̄) +

m1∑
i=1

v̄i∇gi(x̄) +

m2∑
j=1

w̄j∇hj(x̄) = 0, (c)

v̄ ≥ 0, (d)

v̄igi(x̄) = 0 for i = 1, . . . ,m1. (e)

Then, x̄ is an optimal solution to (5).

Proof Since the function x 7→ L(x, v̄, w̄) = f(x) +
∑m1

i=1 v̄igi(x) +
∑m2

j=1 w̄jhj(x) is convex on X,
by condition (c) and Proposition 2, we see that x̄ is a global minimum of x 7→ L(x, v̄, w̄) in X.
This, together with conditions (b), (d), and (e), implies that

f(x̄) = f(x̄) +

m1∑
i=1

v̄igi(x̄) +

m2∑
j=1

w̄jhj(x̄)

= min
x∈X

f(x) +

m1∑
i=1

v̄igi(x) +

m2∑
j=1

w̄jhj(x)


≤ inf

x∈X
gi(x)≤0, i=1,...,m1
hj(x)=0, j=1,...,m2

f(x) +

m1∑
i=1

v̄igi(x) +

m2∑
j=1

w̄jhj(x)


≤ inf

x∈X
gi(x)≤0, i=1,...,m1
hj(x)=0, j=1,...,m2

f(x),

which completes the proof. tu

It is important to note that Theorem 6 assumes the existence of the Lagrange multipliers
v̄ ∈ Rm1 and w̄ ∈ Rm2 . Thus, it does not contradict the observation we made in Example 1.

The KKT conditions are often useful in gaining insights into the optimization problem at hand,
and sometimes they even suggest simpler algorithms for solving the problem. As an illustration,
let us consider the following example:

Example 3 (Power Allocation Optimization in Parallel AWGN Channels) Consider n
parallel additive white Gaussian noise (AWGN) channels. For i = 1, . . . , n, the i–th channel is
characterized by the channel power gain hi ≥ 0 and the additive Gaussian noise power σi > 0.
Let pi denote the transmit power allocated to the i–th channel, where i = 1, . . . , n. The maximum
information rate that can be reliably transmitted over the i–th channel is then given by

ri = log2

(
1 +

hipi
σi

)
= (ln 2)−1 ln

(
1 +

hipi
σi

)
; (29)
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see [4]. Given a budget P on the total transmit power over n channels, our goal is to allocate power
p1, . . . , pn on each of the n channels such that the sum rate of all the channels is maximized. We
are thus led to the following formulation:

maximize
n∑

i=1

ln

(
1 +

hipi
σi

)
subject to

n∑
i=1

pi ≤ P ,

pi ≥ 0 for i = 1, . . . , n.

(30)

It is easy to verify that the objective function of (30) is concave. Hence, problem (30) is a linearly
constrained concave maximization problem. Now, by Theorems 5 and 6, every solution (p̄, v̄) ∈
Rn × Rn+1 to the following KKT system will yield an optimal solution p̄ ∈ Rn to problem (30):

v0 − vi =
hi

hipi + σi
for i = 1, . . . , n, (a)

v0

(
n∑

i=1

pi − P

)
= 0, (b)

vipi = 0 for i = 1, . . . , n, (c)

vi ≥ 0 for i = 0, 1, . . . , n. (d)

(31)

To find a solution to the KKT system (31), we proceed as follows. Without loss of generality, we
may assume that hi > 0 for i = 1, . . . , n. Then, we have v0 > vi ≥ 0 by (31a) and (31d), which
implies that

pi =
1

v0 − vi
− σi
hi

for i = 1, . . . , n. (32)

Now, if pi > 0, then vi = 0 by (31c). On the other hand, if pi = 0, then in order to satisfy (32)
with some vi ≥ 0, we must have

1

v0
− σi
hi
≤ 0.

Hence, we obtain

pi =

(
1

v0
− σi
hi

)+

for i = 1, . . . , n. (33)

Moreover, since v0 > 0, we have
∑n

i=1 pi = P by (31b). It follows that

n∑
i=1

(
1

v0
− σi
hi

)+

= P.

In particular, we can solve for the unique positive root v̄0 of the above equation by a simple bisection
search over the interval 0 < v0 < maxi(hi/σi). Once we have v̄0, we can then extract the optimal
power allocation p̄ = (p̄1, . . . , p̄n) using (33).
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4 Lagrangian Duality

In view of the development of the duality theories for LP and CLP, it is natural to ask whether one
can construct a dual for a general optimization problem, and if so, whether there is a duality theory
for the primal–dual pair of problems. To begin our investigation, let us focus on the following class
of optimization problems:

v∗p = inf f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m1,

hj(x) = 0 for j = 1, . . . ,m2,

x ∈ X.

(P )

Here, f, g1, . . . , gm1 , h1, . . . , hm2 : Rn → R are arbitrary functions, and X is an arbitrary non–empty
subset of Rn. For the sake of brevity, we shall write the first two sets of constraints in (P ) as
G(x) ≤ 0 and H(x) = 0, where G : Rn → Rm1 is given by G(x) = (g1(x), . . . , gm1(x)) and
H : Rn → Rm2 is given by H(x) = (h1(x), . . . , hm2(x)).

One way of constructing a dual of (P ) is to reformulate it using a penalty function approach.
Specifically, observe that (P ) is equivalent to

inf
x∈X

sup
v∈Rm1

+ , w∈Rm2

L(x, v, w), (34)

where L : Rn × Rm1 × Rm2 → R is the Lagrangian function associated with (P ); i.e.,

L(x, v, w) = f(x) + vTG(x) + wTH(x).

This follows from the fact that for any x ∈ X,

sup
v∈Rm1

+ , w∈Rm2

{
f(x) + vTG(x) + wTH(x)

}
=

{
f(x) if G(x) ≤ 0 and H(x) = 0,

+∞ otherwise.
(35)

Now, it is clear that for any x̄ ∈ X and (v̄, w̄) ∈ Rm1
+ × Rm2 ,

inf
x∈X

L(x, v̄, w̄) ≤ L(x̄, v̄, w̄) ≤ sup
v∈Rm1

+ , w∈Rm2

L(x̄, v, w).

Hence, we have
sup

v∈Rm1
+ , w∈Rm2

inf
x∈X

L(x, v, w) ≤ inf
x∈X

sup
v∈Rm1

+ , w∈Rm2

L(x, v, w). (36)

Observe that the right–hand side of (36) is precisely problem (P ). This motivates us to define the
following dual of (P ):

v∗d = sup
v∈Rm1

+ , w∈Rm2

θ(v, w). (D)

Here, θ : Rm1 × Rm2 → R is the value function given by

θ(v, w) = inf
x∈X

L(x, v, w).

Problem (D) is known as a Lagrangian dual of problem (P ). It is worth noting that since the
set X is arbitrary, there can be many different Lagrangian duals for the same primal problem,
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depending on which constraints are handled as G(x) ≤ 0 and H(x) = 0, and which constraints are
treated by X. However, different choices of the Lagrangian dual problem will in general lead to
different outcomes, both in terms of the dual optimal value and the computational efforts required
to solve the dual problem.

From the above construction of (D), the following is immediate:

Theorem 7 (Weak Duality Theorem) Let x̄ ∈ Rn be feasible for (P ) and (v̄, w̄) ∈ Rm1 ×Rm2

be feasible for (D). Then, we have θ(v̄, w̄) ≤ f(x̄).

Note that the value function θ is the pointwise infimum of affine functions. As such, it is a
concave function, regardless of the convexity of (P ). In particular, the Lagrangian dual (D) is al-
ways a convex optimization problem. Such an observation suggests that strong duality between (P )
and (D) may not hold in general. The following is an example of a primal–dual pair of problems
with v∗p > v∗d.

Example 4 (A Primal–Dual Pair with Non–Zero Duality Gap) Consider the following
problem:

v∗p = minimize −x
subject to x ≤ 1,

x ∈ X = {0, 2}.
(37)

It is clear that the optimal value of and optimal solution to (37) are v∗p = 0 and x∗ = 0, respectively.
By dualizing the inequality constraint, we obtain the following Lagrangian dual of (37):

v∗d = sup
v≥0

min
x∈{0,2}

{−x+ v(x− 1)}. (38)

Observe that for any v ≥ 0, we have

min
x∈{0,2}

{−x+ v(x− 1)} = min{−v, v − 2}.

It follows that the optimal value of and optimal solution to (38) are v∗d = −1 and v∗ = 1, respectively.
In this case, we have v∗p > v∗d.

The above example raises the important question of when strong duality holds. To address this
question, let us introduce the following definition:

Definition 1 We say that (x̄, v̄, w̄) ∈ Rn×Rm1×Rm2 is a saddle point of the Lagrangian function
L associated with (P ) if the following conditions are satisfied:

(a) x̄ ∈ X.

(b) v̄ ≥ 0.

(c) For all x ∈ X and (v, w) ∈ Rm1
+ × Rm2, we have

L(x̄, v, w) ≤ L(x̄, v̄, w̄) ≤ L(x, v̄, w̄).

In particular, the point (x̄, v̄, w̄) is a saddle point of L if x̄ minimizes L over all x ∈ X when (v, w)
is fixed at (v̄, w̄), and that (v̄, w̄) maximizes L over all (v, w) ∈ Rm1

+ × Rm2 when x is fixed at x̄.
The relevance of the notion of saddle point can be seen in the following theorem:
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Theorem 8 The point (x̄, v̄, w̄) ∈ Rn × Rm1 × Rm2 is a saddle point of the Lagrangian function
L associated with (P ) iff the duality gap between (P ) and (D) is zero and x̄ and (v̄, w̄) are the
optimal solutions to (P ) and (D), respectively.

Proof Suppose that (x̄, v̄, w̄) is a saddle point of L. From condition (c), we have L(x̄, v, w) ≤
L(x̄, v̄, w̄) for all (v, w) ∈ Rm1

+ × Rm2 . It follows from condition (a) and the identity (35) that x̄
is feasible for (P ). It is also clear from condition (b) that (v̄, w̄) is feasible for (D). Hence, by
condition (c), we have

θ(v̄, w̄) = min
x∈X

L(x, v̄, w̄) = L(x̄, v̄, w̄) = max
v∈Rm1

+ , w∈Rm2

L(x̄, v, w) = f(x̄); (39)

i.e., the duality gap between (P ) and (D) is zero, and the common optimal value v∗p = v∗d is attained
by the primal solution x̄ and dual solution (v̄, w̄).

Conversely, suppose that x̄ and (v̄, w̄) are optimal for (P ) and (D), respectively, with f(x̄) =
θ(v̄, w̄). Then, we have x̄ ∈ X, G(x̄) ≤ 0, H(x̄) = 0, and v̄ ≥ 0; i.e., conditions (a) and (b) are
satisfied. Moreover, by the primal feasibility of x̄ and dual feasibility of (v̄, w̄), we have

θ(v̄, w̄) = inf
x∈X

L(x, v̄, w̄) ≤ L(x̄, v̄, w̄) ≤ sup
v∈Rm1

+ , w∈Rm2

L(x̄, v, w) = f(x̄).

Since we have f(x̄) = θ(v̄, w̄) by assumption, equality must hold throughout the above chain of
inequalities. In particular, for any x ∈ X and (v, w) ∈ Rm1

+ × Rm2 , we have

L(x̄, v, w) ≤ sup
v∈Rm1

+ , w∈Rm2

L(x̄, v, w) = L(x̄, v̄, w̄) = inf
x∈X

L(x, v̄, w̄) ≤ L(x, v̄, w̄);

i.e., condition (c) is satisfied. This completes the proof. tu

From the proof of Theorem 8, particularly the chain of equalities in (39), we see that the
existence of a saddle point (x̄, v̄, w̄) of L implies

sup
v∈Rm1

+ , w∈Rm2

inf
x∈X

L(x, v, w) ≥ θ(v̄, w̄) = f(x̄) ≥ inf
x∈X

max
v∈Rm1

+ , w∈Rm2

L(x, v, w).

This, together with (36), yields the following minimax relationship:

sup
v∈Rm1

+ , w∈Rm2

inf
x∈X

L(x, v, w) = inf
x∈X

sup
v∈Rm1

+ , w∈Rm2

L(x, v, w).

Moreover, the common value is attained by the saddle point (x̄, v̄, w̄). It is natural to ask whether
the above relationship holds under other conditions. The following result, which is a special case
of Sion’s minimax theorem [7], shows one possibility:

Theorem 9 Let L be the Lagrangian function associated with (P ). Suppose that

(a) X is a compact convex subset of Rn,

(b) (v, w) 7→ L(x, v, w) is continuous and concave on Rm1
+ × Rm2 for each x ∈ X, and

(c) x 7→ L(x, v, w) is continuous and convex on X for each (v, w) ∈ Rm1
+ × Rm2.
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Then, we have
sup

v∈Rm1
+ , w∈Rm2

min
x∈X

L(x, v, w) = min
x∈X

sup
v∈Rm1

+ , w∈Rm2

L(x, v, w).

For a proof of Theorem 9, we refer the reader to [5].
Since saddle points of L are primal–dual pairs of optimal solutions to (P ) and (D), one should

be able to characterize them using certain optimality conditions. This is achieved in the following
theorem:

Theorem 10 (Saddle Point Optimality Conditions) The point (x̄, v̄, w̄) ∈ Rn × Rm1 × Rm2

is a saddle point of the Lagrangian function L associated with (P ) iff the following hold:

(a) (Primal Feasibility) x̄ ∈ X, G(x̄) ≤ 0, and H(x̄) = 0.

(b) (Lagrangian Optimality) v̄ ≥ 0 and x̄ = arg minx∈X L(x, v̄, w̄).

(c) (Complementarity) v̄TG(x̄) = 0.

Proof Suppose that (x̄, v̄, w̄) is a saddle point of L. Then, conditions (a) and (b) follow from
Definition 1 and Theorem 8. Now, Definition 1 implies that

f(x̄) = L(x̄,0,0) ≤ L(x̄, v̄, w̄) = f(x̄) + v̄TG(x̄),

or equivalently, v̄TG(x̄) ≥ 0. On the other hand, since v̄ ≥ 0 and G(x̄) ≤ 0, we have v̄TG(x̄) ≤ 0.
This gives condition (c).

Conversely, suppose that (x̄, v̄, w̄) ∈ Rn × Rm1 × Rm2 satisfies conditions (a)–(c) above. Then,
we have L(x̄, v̄, w̄) ≤ L(x, v̄, w̄) for all x ∈ X. Moreover, we have

L(x̄, v̄, w̄) = f(x̄) + v̄TG(x̄) + w̄TH(x̄) ≥ f(x̄) + vTG(x̄) + wTH(x̄) = L(x̄, v, w)

for all (v, w) ∈ Rm1
+ × Rm2 , since v̄TG(x̄) = 0, G(x̄) ≤ 0, and H(x̄) = 0. By Definition 1, we

conclude that (x̄, v̄, w̄) is a saddle point of L. tu
It is instructive to consider conditions (a)–(c) in Theorem 10 in the context of a convex op-

timization problem. Specifically, suppose that X is an open convex set, f, g1, . . . , gm1 are convex
and continuously differentiable on X, and h1, . . . , hm2 are affine. Then, the Lagrangian function L
associated with (P ) is convex on X. By Proposition 2, the condition x̄ = arg minx∈X L(x, v̄, w̄) is
equivalent to

∇f(x̄) +

m1∑
i=1

v̄i∇gi(x̄) +

m2∑
j=1

w̄j∇hj(x̄) = 0.

Thus, conditions (a)–(c) are simply the KKT conditions of (P ). This, together with the machinery
we developed earlier, leads to the following strong duality results for convex optimization problems:

Corollary 2 Consider problem (P ), where X is open and convex, f, g1, . . . , gm1 are convex and
continuously differentiable on X, and h1, . . . , hm2 are affine. Suppose that (P ) has an optimal solu-
tion and satisfies the Slater condition. Then, the dual (D) also has an optimal solution. Moreover,
we have v∗p = v∗d.

Proof Let x̄ be an optimal solution to (P ). By Theorem 4, there exist v̄ ∈ Rm1 and w̄ ∈ Rm2 such
that (x̄, v̄, w̄) satisfies the KKT conditions of (P ). From the discussion in the preceding paragraph,
we see that (x̄, v̄, w̄) is a saddle point of the Lagrangian function L associated with (P ). It follows
from Theorems 8 and 10 that (v̄, w̄) is an optimal solution to (D) and v∗p = v∗d. tu
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Corollary 3 Consider problem (P ), where X is open and convex, f is convex and continuously dif-
ferentiable on X, and g1, . . . , gm1 , h1, . . . , hm2 are affine. Suppose that (P ) has an optimal solution.
Then, the dual (D) also has an optimal solution. Moreover, we have v∗p = v∗d.

The proof of the above corollary is essentially the same as that of Corollary 2, except that we invoke
Theorem 5 instead of Theorem 4.

Let us now illustrate the above theory with some examples.

Example 5 (Lagrangian Duals of Some Optimization Problems)

1. Semidefinite Programming. Consider the following standard form SDP:

inf C • Z
subject to Aj • Z = bj for j = 1, . . . ,m,

Z ∈ X = Sn+,
(40)

where C,A1, . . . , Am ∈ Sn and b1, . . . , bm ∈ R are given. The Lagrangian dual of (40) is

sup
w∈Rm

θ(w), (41)

where

θ(w) = inf
Z∈Sn+

C • Z +
m∑
j=1

wj(bj −Aj • Z)

 .

Now, for any fixed w ∈ Rm, we have

θ(w) =


bTw if C −

m∑
j=1

wjAj ∈ Sn+,

−∞ otherwise.

(42)

To see this, let UΛUT be a spectral decomposition of C−
∑m

j=1wjAj, and suppose that Λii < 0

for some i = 1, . . . , n. Consider the matrix Z(α) = αUeie
T
i U . It is clear that Z(α) ∈ Sn+ for

all α > 0. Moreover, as α↗∞, we haveC − m∑
j=1

wjAj

 • Z(α) = α(UΛUT ) • (Ueie
T
i U

T ) = αΛ • eieTi = αΛii ↘ −∞,

which implies that

θ(w) = bTw + inf
Z∈Sn+

C − m∑
j=1

wjAj

 • Z = −∞.

On the other hand, if C −
∑m

j=1wjAj ∈ Sn+, then we have (C −
∑m

j=1wjAj) • Z ≥ 0 for any

Z ∈ Sn+. It follows that θ(w) = bTw in this case (by taking, say, Z = 0).
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Now, using (42), we see that (41) is equivalent to

sup bTw

subject to C −
m∑
j=1

wjAj ∈ Sn+,

which is precisely the dual SDP we defined before.

2. Quadratic Programming. Consider the optimization problem

minimize
1

2
xTQx+ cTx

subject to Ax ≤ b,
(43)

where Q ∈ Sn++, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. The Lagrangian dual of (43) is
given by

sup
v∈Rm

+

θ(v),

where

θ(v) = inf
x∈Rn

{
1

2
xTQx+ cTx+ vT (Ax− b)

}
. (44)

By considering the first–order optimality condition of (44), we see that the infimum is attained
at

x∗(v) = −Q−1(c+AT v).

Upon substituting the above expression into (44), we obtain

θ(v) =
1

2
(c+AT v)TQ−1(c+AT v)− cTQ−1(c+AT v)− vT (AQ−1(c+AT v) + b)

= −1

2
vTAQ−1AT v − (AQ−1c+ b)T v − 1

2
cTQ−1c.

Note that (1/2)cTQ−1c is a constant. Hence, the Lagrangian dual of (43) is equivalent to

minimize
1

2
vTAQ−1AT v + (AQ−1c+ b)T v

subject to v ≥ 0.

3. Fenchel Dual. Consider the optimization problem

inf
x∈X1∩X2

{f1(x)− f2(x)} ,

where X1, X2 ⊆ Rn and f1, f2 : Rn → R are given with X1 ∩X2 6= ∅. Observe that the above
problem is equivalent to

inf f1(y)− f2(z)

subject to y = z,

(y, z) ∈ X1 ×X2.

(45)
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The Lagrangian dual of (45) is given by

sup
w∈Rn

θ(w),

where
θ(w) = inf

(y,z)∈X1×X2

{
f1(y)− f2(z) + wT (z − y)

}
= g2(w)− g1(w)

and
g1(w) = sup

y∈X1

{
wT y − f1(y)

}
, g2(w) = inf

z∈X2

{
wT z − f2(z)

}
.

The above construction can be advantageous when g1 and g2 admit explicit expressions.
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