
RIEMANNIAN NATURAL GRADIENT METHODS1

JIANG HU∗, RUICHENG AO† , ANTHONY MAN-CHO SO‡ , MINGHAN YANG§ , AND2

ZAIWEN WEN¶3

Abstract. This paper studies large-scale optimization problems on Riemannian manifolds whose4
objective function is a finite sum of negative log-probability losses. Such problems arise in various5
machine learning and signal processing applications. By introducing the notion of Fisher information6
matrix in the manifold setting, we propose a novel Riemannian natural gradient method, which can7
be viewed as a natural extension of the natural gradient method from the Euclidean setting to the8
manifold setting. We establish the almost-sure global convergence of our proposed method under9
standard assumptions. Moreover, we show that if the loss function satisfies certain convexity and10
smoothness conditions and the input-output map satisfies a Riemannian Jacobian stability condition,11
then our proposed method enjoys a local linear—or, under the Lipschitz continuity of the Riemann-12
ian Jacobian of the input-output map, even quadratic—rate of convergence. We then prove that13
the Riemannian Jacobian stability condition will be satisfied by a two-layer fully connected neural14
network with batch normalization with high probability, provided that the width of the network is15
sufficiently large. This demonstrates the practical relevance of our convergence rate result. Numer-16
ical experiments on applications arising from machine learning demonstrate the advantages of the17
proposed method over state-of-the-art ones.18

Key words. Manifold optimization, Riemannian Fisher information matrix, Kronecker-factored19
approximation, Natural gradient method20

AMS subject classifications. 90C06, 90C22, 90C26, 90C5621

1 Introduction Manifold constrained learning problems are ubiquitous in ma-22

chine learning, signal processing, and deep learning ; see, e.g., [6, 14, 32, 40, 17]. In23

this paper, we focus on manifold optimization problems of the form24

(1.1) min
Θ∈M

Ψ(Θ) := − 1

|S|
∑

(x,y)∈S

log p(y|f(x,Θ)),25

whereM is either an embedded submanifold of Rm×n or a quotient manifold whose26

total space is an embedded submanifold of Rm×n, Θ ∈ M is the parameter to be es-27

timated, S is a collection of |S| data pairs (x, y) with x ∈ X , y ∈ Y, X and Y are the28

input and output spaces, respectively, f(·,Θ) : X → Y is a mapping from the input29

space to the output space, and p(y|f(x,Θ)) is the conditional probability of taking30

y conditioning on f(x,Θ). If the conditional distribution is assumed to be Gaussian,31

the objective function in (1.1) reduces to the square loss. When the conditional distri-32

bution p(y|f(x,Θ)) obeys the multinomial distribution, the corresponding objective33

function is the cross-entropy loss. As an aside, it is worth noting the equivalence be-34

tween the negative log probability loss and Kullback-Leibler (KL) divergence shown35

in [38].36

Let us take the low-rank matrix completion (LRMC) problem [14, 32] as an37

example and explain how it can be fitted into the form (1.1). The goal of LRMC38

∗Department of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Shatin, NT, Hong Kong (hujiangopt@gmail.com).

†School of Mathematical Sciences, Peking University, China (archer arc@pku.edu.cn).
‡Department of Systems Engineering and Engineering Management, The Chinese University of

Hong Kong, Shatin, NT, Hong Kong (manchoso@se.cuhk.edu.hk).
§Beijing International Center for Mathematical Research, Peking University, China (yangming-

han@pku.edu.cn).
¶Beijing International Center for Mathematical Research, Center for Data Science and College of

Engineering, Peking University, Beijing, China (wenzw@pku.edu.cn).

1

This manuscript is for review purposes only.

mailto:hujiangopt@gmail.com
mailto:archer\protect _arc@pku.edu.cn
mailto:manchoso@se.cuhk.edu.hk
mailto:yangminghan@pku.edu.cn
mailto:yangminghan@pku.edu.cn
mailto:wenzw@pku.edu.cn


is to recover a low-rank matrix from an observed matrix X of size n×N . Denote by39

Ω the set of indices of known entries in X, the rank-p LRMC problem amounts to40

solving41

(1.2) min
U∈Gr(n,p),A∈Rp×N

1

2
∥PΩ(UA−X)∥2 ,42

where Gr(n, p) is the Grassmann manifold consists of all p-dimensional subspaces in43

Rn. The operator PΩ(X) is defined in an element-wise manner with PΩ(Xij) = Xij44

if (i, j) ∈ Ω and 0 otherwise. Partitioning X = [x1, . . . , xN ] leads to the following45

equivalent formulation46

min
U∈Gr(n,p),ai∈Rp

1

2N

N∑
i=1

∥∥PΩxi
(Uai − xi)

∥∥2 ,47

where xi ∈ Rn and the j-th element of PΩxi
(v) is vj if (i, j) ∈ Ω and 0 otherwise.48

Given U , we can obtain ai by solving a least squares problem, i.e.,49

ai = a(U ;xi) := argmin
a

∥PΩxi
(Ua− xi)∥2.50

Then, the LRMC problem can be written as51

(1.3) min
U∈Gr(n,p)

Ψ(U) :=
1

2N

N∑
i=1

∥PΩxi
(Ua(U ;xi)− xi) ∥2.52

For the Gaussian distribution p(y|z) = 1√
(2π)n

exp(− 1
2 (y − z)

⊤(y − z)), it holds that53

− log p(y|z) = 1
2∥y− z∥

2 + n log(2π)
2 . Hence, problem (1.3) is a special case of problem54

(1.1), in which S = {(xi, 0)}Ni=1, X = Rn, Y = Rn, f(x, U) = PΩx
(Ua(U ;x)− x),55

M = Gr(n, p), and p(y|z) = 1√
(2π)n

exp(− 1
2 (y− z)

⊤(y− z)). Other applications that56

can be fitted into the form (1.1) will be introduced in Section 4.57

1.1 Motivation of this work Since the calculation of the gradient of Ψ in58

(1.1) can be expensive when the dataset S is large, various approximate or stochastic59

methods for solving (1.1) have been proposed. On the side of first-order methods, we60

have the stochastic gradient method [47], stochastic variance-reduced gradient method61

[31], and adaptive gradient methods [19, 35] for solving (1.1) in the Euclidean setting62

(i.e.,M = Rm×n). We refer the reader to the book [37] for variants of these algorithms63

and a comparison of their performance. For the general manifold setting, by utilizing64

manifold optimization techniques [1, 26, 13], Riemannian versions of the stochastic65

gradient method [11], stochastic variance-reduced gradient method [52, 67, 29], and66

adaptive gradient methods [10] have been developed.67

On the side of second-order methods, existing algorithms for solving (1.1) in68

the Euclidean setting (i.e., M = Rm×n) can be divided into two classes. The first69

is based on approximate Newton or quasi-Newton techniques; see, e.g., [48, 44, 15,70

60, 61, 21, 45]. The second is the natural gradient-type methods, which are based71

on the Fisher information matrix (FIM) [4]. When the FIM can be approximated72

by a Kronecker-product form, the natural gradient direction can be computed us-73

ing relatively low computational cost. It is well known that second-order methods74

can accelerate convergence by utilizing curvature information. In particular, natural75

gradient-type methods can perform much better than the stochastic gradient method76

2

This manuscript is for review purposes only.



[39, 63, 7, 62, 9, 42] in the Euclidean setting. The connections between natural gra-77

dient methods and second-order methods have been established in [38]. Compared78

with the approximate Newton/quasi-Newton-type methods, methods based on FIM79

are shown to be more efficient when tackling large-scale learning problems. For the80

general manifold setting, Riemannian stochastic quasi-Newton-type and Newton-type81

methods [34, 33, 65] have been proposed by utilizing the second-order manifold ge-82

ometry and variance reduction techniques. However, to the best of our knowledge,83

there is currently no Riemannian natural gradient-type method for solving (1.1). In84

view of the efficiency of Euclidean natural gradient-type methods, we are motivated85

to develop their Riemannian analogs for solving (1.1).86

1.2 Our contributions In this paper, we develop a new Riemannian natural87

gradient method for solving (1.1). Our main contributions are summarized as follows.88

• We introduce the Riemannian FIM (RFIM) and Riemannian empirical FIM89

(REFIM) to approximate the Riemannian Hessian. These notions extend the90

corresponding ones for the Euclidean setting [4, 38] to the manifold setting.91

Then, we propose an adaptive regularized Riemannian natural gradient de-92

scent (RNGD) method. We show that for some representative applications,93

Kronecker-factorized approximations of RFIM and REFIM can be construc-94

ted, which reduce the computational cost of the Riemannian natural gradient95

direction. Our experiment results demonstrate that although RNGD is a96

second-order-type method, it has low per-iteration cost and enjoys favorable97

numerical performances.98

• Under some mild conditions, we prove that RNGD globally converges to a99

stationary point of (1.1) almost surely. Moreover, if the loss function satisfies100

certain convexity and smoothness conditions and the input-output map f101

satisfies a Riemannian Jacobian stability condition, then we can establish the102

local linear—or, under the Lipschitz continuity of the Riemannian Jacobian of103

f , even quadratic—rate of convergence of the method by utilizing the notion104

of second-order retraction. We then show that for a two-layer neural network105

with batch normalization, the Riemannian Jacobian stability condition will106

be satisfied with high probability when the width of the network is sufficiently107

large.108

1.3 Notation For an m × n matrix Θ, we denote its Frobenius norm by ∥Θ∥109

and its vectorization by θ = vec(Θ) ∈ Rmn. For a smooth function h : Rm×n → R, we110

use ∇h(Θ) ∈ Rm×n to denote its Euclidean gradient at Θ ∈ Rm×n. For simplicity, we111

set r = mn. When no confusion can arise, we use ∇h(θ) to denote the vectorization112

of ∇h(Θ). We use ∇2h(θ) ∈ Rr×r to denote the Euclidean Hessian of h at θ ∈ Rr.113

We denote the tangent space to M at Θ by TΘM. We write d ∈ TθM to mean114

mat(d) ∈ TΘM, where d ∈ Rr and mat(d) converts d into a m-by-n matrix. For a115

retraction R defined onM, we write Rθ(d) := vec(RΘ(D)) for D ∈ TΘM, θ = vec(Θ),116

and d = vec(D). We shall use θ and Θ interchangeably when no confusion can arise.117

Basically, Θ is used when we want to utilize the manifold structure, while θ is used118

when we want to utilize the vector space structure of the ambient space.119

1.4 Organization We begin with the preliminaries on manifold optimization120

and natural gradient methods in Section 2. In Section 3, we introduce the RFIM and121

its empirical version REFIM and derive some of their properties. Then, we present our122

proposed RNGD method by utilizing the RFIM and REFIM. In Section 4, we discuss123

practical implementations of the RNGD method when problem (1.1) enjoys certain124

3

This manuscript is for review purposes only.



Kronecker-product structure. In Section 5, we study the convergence behavior of the125

RNGD method under various assumptions. Finally, we present numerical results in126

Section 6.127

2 Preliminaries128

2.1 Manifold optimization Consider the optimization problem129

(2.1) min
Θ∈M

h(Θ),130

whereM is either an embedded submanifold of Rm×n or a quotient manifold whose131

total space is an embedded submanifold of Rm×n and h : Rm×n → R is a smooth132

function. For every Θ ∈ M, we endow the tangent space TΘM with a general133

Riemannian metric ⟨U, V ⟩Θ := vec(U)⊤D(θ)vec(V ), where D(θ) ∈ Rr×r is symmetric134

and positive definite on TθM. The design and analysis of numerical algorithms for135

tackling (2.1) have been extensively studied over the years; see, e.g., [1, 26, 13] and the136

references therein. One of the key constructs in the design of manifold optimization137

algorithms is the retraction operator. A smooth mapping R : TM := ∪Θ∈MTΘM→138

M is called a retraction operator if139

• RΘ(0) = Θ,140

• DRΘ(0)[ξ] :=
d
dtRΘ(tξ) |t=0= ξ, for all ξ ∈ TΘM.141

We call R a second-order retraction [1, Proposition 5.5.5] if PTΘM

(
d2

dt2RΘ(tξ)|t=0

)
142

= 0 for all Θ ∈ M and ξ ∈ TΘM. Some examples of second-order retraction can be143

found in [3, Theorem 22]. Another key concept is the Riemannian gradient. Given144

Θ ∈M, the vectorization of the Riemannian gradient g̃radh(Θ) ∈ Rm×n of h at Θ is145

given by146

g̃radh(θ) = D(θ)−1PTθM(∇h(θ)) ∈ Rr,147

where PTθM(·) is the orthogonal projection operator onto TθM. The retraction-based148

methods for solving (2.1) perform updates of the form149

(2.2) Θk+1 = RΘk(tdk),150

where dk is a descent direction in the tangent space TΘkM and t > 0 is the step size.151

The retraction operator R constrains the iterates on M. For the case where M is152

an embedded submanifold, we always take the Euclidean metric as the Riemannian153

metric (i.e., ⟨U, V ⟩Θ = vec(U)⊤vec(V ) for any Θ ∈ M) and use gradh(θ) ∈ Rr154

and Hessh(θ) ∈ Rr×r to denote the Riemannian gradient and Riemannian Hessian155

of h under the Euclidean metric, respectively. For the case where M is a quotient156

manifold, we use a Riemannian metric that satisfies the horizontally invariant property157

in [1, Equation (3.38)], so that the Riemannian norm of a vector on TθM does not158

depend on the representative element of θ inM. We also assume that the total space159

has a retraction satisfying the projection property in [1, Equation (4.9)], so that the160

retraction R onM can be defined according to [1, Equation (4.10)].161

2.2 Natural gradient descent method The natural gradient descent (NGD)162

method was originally proposed in [4] to solve (1.1) in the Euclidean setting (i.e.,163

M = Rm×n). Suppose that y follows the conditional distribution Py|f(x,Θ). Consider164

the population loss under Py|x(Θ) := Py|f(x,Θ), i.e.,165

(2.3) Φ(Θ) := −EPx

[
EPy|x(Θ) log p(y|f(x,Θ))

]
.166

4

This manuscript is for review purposes only.



When Py|x(Θ) and Px are replaced by their empirical counterparts defined using S,
the population loss Φ(Θ) reduces to the empirical loss Ψ(Θ). Now, the FIM associated
with Φ is defined as

F (θ) := EPx
[EPy|x(θ)[∇ log p(y|f(x, θ))∇ log p(y|f(x, θ))⊤]] ∈ Rr×r.

Under certain regularity condition [20], we can interchange the order of expectation167

and derivative to obtain F (θ) = ∇2Φ(θ). In what follows, we assume that such a168

regularity condition holds. Since the distribution of x is unknown, we set Px to be169

the empirical distribution defined by S. In practice, we may only be able to get hold170

of an empirical counterpart of Py|x(Θ). The empirical FIM (EFIM) associated with171

Ψ is then defined by replacing Py|x(Θ) with its empirical counterpart [53], i.e.,172

F̄ (θ) :=
1

|S|
∑

(x,y)∈S

∇ log p(y|f(x, θ))∇ log p(y|f(x, θ))⊤.173

With the FIM, the natural gradient direction is given by174

∇̃Φ(θ) := (F (θ))−1∇Φ(θ) ∈ Rr.175

It is shown in [5, Theorem 1] and [43, Proposition 1] that ∇̃Φ(θ) is the steepest descent176

direction in the sense that177

− ∇̃Φ(θ)
∥∇Φ(θ)∥(F (θ))−1

= lim
ϵ→0

1

ϵ
argmin

d∈Rr:KL(Px,y(θ+d)∥Px,y(θ))≤ϵ2/2

Φ(θ + d),178

where ∥∇Φ(θ)∥(F (θ))−1 :=
√
∇Φ(θ)(F (θ))−1∇Φ(θ).179

In the k-th iteration, the iterative scheme of NGD for minimizing (2.3) is180

θk+1 = θk − tk∇̃Φ(θk),181

where tk > 0 is a step size. In the case where F (θ) is computationally expensive or182

inaccessible, we use the EFIM instead of the FIM. The connections between NGD183

and second-order methods are presented in [38].184

3 Riemannian natural gradient method185

3.1 Fisher information matrix on manifold When the parameter to be186

estimated Θ lies onM, the Euclidean natural gradient direction need not lie on the187

tangent space toM at Θ and thus cannot be used as a search direction in retraction-188

based methods. To overcome this difficulty, we first introduce the RFIM, which is189

defined as190

(3.1) FR(θ) := EPx

[
EPy|x(θ)

[
grad log p(y|f(x, θ))grad log p(y|f(x, θ))⊤

]]
∈ Rr×r,191

where grad log p(y|f(x, θ)) is the Riemannian gradient of log p(y|f(x, θ)) with respect192

to θ under the Euclidean metric.1 Note that the generalization of FIM in the manifold193

setting has been developed in [55, 12]. The RFIM defined in (3.1) can be regarded194

as an extrinsic representation (i.e., an r-by-r matrix) of the said generalization. Such195

1The RFIM should not be confused with the Riemannian Fisher information metric. For any two
tangent vectors u, v ∈ TθM, the Riemannian Fisher information metric associated with the RFIM
(3.1) is given by u⊤FR(θ)v.

5

This manuscript is for review purposes only.



an extrinstic representation relies on the Euclidean representation of the Riemannian196

gradient in the total space and presents a straightforward way to compute RFIM. It197

is easy to see that the range of FR(θ) is included in TθM. Assuming that FR(θ) is198

positive definite on TθM, we define the Riemannian natural gradient direction dR(θ)199

as200

(3.2) dR(θ) := (FR(θ))−1gradΦ(θ) ∈ Rr,201

which is a vector on TθM. The following theorem justifies our definition of RFIM. It202

extends the corresponding results on FIM given in [5, Theorem 1] and [43, Proposition203

1].204

Theorem 3.1. LetM be either an embedded submanifold of Rm×n or a quotient205

manifold whose total space is an embedded submanifold of Rm×n, and Φ :M→ R be206

the function given in (2.3). Given Θ ∈M, suppose that FR(θ) is positive definite on207

TθM. Then, for any second-order retraction R on M, the steepest descent direction208

in the tangent space toM at Θ is given by −dR(θ) in (3.2), i.e.,209

(3.3)
−dR(θ)

∥gradΦ(θ)∥(FR(θ))−1

= lim
ϵ→0

1

ϵ
argmin

d∈TθM:EPx [KL(Py|x(Rθ(d))∥Py|x(θ))]≤ϵ2/2

Φ(Rθ(d)),210

where ∥gradΦ(θ)∥(FR(θ))−1 =
√
gradΦ(θ)⊤(FR(θ))−1gradΦ(θ).211

Proof. For Θ ∈M, from the definition

KL(Py|x(θ)||Py|x(Rθ(td))) = EPy|x(θ) log p(y|f(x, θ))− EPy|x(θ) log p(y|f(x,Rθ(td))),

we have212

d

dt
KL(Py|x(θ)||Py|x(Rθ(td))) |t=0 = − d

dt
EPy|x(θ) log p(y|f(x,Rθ(td))) |t=0

= −d⊤∇EPy|x(θ) log p(y|f(x, θ)).
213

By definition of the Riemannian gradient, we obtain214

d⊤gradKL(Py|x(θ)||Py|x(Rθ(td))) |t=0= −d⊤∇EPy|x(θ) log p(y|f(x, θ)), ∀d ∈ TθM,215

where gradKL(Py|x(θ) ∥ Py|x(Rθ(td))) |t=0∈ TθM. Then, we have216

gradKL(Py|x(θ) ∥ Py|x(Rθ(td))) |t=0= −gradEPy|x(θ) log p(y|f(x, θ)).217

Accordingly, using the Leibniz integral rule and the property of second-order retrac-218

tions [1, Proposition 5.5.5], we have the second-order derivative219

d2

dt2
KL(Py|x(θ)||Py|x(Rθ(td))) |t=0

=EPy|x(θ)[d
⊤grad log p(y|f(x, θ)) (grad log p(y|f(x, θ)))⊤ d].

220

It follows that gradEPy|x(θ) log p(y|f(x, θ)) = 0. By the definition of FR, we conclude
that

EPxKL(Py|x(θ)||Py|x(Rθ(d)) =
1

2
d⊤FR(θ)d+O(d3), ∀d ∈ TθM.

From the fact [43, Proposition 1] that221

−A−1∇h(θ)
∥∇h(θ)∥A−1

= lim
ϵ→0

1

ϵ
argmin
d:∥d∥A≤ϵ

h(θ + d),222

6

This manuscript is for review purposes only.



where A is a positive definite matrix and ∥d∥A−1 =
√
d⊤A−1d, we have223

(3.4)
−B−1∇(Φ ◦Rθ)(0)

∥∇(Φ ◦Rθ)(0)∥B−1

= lim
ϵ→0

1

ϵ
argmin

d ∈TθM:∥d∥B≤ϵ

Φ(Rθ(d)),224

where B : TθM → TθM is a positive definite linear operator. Note that for all225

u ∈ TθM, it holds that226

∇(Φ ◦Rθ)(0)[u] = ∇Φ(Rθ(0))[DRθ(0)[u]] = u⊤gradΦ(θ).227

This gives228

∇(Φ ◦Rθ)(0) = gradΦ(θ).229

Substituting the above into (3.4) and letting B = FR(θ), we have230

(3.5)
−(FR(θ))−1gradΦ(θ)

∥gradΦ(θ)∥(FR(θ))−1

= lim
ϵ→0

1

ϵ
argmin

d∈TθM:∥d∥FR(θ)≤ϵ

Φ(Rθ(d)).231

Therefore, (3.3) holds for any second-order retraction R. This completes the proof.232

Note that for an embedded submanifoldM endowed with the Euclidean metric,233

the Riemannian Hessian [2, Equation 7] of Φ at θ along u ∈ TθM is given by234

HessΦ(θ)[u] = PTθM
(
∇2Φ(θ)[u]

)
− PTθMDu(gradΦ(θ)).235

Since EPy|x(θ)∇ log p(y|f(x, θ)) =
∫
y
∇p(y|f(x, θ))dy = ∇

∫
y
p(y|f(x, θ))dy = 0, we236

have gradΦ(θ) = 0 and HessΦ(θ) = FR(θ). Due to the uniqueness of the second-237

order Taylor expansion, the Riemannian Newton’s direction at θ does not depend on238

the Riemannian metric and is equal to dR(θ) in (3.2). Hence, it is reasonable to use239

the Euclidean metric to define the Riemannian natural gradient direction (3.2). For240

a quotient manifoldM whose total space is an embedded submanifold and whose en-241

dowed Riemannian metric is horizontally invariant, it follows from [1, Equation (3.39)]242

that the Riemannian gradient of Φ in the total space is the horizontal lift of the corre-243

sponding Riemannian gradient inM. Since the total space is an embedded manifold,244

we see from [2, Equation 7] and our earlier argument that FR(θ) is the Riemannian245

Hessian of Φ in the total space at the representative element θ. Furthermore, by [1,246

Proposition 5.3.3], the horizontal lift of the corresponding Riemannian Hessian inM247

at the representative element θ equals the horizontal projection of FR(θ). Since the248

Riemannian gradient of Φ in the total space at a representative element θ belongs to249

the horizontal space at θ, we conclude that dR(θ) in (3.2), which lies in the horizontal250

space at θ, is the Riemannian Newton’s direction at θ. As the Riemannian natural251

gradient direction is independent of the choice of the Riemannian metric, we can use252

the Euclidean metric to define (3.2), but a horizontally invariant Riemannian metric253

should be introduced to compare the norms of Riemannian gradients. In summary,254

the Riemannian natural descent direction (3.2) behaves as the Riemannian Newton’s255

direction wheneverM is an embedded submanifold or a quotient manifold whose total256

space is an embedded submanifold.257

Similar to EFIM, we can define REFIM as258

(3.6) F̄R(θ) :=
1

|S|
∑

(x,y)∈S

grad log p(y|f(x, θ))grad log p(y|f(x, θ))⊤.259

7

This manuscript is for review purposes only.



3.2 Algorithmic framework To fix ideas, let us first consider the case where260

M is an embedded submanifold. In the k-th iteration, once we obtain an estimate Fk261

of the RFIM (3.1) associated with Φ or the REFIM (3.6) associated with Ψ at θk, the262

Riemannian natural gradient direction in the tangent space toM at θk is computed263

by solving the following optimization problem:264

(3.7) dk = argmin
d∈T

θk
M

mk(d) := Ψk +
〈
gk, d

〉
+

1

2
⟨(Fk + λkI)d, d⟩ ,265

where ⟨u, v⟩ := u⊤v for two vectors u, v ∈ Rr, Fkd is the usual matrix-vector multi-266

plication, Ψk and gk are stochastic estimates of Ψ(θk) and gradΨ(θk), respectively,267

and λk > 0 is usually updated adaptively by a trust region-like strategy. In view268

of the finite-sum structure of Ψ (see (1.1)), the stochastic estimates Ψk and gk can269

be obtained using, e.g., a mini-batch strategy (i.e., randomly sample a subset of S270

and sum the corresponding terms in Ψ and gradΨ to get Ψk and gk, respectively).271

Since Fk + λkI : TθkM→ TθkM is positive definite and gk ∈ TθkM, the solution of272

(3.7) is dk = −(Fk + λkI)
−1gk. If the inverse of Fk + λkI is costly to compute, then273

the truncated conjugate gradient method can be utilized [41]. We will introduce the274

constructions of a few computationally efficient approximation Fk in Section 4.275

Once dk is obtained, we construct a trial point276

(3.8) zk = Rθk(dk).277

To measure whether zk leads to a sufficient decrease in the objective value, we first278

calculate the ratio ρk between the reduction of Ψ and the reduction of mk. Since the279

exact evaluation of Ψ is costly, one popular way [16] is to construct estimates Ψ0
k and280

Ψzk

k of Ψ(θk) and Ψ(zk), respectively. Then, we compute the ratio as281

(3.9) ρk =
Ψzk

k −Ψ0
k

mk(dk)−Ψ0
k

.282

Here, we take Ψk = Ψ0
k in the calculation of mk(d

k). Lastly, we perform the update283

(3.10) θk+1 =

{
zk, if ρk ≥ η1 and ∥gk∥ ≥ η2

σk
,

θk, otherwise,
284

where η1 ∈ (0, 1) and η2 > 0 are constants and σk > 0 is used to control the regular-285

ization parameter λk. Indeed, to ensure the descent property of the original function286

Ψ, some assumptions on the accuracy of the estimates of Ψ(θk), Ψ(zk) and the model287

mk are needed, and they will be introduced later in the convergence analysis. Due to288

the error in the estimates, the regularization parameter λk+1 should not only depend289

on the ratio ρk but also on the norm of the estimated Riemannian gradient gk. In290

particular, we set λk+1 := σk+1∥gk+1∥ and update σk+1 as291

(3.11) σk+1 =

{
max

{
σmin,

1
γσk

}
, if ρk ≥ η1 and ∥gk∥ > η2

σk
,

γσk, otherwise,
292

where η1 ∈ (0, 1), η2 > 0 are as before and σmin > 0, γ > 1 are parameters. Our293

proposed RNGD method is summarized in Algorithm 1. It is worth mentioning that a294

trust-region method is developed in [16] to solve stochastic optimization problems. Al-295

gorithm 1 can be seen as a combination of the stochastic update rule of the trust-region296

8

This manuscript is for review purposes only.



Algorithm 1: Riemannian natural gradient descent (RNGD) for solving
(1.1).

1 Choose an initial point θ0 and parameters σ0 > 0, σmin > 0, λ0 = σ0∥g0∥,
η1 ∈ (0, 1), η2 > 0, and γ > 1. Set k = 0.

2 while stopping conditions not met do
3 Compute the estimated Riemannian gradient gk and the estimated

Riemannian Fisher information matrix Fk.
4 Compute the negative natural gradient direction dk by solving (3.7) and

compute the trial point zk by (3.8).
5 Update θk+1 based on (3.10).
6 Update λk+1 based on (3.11).
7 k ← k + 1.

radius in [16] and the adaptive regularization technique for manifold optimization in297

[27]. Compared with the trust-region subproblem in [16, Equation (2)], the subprob-298

lem (3.7) can be efficiently solved if the cost of computing the inverse of Fk + λkI299

is low. We remark that regularized subproblems similar to (3.7) have appeared in300

[39, 63, 62].301

Now, for the case whereM is a quotient manifold, we have a horizontally invariant302

Riemannian metric ⟨U, V ⟩Θ := vec(U)⊤D(θ)vec(V ). The Riemannian gradient in the303

k-th iteration is g̃k = D(θk)−1gk. Thus, in Algorithm 1, we can still use gk and Fk in304

(3.7) but should replace ∥gk∥ in λk, (3.10), and (3.11) with ∥g̃k∥θk :=
√

(g̃k)⊤D(θk)g̃k.305

306

4 Practical Riemannian natural gradient descent methods From the307

definitions of RFIM and REFIM in Section 3, the computational cost of solving sub-308

problem (3.7) may be high because of the vectorization of Θ. Fortunately, analogous309

to [39], the Riemannian natural gradient direction can be computed with a relatively310

low cost if the gradient of a single sample is of low rank, i.e., for a pair of observations311

(x, y) ∈ S and ψ(Θ;x, y) := − log p(y|f(x,Θ)), ∇ψ takes the form312

(4.1) ∇ψ(Θ;x, y) = G(x, y)A(x, y)⊤,313

where G(x, y) ∈ Rm×q and A(x, y) ∈ Rn×q with q ≪ min(m,n). Let us now elaborate314

on this observation.315

Recall that the Riemannian gradient of ψ is given by316

gradψ(Θ;x, y) = PTΘM(∇ψ(Θ;x, y)).317

When ∇ψ has the form (4.1), the linearity of the projection operator implies that318

(4.2)
FR(θ) = EPx,y(θ)

[
gradψ(θ;x, y)gradψ(θ;x, y)⊤

]
≈ P

(
EPx,y(θ)

[
A(x, y)A(x, y)⊤

]
⊗ EPx,y(θ)

[
G(x, y)G(x, y)⊤

])
P,

319

where Px,y(θ) is the joint distribution of (x, y) given θ, P ∈ Rr×r is the matrix320

representation of PTΘM (note that P⊤ = P due to the symmetry of orthogonal321

projection operators), and the approximation is due to the assumption that A(x, y)322

and G(x, y) are approximately independent; see also [23, Theorem 1] for a use of such323

an assumption to derive a simplified form of the FIM. By replacing Px,y(θ) with its324

9

This manuscript is for review purposes only.



empirical distribution observed from S, an approximate REFIM is given by325

(4.3)

F̄R(θ) ≈ P

 1

|S|
∑

(x,y)∈S

A(x, y)A(x, y)⊤

⊗
 1

|S|
∑

(x,y)∈S

G(x, y)G(x, y)⊤

P.326

When a direct inverse of F̄R(θ) is expensive to compute, the truncated conjugate327

gradient method can be used. In preparation for the applications, we now show how328

to construct computationally efficient approximations of the RFIM and REFIM on329

the Grassmann manifold.330

4.1 RFIM and REFIM on Grassmann manifold If the matrix represen-331

tation P of the projection operator PTΘM has dimensions m-by-m or n-by-n, i.e.,332

gradψ(Θ;x, y) = B1G(x, y)A(x, y)
⊤ or gradψ(Θ;x, y) = G(x, y)A(x, y)⊤B2333

with B1 ∈ Rm×m and B2 ∈ Rn×n, then we can approximate the RFIM in (4.2) by334

FR(θ) ≈ EPx,y(θ)

[
A(x, y)A(x, y)⊤

]
⊗ EPx,y(θ)

[
B1G(x, y)G(x, y)

⊤B1

]
335

or336

FR(θ) ≈ EPx,y(θ)

[
B2A(x, y)A(x, y)

⊤B2

]
⊗ EPx,y(θ)

[
G(x, y)G(x, y)⊤

]
.337

Moreover, if we replace Px,y(θ) by its empirical distribution observed from S, then338

we can approximate the REFIM in (4.3) by339

F̄R(θ) ≈

 1

|S|
∑

(x,y)∈S

A(x, y)A(x, y)⊤

⊗
 1

|S|
∑

(x,y)∈S

B1G(x, y)G(x, y)
⊤B1

340

or341

F̄R(θ) ≈

 1

|S|
∑

(x,y)∈S

B2A(x, y)A(x, y)
⊤B2

⊗
 1

|S|
∑

(x,y)∈S

G(x, y)G(x, y)⊤

 .342

Note that the Kronecker product form allows the inverse of F̄R(θ) to be calculated343

efficiently by inverting two smaller matrices [39]. A typical manifold that yields the344

above Kronecker product representations is the Grassmann manifold Gr(m,n), which345

consists of all n (resp., m) dimensional subspaces in Rm (resp., Rn) if m ≥ n (resp.,346

m < n). The matrix representation of the projection operator at a point Θ with347

Θ⊤Θ = I is B1 = Im − ΘΘ⊤ (m ≥ n) or B2 = In − Θ⊤Θ (m < n). In what348

follows, we derive the RFIMs associated with three concrete applications involving349

the Grassmann manifold and explain how they can be computed efficiently.350

4.2 Applications351

4.2.1 Low-rank matrix completion For simplicity, we derive the RFIM352

associated with problem (1.3) for the fully observed case, i.e., Ω = {1, . . . , n} ×353

{1, . . . , N}. One can derive the RFIM for the partly observed case in a similar fashion.354

By definition, we have f(x, U) = Ua(U ;x)− x and ψ(U ;x, y) = − log p(y|f(x, U)) =355
1
2∥f(x, U) − y∥2 + n log(2π)

2 . It follows from [14, Subsection 3.4] that the Jacobian356

of a along a tangent vector H ∈ TUGr(n, p) is given by Ja(U ;x)[H] = H⊤x and its357

10

This manuscript is for review purposes only.



adjoint J⊤
a (U ;x) satisfies J⊤

a (U ;x)[v] = x⊤v for v ∈ Rp. The Riemannian gradient of358

ψ(·;x, y) is359

gradψ(U ;x, y) =(I − UU⊤)((Ua(U ;x)− x− y)a(U ;x)⊤)

+ (I − UU⊤)x(Ua(U ;x)− x− y)⊤U.
360

By assuming that the residual Ua(U ;x)− x is close to zero, we have (I − UU⊤)x ≈361

(I−UU⊤)Ua(U ;x) = 0. This leads to the following approximate Riemannian gradient362

of ψ(·;x, y):363

(4.4) gradψ(U ;x, y) ≈ (I − UU⊤)((Ua(U ;x)− x− y)a(U ;x)⊤).364

Plugging the above approximation into (4.2) leads to365

FR(u) =EPx

[
EPy|x(u)

[
gradψ(u;x, y)gradψ(u;x, y)⊤

]]
≈EPx

[
EPy|x(U)

[
[a(U ;x)a(U ;x)⊤]⊗

[
(I − UU⊤)(Ua(U ;x)− x− y)

(Ua(U ;x)− x− y)⊤(I − UU⊤)
]]]

≈

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
⊤

]
⊗ (I − UU⊤),

366

where u = vec(U) is the vectorization of U , the second line is due to (4.4), vec(uv⊤) =367

v ⊗ u, (A ⊗ B)⊤ = A⊤ ⊗ B⊤, and (A ⊗ B)(A⊤ ⊗ B⊤) = (AA⊤) ⊗ (BB⊤), and the368

last line follows from EPy|x(U)

[
(Ua(U ;x)− x− y)(Ua(U ;x)− x− y)⊤

]
= I and by369

substituting Px with its empirical distribution. For H ∈ TUGr(n, p), we have370

(4.5)

mat(FR(u)[vec(H)]) ≈

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
⊤

]
⊗ (I − UU⊤)vec(H)

= H

[
1

N

N∑
i=1

a(U ;xi)a(U ;xi)
⊤

]
,

371

where mat(b) converts the vector b ∈ Rnp into an n-by-p matrix and the equality372

follows from (I − UU⊤)H = H. For the partly observed case, the matrix FR(u)373

defined in the above equation can serve as a good approximation of the exact RFIM.374

Note that 1
N

∑N
i=1 a(U ;xi)a(U ;xi)

⊤ ∈ Rp×p is of low dimension since the rank p is375

usually small. Thus, the Riemannian natural gradient direction can be calculated376

with a relatively low cost.377

4.2.2 Low-dimension subspace learning In multi-task learning [6, 40], dif-378

ferent tasks are assumed to share the same latent low-dimensional feature represen-379

tation. Specifically, suppose that the i-th task has the training set Xi ∈ Rdi×n and380

the corresponding label set yi ∈ Rdi for i = 1, . . . , N . The multi-task feature learning381

problem can then be formulated as382

(4.6) min
U∈Gr(n,p)

Ψ(U) =
1

2N

N∑
i=1

∥XiUw(U ;Xi, yi)− yi∥2,383

where w(U ;Xi, yi) = argminw
1
2∥XiUw− yi∥2 + λ∥w∥2 and λ > 0 is a regularization384

parameter. Suppose that d1 = · · · = dN = d. Then, problem (4.6) has the form (1.1),385

11

This manuscript is for review purposes only.



where S = {((Xi, yi), 0)}Ni=1, X = Rd×(n+1), Y = Rd, f(X, y, U) = XUw(U ;X, y)−y,386

and p(z|f(X, y, U)) = 1√
(2π)d

exp(− 1
2 (z − f(X, y, U))⊤(z − f(X, y, U))). By ignoring387

the constant 1√
(2π)d

when computing ψ, we denote ψ(U ;X, y, z) = 1
2∥XUw(U ;X, y)−388

y − z∥2. Using the optimality of w(U ;X, y), we have U⊤X⊤(XU389

w(U ;X, y)− y) + λw(U ;X, y) = 0. Then, we can compute the Euclidean gradient of390

ψ(·;X, y, z) as391

∇ψ(U ;X, y, z)

=X⊤(XUw(U ;X, y)− y − z)w(U ;X, y)⊤ + J⊤
w (U)

[
U⊤X⊤(XUw(U ;X, y)− y − z)

]
≈X⊤(XUw(U ;X, y)− y)w(U ;X, y)⊤,

392

where Jw(U) is the Jacobian of w(U ;X, y), J⊤
w (U) denotes the adjoint of Jw(U),393

and the approximation holds for small λ and ∥z∥. Note that z will lie in a small394

neighborhood of zero with high probability if f(X, y, U) is close to 0. Besides, z is395

always zero in the dataset S. With the above, an approximate Riemannian gradient396

of ψ(·;X, y, z) is given by397

(4.7) gradψ(U ;X, y, z) ≈ (I − UU⊤)X⊤(XUw(U ;X, y)− y − z)w(U ;X, y)⊤.398

Consequently, we have399

(4.8)

FR(u) = EP(X,y)

[
EPz|(X,y)(u)[gradψ(u;X, y, z)gradψ(u;X, y, z)

⊤]
]

≈ 1

N

N∑
i=1

(wi ⊗ ((I − UU⊤)X⊤
i ))(wi ⊗ ((I − UU⊤)X⊤

i ))⊤

=
1

N

N∑
i=1

[
(wiw

⊤
i )⊗ ((I − UU⊤)X⊤

i Xi(I − UU⊤))
]

≈ 1

N

[
N∑
i=1

wiw
⊤
i

]
⊗

[
1

N

N∑
i=1

(I − UU⊤)X⊤
i Xi(I − UU⊤)

]
,

400

where u = vec(U) is the vectorization of U , wi := w(U ;Xi, yi), the second line follows401

from (4.7), EPz|(X,y)(u)[(XUw(U ;X, y)−y− z)(XUw(U ;X, y)−y− z)⊤] = I, and the402

empirical approximation of P(X,y), and the last line holds under the same condition403

as in (4.2). Though the construction of FR(u) is for the case d1 = · · · = dN , it can404

be easily extended to the case where the di’s are not equal.405

4.2.3 Fully connected network with batch normalization Consider an406

L-layer neural network with input a0 = x. In the l-th layer, we have407

(4.9) sl =Wlal−1 + bl, tl,i =
sl,i − E(sl,i)
Var(sl,i)

× γl,i + βl,i, i = 1, . . . , nl, al = φl (tl) ,408

where φl is an element-wise activation function, Wl ∈ Rnl×nl−1 is the weight, bl ∈ Rnl409

is the bias, sl,i is the i-th component of sl ∈ Rnl , γl,i, βl,i ∈ R are two learnable410

parameters, Var(sl,i) is the variance of sl,i, and f(x,Θ) = aL ∈ Rm is the output of411

the network with Θ being the collection of parameters {Wl, bl, γl, βl}. By default, the412

elements of γl,i are set to 1 and the elements of βl,i are set to 0. In [28], tl,i is called413

the batch normalization of sl,i.414

12

This manuscript is for review purposes only.



Given a dataset S, our goal is to minimize the discrepancy between the network415

output f(x,Θ) and the observed output y, namely,416

(4.10) min
Θ

Ψ(Θ) = − 1

|S|
∑

(x,y)∈S

log p(y|f(x,Θ)).417

By [17], each row ofWl lies on the Grassmann manifold Gr(1, nl−1). It follows thatWl418

lies on the product of Grassmann manifolds, i.e.,Wl ∈ Gr(1, nl−1)×· · ·×Gr(1, nl−1) ∈419

Rnl×nl−1 . The remaining parameters lie in the Euclidean space. Rather than batch420

normalization, layer normalization [8] and weight normalization [49] have also been421

widely investigated in the study of deep neural networks, where vec(Wl) ∈ Gr(nl ×422

nl−1, 1) and Wl ∈ Sp(nl−1 − 1)× · · · × Sp(nl−1 − 1) ∈ Rnl×nl−1 with Sp(nl−1 − 1) :=423

{u ∈ Rnl−1 : ∥u∥ = 1}, respectively.424

By back-propagation, the Euclidean gradient of Ψ with respect to Wl is given by

gl ← Dal ⊙ φ′
l (tl)⊙Dtl, ∇Ψ(Wl)← gla

⊤
l−1, Dal−1 ←W⊤

l gl.

In particular, we see that ∇Ψ(Wl) has the Kronecker product form (4.1). Moreover,425

note that Ψ(wl,i) = Ψ(cwl,i), ∀c ̸= 0. Now, we compute426

∇Ψ(wl,i)w
⊤
l,i = lim

t→0

Ψ(wl,i + twl,i)−Ψ(wl,i)

t
= 0.427

By definition of the projection operator defined on the product of Grassmann man-428

ifolds, the Riemannian gradient gradΨ(Wl) is actually the same as the Euclidean429

gradient ∇Ψ(Wl). Specifically, for the i-th row of gradΨ(Wl), we have430

[gradΨ(Wl)]i = gradΨ(wl,i) = ∇Ψ(wl,i)−∇Ψ(wl,i)w
⊤
l,iwl,i = ∇Ψ(wl,i).431

Therefore, the RFIM coincides with the FIM. The inverse of FR(θ) can be computed432

easily when the FIM has a Kronecker product form.433

5 Convergence Analysis In this section, we study the convergence behavior434

of the RNGD method (Algorithm 1).435

5.1 Global convergence to a stationary point To begin, let us consider436

the case where M is an embedded submanifold and extend some of the definitions437

used in the study of Euclidean stochastic trust-region methods (see, e.g., [16]) to this438

setting.439

Definition 5.1. Let κef , κeg > 0 be given constants. A function mk is called a440

(κef , κeg)-fully linear model of Ψ on Bθk(0, 1/σk) if for any y ∈ Bθk(0, 1/σk),441

(5.1) ∥∇(Ψ ◦Rθk)(y)−∇mk(y)∥ ≤
κeg
σk

and |Ψ ◦Rθk(y)−mk(y)| ≤
κef
σ2
k

,442

where Bθ(0, ρ) := {d ∈ TθM : ∥d∥ ≤ ρ}.443

Definition 5.2. Let ϵF , σk > 0 be given constants. The quantities Ψ0
k and Ψzk

k444

are called ϵF -accurate estimates of Ψ
(
θk
)
and Ψk

(
zk
)
, respectively if445

(5.2)
∣∣Ψ0

k −Ψ
(
θk
)∣∣ ≤ ϵF

σ2
k

and
∣∣∣Ψzk

k −Ψk

(
zk
)∣∣∣ ≤ ϵF

σ2
k

,446

where zk is defined in (3.8).447

13

This manuscript is for review purposes only.



Analogous to [16, 58], the inequalities (5.1) and (5.2) can be guaranteed when448

M is compact, the number of samples is large enough, and ∇(Ψ ◦ R) is Lipschitz449

continuous.450

Next, we introduce the assumptions needed for our convergence analysis. Their451

Euclidean counterparts can be found in, e.g., [16, Assumptions 4.1 and 4.3].452

Assumption 5.3. Let θ0 ∈ Rr, σmin > 0 be given. Let L(θ0) denote the set453

of iterates generated by Algorithm 1. Then, the function Ψ is bounded from below454

on L(θ0). Moreover, the function Ψ ◦ R and its gradient ∇(Ψ ◦ R) are L-Lipschitz455

continuous on the set456

Lenl(θ
0) =

⋃
θ∈L(θ0)

Bθ

(
0,

1

σmin

)
.457

Assumption 5.4. The RFIM or REFIM Fk satisfies ∥Fk∥op ≤ κfim for all k ≥ 0,458

where ∥ · ∥op is the operator norm.459

We remark that Assumptions 5.3 and 5.4 hold for any compact M and smooth460

Ψ. With the above assumptions, we can prove the convergence of Algorithm 1 by461

adapting the arguments in [16]. The main difference is that our analysis makes use of462

the pull-back function Ψ ◦R and its Euclidean gradient; see Definitions 5.1 and 5.2.463

Theorem 5.5. Suppose that Assumptions 5.3 and 5.4 hold, mk is a (κef , κeg)-

fully linear model for some κef , κeg > 0, and the estimates Ψ0
k and Ψzk

k are ϵF -

accurate for some ϵF > 0. Furthermore, suppose that η2 ≥ max
{
κfim,

16κef

1−η1

}
and

ϵF ≤ min
{
κef ,

1
32η1η2

}
. Then, the sequence of iterates {θk} generated by Algorithm

1 will almost surely satisfy

lim inf
k→∞

∥∥gradΨ(θk)
∥∥ = 0.

Proof. One can prove the conclusion by following the arguments in [16, Theorem464

4.16]. We here present a sketch of the proof. Define Fk as the σ-algebra generated by465

Ψ0
1,Ψ

z1

1 , . . . ,Ψ
0
k,Ψ

zk

k and m1, . . . ,mk. Consider the random function Φk = vΨ(θk) +466

(1− v)/σ2
k, where v ∈ (0, 1) is fixed. The idea is to prove that there exists a constant467

τ > 0 such that for all k,468

(5.3) E [Φk+1 − Φk | Fk−1] ≤ −
τ

σ2
k

< 0.469

Summing (5.3) over k ≥ 1 and taking expectations on both sides lead to
∑∞

k=1 1/σ
2
k <470

∞. The inequality (5.3) can be proved in the following steps. Firstly, a decrease on Ψ471

of order −O(1/σ2
k) can be proved using the fully linear model approximation and the472

positive definiteness of Fk + σk∥gk∥I with a sufficiently large σk. Secondly, the trial473

point zk is accepted provided that the estimates Ψ0
k and Ψzk

k are ϵF -accurate with474

sufficiently small ϵF and large σk. In addition, with η2 ≥ max
{
κfim,

16κef

1−η1

}
, if zk is475

accepted (i.e., θk+1 = zk), then a decrease of−O(1/σ2
k) on Ψ can always be guaranteed476

when ϵF ≤ min
{
κef ,

1
32η1η2

}
based on the update scheme (3.11). On the other hand,477

if zk is rejected (i.e., θk+1 = θk), then E [Φk+1 − Φk|Fk−1] = (1 − v)(1/γ2 − 1)/σ2
k.478

By choosing v to be sufficiently close to 1, the inequality (5.3) holds for any k.479

Now, we will have σk → ∞ as k → ∞ with probability 1. If there exist ϵ > 0480

and k0 ≥ 1 such that ∥gradΨ(θk)∥ ≥ ϵ for all k ≥ k0, then the trial point will be481

accepted eventually because the estimates Ψ0
k and Ψzk

k are ϵF -accurate. Recall that482

14

This manuscript is for review purposes only.



σk is decreasing in the case of accepting zk. This means that σk is bounded above,483

which leads to a contradiction. Hence, we conclude that lim infk→∞ ∥gradΨ(θk)∥ = 0484

will hold almost surely.485

Remark 5.6. Analogous to [16, Theorem 4.18], one can show that lim
k→∞

∥gradΨ(θk)∥486

= 0 will hold almost surely by assuming the Lipschitz continuity of gradΨ.487

Remark 5.7. For the case whereM is a quotient manifold, we modify Algorithm488

1 according to the approach mentioned in the last paragraph of Section 3.2. The iterate489

θk and the tangent space at θk should be understood as a representative element and the490

horizontal space at θk, respectively. Due to the horizontal invariance of the Riemann-491

ian metric, the almost sure convergence result of lim infk→∞ ∥D(θk)−1gradΨ(θk)∥θk492

→ 0 also holds.493

5.2 Convergence rate analysis of RNGD In this subsection, we study the494

local convergence rate of a deterministic version of the RNGD method. Let us start495

with some definitions. Let496

L(z, y) := − log p(y|z)497

and suppose that Px is the empirical distribution defined by S. We define Sx := {x :498

(x, y) ∈ S}, Sy := {y : (x, y) ∈ S}, FL(x, θ) := EPy|x(θ)[∇z log p(y|z)∇z log p(y|z)⊤]|z=f(x,θ),499

and write JR(x, θ) := [gradf1(x, θ), . . . , gradfq(x, θ)]
⊤ for the Riemannian Jaco-500

bian of f(x, θ) = [f1(x, θ), . . . , fq(x, θ)]
⊤ with respect to θ. Furthermore, we write501

S = {(xi, yi)}Ni=1 with N = |S| and u(θ) = [f(x1, θ), . . . , f(xN , θ)]
⊤. Let JR(θ) :=502

[JR(x1, θ), . . . , J
R(xN , θ)] and HL(u(θ)) := blkdiag(HL(u(θ)1), . . . , HL(u(θ)N )). For503

simplicity, we write uk := u(θk).504

5.2.1 Convergence rate Throughout this subsection, we make the following505

assumptions on the loss function L.506

Assumption 5.8. For any y ∈ Sy, the loss function L(·, y) is smooth and µ-507

strongly convex and has κL-Lipschitz gradient and κH-Lipschitz Hessian, namely,508

µI ⪯ ∇2
zzL(z, y) ⪯ κLI, ∥∇2

zzL(z, y)−∇2
zzL(x, y)∥ ≤ κH∥z − x∥, ∀z, x ∈ Rn.509

In addition, the following condition holds:510

(5.4) FL(x, θ) = ∇2
zzL(z, y)|z=f(x,θ) := HL(f(x, θ)).511

We remark that the equality (5.4) holds if ∇2
zzL(z, y)|z=f(x,θ) does not depend on512

y, which is the case for the square loss L(z, y) = ∥z − y∥2 and the cross-entropy loss513

L(y, z) = −
∑

j yj log zj + log(
∑

j exp(zj)). We refer the reader to [38, Section 9.2]514

for other loss functions that satisfy (5.4). We remark that the square loss L(z, y) =515

∥z − y∥2, which appears in both the LRMC and low-dimension subspace learning516

problems, satisfies Assumption 5.8.517

According to the definition of RFIM in (3.1) and the chain rule, we obtain518

FR(θ) =
1

|Sx|
∑
x∈Sx

JR(x, θ)⊤FL(x, θ)J
R(x, θ).519

Based on Assumption 5.8, we have FR(θ) = JR(θ)⊤HL(u(θ))J
R(θ). Note that FR(θ)520

may be singular when JR(θ) is not of full column rank. In this case, provided that521 (
JR(θk)JR(θk)⊤

)−1
exists, we can use the pseudo-inverse522

FR(θk)† = JR(θk)⊤(JR(θk)JR(θk)⊤)−1HL(u
k)−1(JR(θk)JR(θk)⊤)−1JR(θk)523

15

This manuscript is for review purposes only.



for computation. As mentioned at the beginning of this subsection, we focus on a524

deterministic version of the RNGD method, in which we adopt a fixed step size t > 0525

and perform the update526

(5.5) dk = (FR(θk))†JR(θk)⊤∇L(uk, y), θk+1 = Rθk(−tdk)).527

For concreteness, let us take R to be the exponential map for M in our subsequent528

development. Our convergence rate analysis of this deterministic RNGD method can529

be divided into two steps. The first step is to prove that the iterates {θk} always stay530

in a neighborhood of θ0 if JR satisfies certain stability condition. The second step531

is to establish the convergence rate of the method by utilizing the strong convexity532

of L. We remark that the zero acceleration property of the exponential map [1,533

Equation (5.24)] is essential to our analysis. As such, we can only handle the case534

where the retraction is the exponential map. The analysis for the case of a more535

general retraction is left as an open problem. Motivated by [66], we now formulate536

the aforementioned stability condition on JR.537

Assumption 5.9. For any θ satisfying ∥θ − θ0∥ ≤ 4κL(µσ0)
−1∥u0 − y∥, where538

σ0 :=
√
λmin(JR(θ0)JR(θ0)⊤) > 0, it holds that539

(5.6) ∥JR(θ)− JR(θ0)∥ ≤ min

{
1

2
,
µ

6κL

}
σ0.540

As will be seen in Section 5.2.2, Assumption 5.9 is satisfied by the Riemannian541

Jacobian that arises in a two-layer fully connected neural network with batch nor-542

malization and sufficiently large width. We are now ready to prove the following543

theorem.544

Theorem 5.10. Let R be the exponential map forM. Suppose that Assumptions545

5.8 and 5.9 hold. Let {θk} be the iterates generated by (5.5).546

(a) There exists a constant κR > 0 such that if ∥u0 − y∥ < µ
3κH

and t ≤547

min
{
1,
(

1
6|∥u0−y∥ −

κH

2µ

)
· 3µ2σ0

8κRκ2
L

}
, then548

(5.7) ∥uk+1 − y∥ ≤
(
1− t

2

)
∥uk − y∥.549

(b) Suppose further that JR is κJ -Lipschitz continuous with respect to θ, i.e.,550

(5.8) ∥JR(θ)− JR(ν)∥ ≤ κJ∥θ − ν∥, ∀θ, ν ∈ Rr.551

The rate of convergence is quadratic when t = 1, namely, there is a constant552

κq > 0 such that553

(5.9) ∥uk+1 − y∥ ≤ κq∥uk − y∥2.554

Proof. (a). We proceed by induction. Assume that for j ≤ k, we have555

∥θj − θ0∥ ≤ 4κL(µσ0)
−1∥u0 − y∥, ∥uj − y∥ ≤

(
1− η

2

)
∥uj−1 − y∥.556

By the definition of dk in (5.5),557

(5.10)

∥dk∥ ≤ ∥JR(θk)⊤(JR(θk)JR(θk)⊤)−1∥∥HL(θ
k)−1∥∥∇uL(u

k, y)−∇uL(y, y)∥
≤ µ−1κLσ

−1
min(J

R(θk))∥uk − y∥
≤ 2κL(µσ0)

−1∥uk − y∥,
558

16

This manuscript is for review purposes only.



where the first inequality is due to ∇L(y, y) = 0 and the last inequality is from559

Assumption 5.9. Now, define the map ck : [0, 1] →M as ck(s) = Rθk(−stdk). Note560

that for the exponential map R, the geodesic distance between θ and Rθ(ξ) is equal561

to ∥ξ∥ [1, Equation (7.25)], and inequality (2.2) holds with α = 1 when we take the562

Euclidean metric as the Riemannian metric onM. Thus, for any s ∈ [0, 1],563

∥ck(s)− θ0∥ ≤ ∥ck(s)− θk∥+
k−1∑
j=0

∥θj+1 − θj∥ ≤ t
k∑

j=0

∥dj∥

≤ 2κL(µσ0)
−1t

k∑
j=0

∥uj − y∥.

564

Since ∥uj−y∥ ≤ (1−η
2 )∥u

j−1−y∥ for all j ≤ k, we have ∥ck(s)−θ0∥ ≤ 4κL(µσ0)
−1∥u0−565

y∥ for all s ∈ (0, 1]. This gives ∥θk+1 − θ0∥ ≤ 4µκLσ
−1
0 ∥u0 − y∥. To prove (5.7), we566

split ∥uk+1 − y∥ into three terms, namely,567

(5.11)

uk+1 − y =uk+1 − uk + uk − y =

∫ 1

0

JR(ck(s))c
′
k(s)ds+ uk − y

=

∫ 1

0

JR(ck(s))(c
′
k(s)− tdk)ds︸ ︷︷ ︸

b1

+ t

∫ 1

0

(JR(ck(s))− JR(θk))dkds︸ ︷︷ ︸
b2

+ t

∫ 1

0

JR(θk)dkds+ uk − y︸ ︷︷ ︸
b3

.

568

For the exponential map R [1, Equation (5.24)], it holds that569

(5.12) c′k(s)− tdk = c′′k(s)[−stdk] + κ̃Rs
2t2∥dk∥2,570

where c′′k(s)[−stdk] belongs to the normal space to M at ck(s) and κ̃R > 0 is the571

smoothness constant. Plugging (5.12) into (5.11), we have572

∥b1∥ ≤
∫ 1

0

(∥JR(θ0)∥+ ∥JR(ck(s))− JR(θ0)∥)κ̃Rs2t2∥dk∥2ds

≤
∫ 1

0

2σ0κRs
2t2∥dk∥2ds = 2

3
σ0κRt

2∥dk∥2,
573

where κR := κ̃R · (1/4 + ∥JR(θ0)∥/(2σ0)). By (5.6) and (5.10), we have574

∥b2∥ ≤ t
∫ 1

0

min

{
1

2
,
µ

6κL

}
σ0 · 2κL(µσ0)−1∥uk − y∥ds ≤ t

3
∥uk − y∥.575

17

This manuscript is for review purposes only.



Now, the update (5.5) yields JR
(
uk
)
dk = HL

(
uk
)−1∇L

(
uk, y

)
. It follows that576

∥b3∥ = ∥uk − y − tHL

(
uk
)−1 (∇L (uk, y)−∇L(y, y)) ∥

= ∥HL

(
uk
)−1 (

HL

(
uk
) (
uk − y

)
− t
(
∇L

(
uk, y

)
−∇L(y, y)

))
∥

=

∥∥∥∥HL

(
uk
)−1

(
HL

(
uk
) (
uk − y

)
− t
∫ 1

0

HL

(
uk + s

(
y − uk

)) (
uk − y

)
ds

)∥∥∥∥
=

∥∥∥∥HL

(
uk
)−1

[∫ 1

0

(
HL

(
uk
)
− tHL

(
uk + s

(
y − uk

)))
ds

] (
uk − y

)∥∥∥∥
≤
∫ 1

0

(
1− t+ tµ−1κHs

∥∥uk − y∥∥) ds · ∥∥uk − y∥∥
=

(
1− t+ κHt

2µ

∥∥uk − y∥∥)∥∥uk − y∥∥ ,

577

where the first inequality is due to Assumption 5.8. Combining the estimates on578

b1, b2, b3, we conclude that579

(5.13)

∥uk+1 − y∥ ≤
(
1− 2t

3
+
κHt

2µ
∥uk − y∥

)
∥uk − y∥+ 8

3
µ−2κRκ

2
Lσ

−1
0 t2∥uk − y∥2

≤
(
1− t

2

)
∥uk − y∥

580

whenever ∥uk − y∥ < µ
3κH

and t ≤
(

1
6∥uk−y∥ −

κH

2µ

)
· 3µ2σ0

8κRκ2
L
. Therefore, the inequality581

(5.7) holds by using the inductive hypothesis ∥uk − y∥ ≤ ∥u0 − y∥.582

(b). The proof is similar to that for (a). Substituting t = 1 into (5.11), we obtain583

∥uk+1 − y∥ ≤ κH
2µ
∥uk − y∥2 + 1

2
κJ∥dk∥2 +

8

3
µ−2κRκ

2
Lσ

−1
0 ∥uk − y∥2

≤
[
κH
2µ

+ 2κ2L(µσ0)
−2

(
κJ +

4

3
σ0κR

)]
∥uk − y∥2,

584

where we use (5.8) to get585 ∥∥∥∥∫ 1

0

(JR(ck(s))− JR(θk))dkds

∥∥∥∥
≤κJ

∫ 1

0

∥ck(s)− θk∥∥dk∥ds ≤
1

2
κJ∥dk∥2 ≤ 2κJκ

2
L(µσ0)

−2∥uk − y∥2.
586

The verification of the neighborhood condition for θk is similar to that in (a). This587

completes the proof.588

5.2.2 Jacobian stability of two-layer neural network with batch nor-589

malization590

Problem setting From the previous subsection, we see that the Jacobian stability591

condition in Assumption 5.9 plays an important role in the convergence rate analysis592

of the RNGDmethod. Let us now show that such a condition is satisfied by a two-layer593

neural network with batch normalization, thereby demonstrating its relevance. The594

difference between our setting and that of [66] lies in the use of batch normalization.595

18

This manuscript is for review purposes only.



To begin, consider the input-output map f given by596

(5.14) f(x, θ, a) =
1√
m

m∑
j=1

ajϕ

θ⊤j (x− E[x])√
θ⊤j V θj

 ,597

where x ∈ Rn is the (random) input vector, V = E[(x − E[x])(x − E[x])⊤] is the598

covariance matrix, θ = [θ⊤1 , θ
⊤
2 , . . . , θ

⊤
m]⊤ ∈ Rmn is the weight vector of the first layer,599

aj ∈ R is the output weight of hidden unit j, and ϕ is the ReLU activation function.600

This represents a single-output two-layer neural network with batch normalization.601

We fix the aj ’s throughout as in [66] and apply the RNGD method with a fixed602

step size on θ, in which each weight vector θj is assumed to be normalized. For the603

Grassmann manifold Gr(1, n), we choose d with ∥d∥ = 1 as the representative element604

of the one-dimensional subspace {cd : c ̸= 0}. With a slight abuse of notation, we605

write Gr(1, n) := {d ∈ Rn : ∥d∥ = 1}. Then, we can regard the vector θ as lying on a606

Cartesian product of Gr(1, n)’s.607

Jacobian stability It is well known that if θj is a standard Gaussian random608

vector, then the random vector θj/∥θj∥ is uniformly distributed on Gr(1, n). We draw609

each θj uniformly from Gr(1, n) and each aj uniformly from {−1,+1}. As mentioned610

in Section 4.2.3, we have JR(θ) = J(θ). Thus, our goal now is to establish the stability611

of J . To begin, let S = {(xi, yi)}Ni=1 denote the dataset and u(θ) = [f(x1, θ, a),612

f(x2, θ, a), . . . , f(xN , θ, a)]
⊤ denote the output vector. Following [18, 59, 66], we make613

the following assumption on S.614

Assumption 5.11. For any (x, y) ∈ S, it holds that ∥x∥ = 1 and |y| = O(1).615

For any xi, xj ∈ Sx with i ̸= j, it holds that xi ̸= ±xj . In addition, the input vector616

x satisfies E[x] = 0 and the covariance matrix V = E[xx⊤] is positive definite with617

minimum eigenvalue σV > 0.618

The above assumptions on the dataset S are mild as explained in [66, Assump-619

tion 1]. The positive-definite property of the variance V is used to ensure the620

well-posedness of the input-output map (5.14). If V is just positive semidefinite,621

one can replace it by the shift matrix V + σV I in (5.14) and remove the assump-622

tion on V . Motivated by [66], we use [x⊤i θ
0
j ]k− to represent the k-th smallest en-623

try of [x⊤i θ
0
1, x

⊤
i θ

0
2, . . . , x

⊤
i θ

0
m] in absolute value. Since V is positive definite and624

Gr(1, n) = {d ∈ Rn : ∥d∥ = 1} is compact, for i = 1, . . . , N , the function u 7→625

φi(u) =
xi√

u⊤V u
− V uu⊤xi

(u⊤V u)3/2
is L-Lipschitz on Gr(1, n) for some constant L > 0, i.e.,626

∥φi(u) − φi(v)∥ ≤ L∥u − v∥ for any u, v ∈ Gr(1, n). To prove the desired Jacobian627

stability result, we need the following lemmas. They extend those in [66], which are628

developed for the Euclidean setting, to the Grassmann manifold setting. In what629

follows, we use δA to denote the indicator function of an event A, i.e., δA takes the630

value 1 if the event A happens and 0 otherwise.631

Lemma 5.12. Let θj , θ
0
j ∈ Gr(1, n), where j = 1, . . . ,m, be given. Suppose that632

for some k ∈ {1, . . . ,m}, we have
∥∥θ − θ0∥∥ ≤ √k[x⊤i θ0j ]k− for i = 1, 2, . . . , N and633

j = 1, 2, . . . ,m. Then, we have634

(5.15)
∥∥J(θ)− J(θ0)∥∥2 ≤ 2NkM +NkL

m
,635

where M = maxi∈{1,...,N}

(
maxu∈Gr(1,n)

∥∥∥ xi√
u⊤V u

− V uu⊤xi

(u⊤V u)3/2

∥∥∥2).636

19

This manuscript is for review purposes only.



Proof. Let Ai,j denote the event that the signs of x⊤i θj and x⊤i θ
0
j are different.637

We claim that, for i = 1, 2, . . . , N , there are at most 2k non-zero entries of {δAi,j
}mj=1.638

Otherwise, there exists an i ∈ {1, . . . , N} such that639

∥θ − θ0∥2 ≥
m∑
j=1

|x⊤i θj − x⊤i θ0j |2640

≥
∑

j∈{j:δAi,j
=1}

|x⊤i θj − x⊤i θ0j |2 ≥
∑

j∈{j:δAi,j
=1}

|x⊤i θ0j |2 > k[x⊤i θ
0
j ]

2
k−,641

which contradicts our assumption. Now, the generalized Jacobian of f with respect
to θ is given by

J(θ) =
1√
m

m∑
j=1

N∑
i=1

aj

[
δx⊤

i θ1≥0 · φi(θ1)
⊤, . . . , δx⊤

i θm≥0 · φi(θm)⊤
]
.

When x⊤i θj and x
⊤
i θ

0
j have the same sign, the difference δx⊤

i θj≥0 ·
aj√
m
φi(θj)−δx⊤

i θ0
j≥0 ·642

aj√
m
φi(θ

0
j ) is either 0 or

aj√
m
(φi(θj)−φi(θ

0
j )). Splitting ∥J(θ)−J(θ0)∥2 into two parts643

according to the event Ai,j yields644

∥J(θ)− J(θ0)∥2645

≤M
m

∑
(xi,yi)∈S

m∑
j=1

δAi,j
+
L

m

∑
(xi,yi)∈S

m∑
j=1

∥θj − θ0j∥2646

≤2NkM

m
+
L

m

∑
(xi,yi)∈S

∥θ − θ0∥2647

≤2NkM +NkL

m
,648

where the last inequality follows from the assumption on ∥θ − θ0∥ and the fact that649

|[x⊤i θ0j ]k−| ≤ 1 for i = 1, . . . , N and j = 1, . . . ,m.650

The next lemma gives an upper bound on the probability of the event {|x⊤i θj | ≤ γ}651

for all γ > 0, which will be used to estimate [x⊤i θ
0
j ]k− in Lemma 5.14.652

Lemma 5.13. Let v be uniformly distributed on Gr(1, n), x ∈ Gr(1, n) be a given653

unit-norm vector, and γ > 0 be a given positive number, where n ≥ 2. Then, we have654

P(|x⊤v| ≤ γ) ≤
√
πnγ. Moreover, the dependence on n in the bound is optimal up to655

constant factors.656

Proof. Without loss of generality, we may assume that x = (1, 0, . . . , 0) since657

the Euclidean inner product and the distribution of v are invariant under orthogo-658

nal transformation. Then, we have x⊤v = v1. Let Z1, . . . , Zn be standard Gauss-659

ian random variables. Then, the random variable x⊤v has the same distribution as660

B := Z1√
Z2

1+···+Z2
n

. It is well known that B2 follows the distribution Beta( 12 ,
n−1
2 ) [30,661

Section 25.2]. As a result, the density function h of B can be explicitly written as662

(5.16) h(r) =
Γ(n2 )√
πΓ(n−1

2 )
(1− r2)

n−3
2 , |r| < 1.663

It follows directly that664

(5.17) P(|x⊤v| ≤ γ) = P(|B| ≤ γ) =
∫ γ

−γ

h(r)dr ≤
γΓ(n2 )√
πΓ(n−1

2 )
≤
√
πnγ,665

20

This manuscript is for review purposes only.



where the last step uses the classic result Γ(n2 ) ≤ π
√
nΓ(n−1

2 ) in calculus.666

To see the optimality of the dependence on n in the bound, note that for γ ≤ 1√
n
,667

we have668

P(|x⊤v| ≤ γ) = P(|B| ≤ γ) =
∫ γ

−γ

h(r)dr ≥
γΓ(n2 )

2
√
πΓ(n−1

2 )
≥ 5

12
√
2e

√
n,669

where the third step uses (1 − r2)n−3
2 ≥ 1 − n−3

2 r2 and the fact that γ ≤ 1√
n
, and670

the last step follows from an application of Stirling’s formula; see, e.g., [56, Eq. (33)].671

Hence, the dependence on n in the bound is optimal up to constant factors.672

Using the above lemmas, we show that Assumption 5.9 will hold with high prob-673

ability.674

Lemma 5.14. Let θj , θ
0
j ∈ Gr(1, n), where j = 1, . . . ,m, be given. For any given675

Q, ϵ > 0, if ∥θ − θ0∥ ≤ Q, then with probability at least 1− ϵ, we will have676

(5.18) ∥J(θ)− J(θ0)∥2 ≤ 2(πn)
1
3N

5
3MQ

2
3

ϵ
2
3m

1
3

+
(πn)

1
3N

5
3LQ

2
3

ϵ
2
3m

1
3

.677

Proof. For given integers k ∈ {1, . . . ,m} and i ∈ {1, 2 . . . , N}, we prove that with678

probability at least 1 − ϵ/N , there will be at most k − 1 hidden units θ0j such that679

|x⊤i θ0j | ≤ kϵ
Nm

√
πn

. For τ > 0, let γτ be the positive number such that P(|g| ≤ γτ ) = τ ,680

where g follows the same distribution as x⊤i θ
0
j . It follows from Lemma 5.13 that681

γτ ≥ 1√
πn
τ . Let τ = kϵ

Nm . Then, we have682

(5.19) E

 m∑
j=1

δ|x⊤
i θ0

j |≤γτ

 =

m∑
j=1

P
[∣∣x⊤i θ0j ∣∣ ≤ γτ ] ≤ kϵ

N
.683

Applying the Markov inequality yields684

(5.20) P

 m∑
j=1

δ|x⊤
i θ0

j |≤γτ
≥ k

 ≤ ϵ

N
.685

Therefore, by taking k = Q
2
3 m

2
3 (πn)

1
3 N

2
3

ϵ
2
3

, the inequalities
√
k[x⊤i θ

0]k− ≥ k
3
2 ϵ

Nm
√
πn

= Q686

will hold simultaneously for i = 1, . . . , N with probability at least 1− ϵ. The desired687

conclusion then follows from Lemma 5.12.688

Linear convergence of RNGD With the help of Lemma 5.14, we are now ready689

to establish the convergence rate of the RNGD method when applied to the two-layer690

neural network with batch normalization.691

Theorem 5.15. Suppose that Assumptions 5.8 and 5.11 hold. Let ϵ > 0 be a
given constant. Suppose that the number m of hidden units satisfies

m = Ω

 128(L+ 2M)3πnN6κ2L

µ2σ8
0σV ϵ

3 min
{

1
2 ,

µ
6κL

}6

 ,

where the constants L,M, κL, µ, σ0, σV are defined previously. If we draw θ0j uni-692

formly from Gr(1, n) and aj uniformly from {−1,+1} for j = 1, 2 . . . ,m, then the693

21

This manuscript is for review purposes only.



Riemannian Jacobian stability condition in Assumption 5.9 will hold with probability694

at least 1 − ϵ. Furthermore, when m ≥ 16(L+2M)3πnN5κ2
L

9σ8
0κ

2
Hϵ2 min

{
1
2 ,

µ
6κL

}6 , ∥u0 − y∥ ≤ µ
3κH

, and695

η ≤ min
{
1,
(

1
6|∥u0−y∥ −

κH

2µ

)
· 3µ2σ0

8κRκ2
L

}
, with probability at least 1− ϵ, we will have696

(5.21) ∥uk+1 − y∥ ≤
(
1− 1

2
η

)
∥uk − y∥.697

Proof. By Assumption 5.11 and the fact that aj is drawn uniformly from {−1,+1},698

we have E
[
u0
]
= 0 and699

E
[
(u0j )

2
]
= E

 1

m

 m∑
j=1

ajϕ

 (θ0j )
⊤(x− E[x])√
(θ0j )

⊤V θ0j

2


= E

 1

m

m∑
j=1

ϕ

 (θ0j )
⊤x√

(θ0j )
⊤V θ0j

2
 = O

(
1

σV

)
, j = 1, . . . , N.

700

This gives701

(5.22) E
[
∥u0 − y∥2

]
= ∥y∥2 + 2y⊤E[u0] + E

[
∥u0∥2

]
= O

(
N

σV

)
.702

Applying the Markov inequality, we see that ∥u0 − y∥2 = O
(

2N
ϵσV

)
will hold with703

probability at least 1 − 1
2ϵ. This, together with the result of Lemma 5.14 with Q =704

4κL(µσ0)
−1∥u0 − y∥, implies that Assumption 5.9 will hold with probability at least705

1− ϵ for m = Ω

(
128(L+2M)3πnN6κ2

L

µ2σ8
0σV ϵ3 min

{
1
2 ,

µ
6κL

}6

)
.706

To establish the convergence rate result, observe from Theorem 5.10 that ∥θk −707

θ0∥ ≤ 4κL(µσ0)
−1∥u0−y∥ when ∥u0−y∥ ≤ µ

3κH
and η ≤ min

{
1,
(

1
6|∥u0−y∥ −

κH

2µ

)
· 3µ2σ0

8κRκ2
L

}
.708

By taking Q = 4κLσ
−1
0 /(3κH) in Lemma 5.14, we see that Assumption 5.9 will hold709

with probability at least 1 − ϵ if m ≥ 16(L+2M)3πnN5κ2
L

9σ8
0κ

2
Hϵ2 min

{
1
2 ,

µ
6κL

}6 . Following the proof of710

Theorem 5.10, we conclude that (5.21) will hold for all k ≥ 0 with probability at least711

1− ϵ. This completes the proof.712

6 Numerical results In this section, we demonstrate the efficacy of our pro-713

posed method via numerical experiments on three problems: Low-rank matrix com-714

pletion, low-dimension subspace learning, and deep learning model training. Our code715

is available at https://github.com/hujiangpku/RNGD.716

6.1 Low-rank matrix completion We compare our proposed RNGD method717

with the Riemannian stochastic gradient descent (RSGD) method [11], the Riemann-718

ian adaptive stochastic gradient algorithm (RASA) [32], the Riemannian stochastic719

variance-reduced gradient (RSVRG) method [52], and the Riemannian conjugate gra-720

dient (RCG) method without preconditioner [14, 46, 51]. All algorithms are initial-721

ized by the QR decomposition of a random n-by-p matrix whose entries are generated722

from the standard Gaussian distribution. We consider two real datasets. One is taken723

22

This manuscript is for review purposes only.

https://github.com/hujiangpku/RNGD


from the Jester joke recommender system,2 which contains ratings (with scores from724

−10.00 to +10.00) of 100 jokes from 24983 users. The other is the movie rating dataset725

MovieLens-1M,3 which contains ratings (with stars from 1 to 5) of 3952 movies from726

6040 users. In the experiments, each dataset is randomly divided into 2 sets, one727

for training and the other for testing. We utilize the implementations of RSGD and728

RSVRG given in the RSOpt package4 and the implementation of RCG given in the729

Manopt package.5 For RASA, the LR-type variant is adopted due to its efficiency.730

The default parameters therein are used. For RNGD, the same variance reduction731

technique as that in RSVRG is adopted to update both the estimated gradient and732

the approximate RFIM (4.5). Specifically, we compute ai(U) for all i in each outer733

iteration and update ai(U) if the i-th sample is used in the estimation of the gradient.734

We use fixed step sizes for RNGD and RSVRG. For RSGD, the step size ηk is set to735

ηk = η0

1+η0k/10
. As suggested in [32], the step size ηk = η0/

√
k is used for RASA. We736

search in the set {2, 1, 0.5, . . . , 2 × 10−8, 10−8, 5 × 10−9} to find the best initial step737

size η0 for RSGD and RASA and the best step size for RSVRG. The step size for738

RNGD is set to 0.05 for both datasets.739

Figure 6.1 reports the mean squared error (MSE) on both the training and test-740

ing datasets, which are defined as ∥PΩtrain(UA − X)∥2/|Ωtrain| and ∥PΩtest(UA −741

X)∥2/|Ωtest|, respectively, where Ωtrain and Ωtest are the sets of known indices in the742

training and testing datasets, respectively. The label “#grad/N” means the number743

of epochs, which is defined as the number of cycles through the full dataset. The744

label “time” represents the wall-clock time. We run all algorithms with a specified745

number of epochs for different datasets. On the Jester dataset, we see that RNGD,746

RSVRG, and RCG achieve lower MSEs than the other two methods. Furthermore,747

RNGD converges faster than RSVRG and RCG. In the case of the MovieLens-1M748

dataset, RASA and RSVRG exhibit fast reductions of MSEs in the early iterations.749

However, RNGD returns a point with the lowest MSE.

Fig. 6.1. Numerical results for LRMC on the Jester dataset (first row) and the MovieLens-1M
dataset (second row).

750

2The dataset Jester can be downloaded from https://grouplens.org/datasets/jester
3The dataset MovieLens-1M can be downloaded from https://grouplens.org/datasets/movielens
4The code of RSOpt can be downloaded from https://github.com/hiroyuki-kasai/RSOpt
5The code of Manopt can be downloaded from https://github.com/NicolasBoumal/manopt

23

This manuscript is for review purposes only.

https://grouplens.org/datasets/jester
https://grouplens.org/datasets/movielens
https://github.com/hiroyuki-kasai/RSOpt
https://github.com/NicolasBoumal/manopt


Fig. 6.2. Numerical results for multitask learning on the School dataset (first row) and the
Sarcos dataset (second row).

6.2 Low-dimension subspace learning We compare our proposed RNGD751

with RCG, RSGD, RASA, and RSVRG on two real-world datasets: School [22] and752

Sarcos [57]. The dimension p is set to be 6 for both datasets. We choose the best step753

sizes for RSVRG, RASA, and RSGD from the set {1, 0.5, 0.2, 0.1, 0.05, 0.02, . . . , 10−8, 5754

×10−9, 2×10−9, 10−9}. We use the step size 4 (resp., 1) on the School (resp., Sarcos)755

dataset for RNGD. All the codes are implemented within the RSOpt framework and756

the other parameters of the algorithms are set to the default values therein.757

Figure 6.2 reports the normalized MSE (NMSE) [40] on both datasets, which is the758

mean of the normalized squared error of all tasks. For both datasets, RNGD returns a759

point with the lowest NMSE. Especially for the Sarcos dataset, a significant difference760

in the NMSE between RNGD and other methods is observed. Another noteworthy761

phenomenon is that RSGD and RSVRG tend to be less efficient than RCG. This762

demonstrates the advantage of using the Fisher information.763

6.3 Deep learning model training Batch normalization and momentum-764

based optimizer are standard techniques to train state-of-the-art image classification765

models [24, 50, 54]. We evaluate the proposed method with Kronecker-factorized766

approximate RFIM described in Section 4, denoted by MKFAC, on VGG16BN [54]767

and WRN-16-4 [64] while the benchmark datasets CIFAR-10/100 [36] are used. The768

detailed network structures are described in [54, 64]. In VGG16BN, batch normaliza-769

tion layers are added before every ReLU activation layer. Additionally, we change the770

number of neurons in fully connected layers from 4096 to 512 and remove the middle771

layer of the last three in VGG due to memory allocation problems (otherwise, one772

has to compute the inverse of 40962-by-40962 matrices). This setting is also adopted773

in [17, 63].774

The baseline algorithms are SGD, Adam, KFAC [39], AdamP, and SGDP [25].775

The tangential projections are used to control the increase in norms of the weight776

parameters in AdamP and SGDP. These methods can be seen as approximate Rie-777

mannian first-order methods. We fine tune the initial learning rates of the base-778

line algorithms by searching in the set {0.5, 0.2, 0.1, 0.05, 0.02, 0.01, . . . , 5× 10−5, 2×779

10−5, 10−5}. The learning rate decays in epoch 30, 60, and 90 with a decay rate 0.1,780

where an epoch is defined as one cycle through the full training dataset. We choose781

the parameters β1, β2 in Adam and AdamP from the set {0.9, 0.99, 0.999}. We search782

in the set {0.05, 0.1, 0.2, 0.5, 1, 2} to determine the damping parameter λ used in cal-783

24

This manuscript is for review purposes only.



Table 6.1
Classification accuracy of various networks on CIFAR-10/100 (median of five runs).

Dataset CIFAR-10 CIFAR-100
Model WRN-16-4 VGG16BN WRN-16-4 VGG16BN
SGD 93.84 92.88 74.30 71.79
SGDP 93.42 92.49 73.67 71.54
Adam 92.53 89.88 71.64 62.79
AdamP 92.55 91.43 71.23 58.88
KFAC 93.90 94.36 74.31 76.38
MKFAC 94.06 94.76 74.55 77.28

culating the natural direction (Fk + λI)−1gk and update the KFAC matrix in epoch784

30, 60, and 90. The initial damping parameter of KFAC is set to 2 in all four tasks.785

We set the weight decay to 5 × 10−4 for all algorithms. Each mini-batch contains786

128 samples. The maximum number of epochs is set to 100 for all algorithms. For787

MKFAC, we use RNGD for parameters constrained on the Grassmann manifold and788

SGD for the remaining parameters. Let η, ηg denote the learning rates for the Euclid-789

ean space and Grassmann manifold, respectively. For the dataset CIFAR-10, we set790

ηg = 0.25 and η = 0.05 with decay rates 0.2 and 0.1, respectively. The weight decay791

is only applied to the unconstrained weights with parameter 5 × 10−4. The initial792

MKFAC damping parameters for WRN-16-4 and VGG16BN are set to 1 and 2 with793

decay rates 0.8 and 0.5, respectively, when the preconditioners update in epoch 30,794

60, and 90. For the dataset CIFAR-100, we set ηg = 0.3 for WRN-16-4, ηg = 0.15795

for VGG16BN, and η = 0.05 for both. The learning rate ηg has a decay rate 0.15 for796

WRN-16-4 and 0.2 for VGG16BN, while η has a decay rate 0.1 for both of them. The797

initial MKFAC damping parameters for VGG16BN and WRN16-4 are set to 0.5 and798

1 with decay rates 0.5 and 0.8, respectively. Other settings are the same as KFAC.799

Table 6.1 presents the comparison of the baseline and the proposed algorithms800

on CIFAR-10 and CIFAR-100 datasets. We list the best classification accuracy in801

100 epochs, where the results are obtained from the median of 5 runs. The per-802

formance of our proposed MKFAC method is the best in all four tasks. Compared803

with the second-order type method KFAC, our MKFAC method reaches higher accu-804

racy, though KFAC has a much better behavior than SGD on these tasks. Compared805

with the manifold geometry-based first-order algorithms SGDP and AdamP, we see806

that using second-order information can give better accuracy than using first-order807

information alone.808

7 Conclusion In this paper, we developed a novel efficient RNGD method for809

tackling the problem of minimizing a sum of negative log-probability losses over a810

manifold. Key to our development is a new notion of FIM on manifolds, which we811

introduced in this paper and could be of independent interest. We established the812

global convergence of RNGD and the local convergence rate of a deterministic ver-813

sion of RNGD. Our numerical results on representative machine learning applications814

demonstrate the efficiency and efficacy of the proposed method.815

REFERENCES816

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,817
Princeton University Press, Princeton, NJ, 2008.818

[2] P.-A. Absil, R. Mahony, and J. Trumpf, An extrinsic look at the Riemannian Hessian, in819
Geometric Science of Information, Springer, 2013, pp. 361–368.820

25

This manuscript is for review purposes only.



[3] P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM Journal821
on Optimization, 22 (2012), pp. 135–158.822

[4] S.-i. Amari, Neural learning in structured parameter spaces — natural Riemannian gradient,823
in Advances in Neural Information Processing Systems, vol. 9, 1996, pp. 127–133.824

[5] S.-I. Amari, Natural gradient works efficiently in learning, Neural Computation, 10 (1998),825
pp. 251–276.826

[6] R. K. Ando, T. Zhang, and P. Bartlett, A framework for learning predictive structures827
from multiple tasks and unlabeled data, Journal of Machine Learning Research, 6 (2005),828
pp. 1817–1853.829

[7] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, Scalable second order optimization830
for deep learning, arXiv:2002.09018, (2020).831

[8] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, in Advances in Neural832
Information Processing Systems - Deep Learning Symposium, 2016, p. arXiv preprint833
arXiv:1607.06450.834

[9] A. Bahamou, D. Goldfarb, and Y. Ren, A mini-block natural gradient method for deep835
neural networks, arXiv:2202.04124, (2022).836

[10] G. Bécigneul and O.-E. Ganea, Riemannian adaptive optimization methods, in International837
Conference on Learning Representations, 2019.838

[11] S. Bonnabel, Stochastic gradient descent on Riemannian manifolds, IEEE Transactions on839
Automatic Control, 58 (2013), pp. 2217–2229.840

[12] F. Bouchard, A. Breloy, A. Renaux, and G. Ginolhac, Riemannian geometry and Cramér-841
Rao bound for blind separation of Gaussian sources, in ICASSP 2020-2020 IEEE Interna-842
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020,843
pp. 4717–4721.844

[13] N. Boumal, An Introduction to Optimization on Smooth Manifolds, Available online, May,845
2020.846

[14] N. Boumal and P.-A. Absil, Low-rank matrix completion via preconditioned optimization on847
the Grassmann manifold, Linear Algebra and its Applications, 475 (2015), pp. 200–239.848

[15] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method849
for large-scale optimization, SIAM Journal on Optimization, 26 (2016), pp. 1008–1031.850

[16] R. Chen, M. Menickelly, and K. Scheinberg, Stochastic optimization using a trust-region851
method and random models, Mathematical Programming, 169 (2018), pp. 447–487.852

[17] M. Cho and J. Lee, Riemannian approach to batch normalization, in Advances in Neural853
Information Processing Systems, vol. 30, 2017, pp. 5231–5241.854

[18] S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes over-855
parameterized neural networks, in International Conference on Learning Representations,856
2019.857

[19] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and858
stochastic optimization., Journal of Machine Learning Research, 12 (2011).859

[20] H. Flanders, Differentiation under the integral sign, The American Mathematical Monthly,860
80 (1973), pp. 615–627.861

[21] D. Goldfarb, Y. Ren, and A. Bahamou, Practical quasi-Newton methods for training deep862
neural networks, in Advances in Neural Information Processing Systems, vol. 33, 2020,863
pp. 2386–2396.864

[22] H. Goldstein, Multilevel modelling of survey data, Journal of the Royal Statistical Society.865
Series D (The Statistician), 40 (1991), pp. 235–244.866

[23] R. Grosse and J. Martens, A Kronecker-factored approximate Fisher matrix for convolution867
layers, in International Conference on Machine Learning, 2016, pp. 573–582.868

[24] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in869
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,870
pp. 770–778.871

[25] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha, AdamP: Slowing872
down the slowdown for momentum optimizers on scale-invariant weights, in International873
Conference on Learning Representations, 2021.874

[26] J. Hu, X. Liu, Z.-W. Wen, and Y.-X. Yuan, A brief introduction to manifold optimization,875
Journal of the Operations Research Society of China, 8 (2020), pp. 199–248.876

[27] J. Hu, A. Milzarek, Z. Wen, and Y. Yuan, Adaptive quadratically regularized Newton method877
for Riemannian optimization, SIAM Journal on Matrix Analysis and Applications, 39878
(2018), pp. 1181–1207.879

[28] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing880
internal covariate shift, in International Conference on Machine Learning, 2015, pp. 448–881
456.882

26

This manuscript is for review purposes only.



[29] B. Jiang, S. Ma, A. M.-C. So, and S. Zhang, Vector transport-free SVRG with general re-883
traction for Riemannian optimization: Complexity analysis and practical implementation,884
arXiv:1705.09059, (2017).885

[30] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, volume886
2, vol. 289, John Wiley & Sons, 1995.887

[31] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance888
reduction, in Advances in Neural Information Processing Systems, vol. 26, 2013, pp. 315–889
323.890

[32] H. Kasai, P. Jawanpuria, and B. Mishra, Riemannian adaptive stochastic gradient al-891
gorithms on matrix manifolds, in International Conference on Machine Learning, 2019,892
pp. 3262–3271.893

[33] H. Kasai and B. Mishra, Inexact trust-region algorithms on Riemannian manifolds., in894
NeurIPS, 2018, pp. 4254–4265.895

[34] H. Kasai, H. Sato, and B. Mishra, Riemannian stochastic quasi-Newton algorithm with896
variance reduction and its convergence analysis, in International Conference on Artificial897
Intelligence and Statistics, 2018, pp. 269–278.898

[35] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, International Confer-899
ence for Learning Representations, (2015).900

[36] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images,901
(2009).902

[37] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (2015), p. 436.903
[38] J. Martens, New insights and perspectives on the natural gradient method, The Journal of904

Machine Learning Research, 21 (2020), pp. 5776–5851.905
[39] J. Martens and R. Grosse, Optimizing neural networks with Kronecker-factored approximate906

curvature, in International Conference on Machine Learning, 2015, pp. 2408–2417.907
[40] B. Mishra, H. Kasai, P. Jawanpuria, and A. Saroop, A Riemannian gossip approach to908

subspace learning on Grassmann manifold, Machine Learning, 108 (2019), pp. 1783–1803.909
[41] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Re-910

search and Financial Engineering, Springer, New York, second ed., 2006.911
[42] L. Nurbekyan, W. Lei, and Y. Yang, Efficient natural gradient descent methods for large-912

scale optimization problems, arXiv:2202.06236, (2022).913
[43] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen, Information-geometric optimization914

algorithms: A unifying picture via invariance principles, Journal of Machine Learning915
Research, 18 (2017), pp. 1–65.916

[44] M. Pilanci and M. J. Wainwright, Newton sketch: A near linear-time optimization algorithm917
with linear-quadratic convergence, SIAM Journal on Optimization, 27 (2017), pp. 205–245.918

[45] Y. Ren and D. Goldfarb, Kronecker-factored quasi-Newton methods for convolutional neural919
networks, arXiv:2102.06737, (2021).920

[46] W. Ring and B. Wirth, Optimization methods on Riemannian manifolds and their application921
to shape space, SIAM Journal on Optimization, 22 (2012), pp. 596–627.922

[47] H. Robbins and S. Monro, A stochastic approximation method, The Annals of Mathematical923
Statistics, (1951), pp. 400–407.924

[48] F. Roosta-Khorasani and M. W. Mahoney, Sub-sampled Newton methods, Mathematical925
Programming, 174 (2019), pp. 293–326.926

[49] T. Salimans and D. P. Kingma, Weight normalization: A simple reparameterization to ac-927
celerate training of deep neural networks, in Advances in Neural Information Processing928
Systems, vol. 29, 2016, pp. 901–909.929

[50] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, MobileNetV2: Inverted930
residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer931
Vision and Pattern Recognition, 2018, pp. 4510–4520.932

[51] H. Sato, Riemannian Optimization and Its Applications, Springer, 2021.933
[52] H. Sato, H. Kasai, and B. Mishra, Riemannian stochastic variance reduced gradient algo-934

rithm with retraction and vector transport, SIAM Journal on Optimization, 29 (2019),935
pp. 1444–1472.936

[53] N. N. Schraudolph, Fast curvature matrix-vector products for second-order gradient descent,937
Neural Computation, 14 (2002), pp. 1723–1738.938

[54] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-939
nition, arXiv:1409.1556, (2014).940

[55] S. T. Smith, Covariance, subspace, and intrinsic Cramér-Rao bounds, IEEE Transactions on941
Signal Processing, 53 (2005), pp. 1610–1630.942

[56] A. M.-C. So, Non-asymptotic performance analysis of the semidefinite relaxation detector in943
digital communications. Preprint, 2010.944

27

This manuscript is for review purposes only.



[57] S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal, Statistical learning945
for humanoid robots, Autonomous Robots, 12 (2002), pp. 55–69.946

[58] X. Wang and Y.-x. Yuan, Stochastic trust region methods with trust region radius depending947
on probabilistic models, arXiv:1904.03342, (2019).948

[59] X. Wu, S. S. Du, and R. Ward, Global convergence of adaptive gradient methods for an949
over-parameterized neural network, arXiv:1902.07111, (2019).950

[60] M. Yang, A. Milzarek, Z. Wen, and T. Zhang, A stochastic extra-step quasi-Newton method951
for nonsmooth nonconvex optimization, Mathematical Programming, (2021), pp. 1–47.952

[61] M. Yang, D. Xu, H. Chen, Z. Wen, and M. Chen, Enhance curvature information by struc-953
tured stochastic quasi-Newton methods, in Proceedings of the IEEE/CVF Conference on954
Computer Vision and Pattern Recognition, 2021, pp. 10654–10663.955

[62] M. Yang, D. Xu, Q. Cui, Z. Wen, and P. Xu, An efficient Fisher matrix approximation956
method for large-scale neural network optimization, IEEE Transactions on Pattern Analysis957
and Machine Intelligence, (2022).958

[63] M. Yang, D. Xu, Z. Wen, M. Chen, and P. Xu, Sketch-based empirical natural gradient959
methods for deep learning, Journal of Scientific Computing, 92 (2022), pp. 1–29.960

[64] S. Zagoruyko and N. Komodakis, Wide residual networks, arXiv:1605.07146, (2016).961
[65] D. Zhang and S. D. Tajbakhsh, Riemannian stochastic variance-reduced cubic regularized962

Newton method, arXiv:2010.03785, (2020).963
[66] G. Zhang, J. Martens, and R. Grosse, Fast convergence of natural gradient descent for964

overparameterized neural networks, in Advances in Neural Information Processing Systems,965
2019, pp. 8082–8093.966

[67] H. Zhang, S. J. Reddi, and S. Sra, Riemannian SVRG: Fast stochastic optimization on967
Riemannian manifolds, in Advances in Neural Information Processing Systems, 2016,968
pp. 4592–4600.969

28

This manuscript is for review purposes only.


	Introduction
	Motivation of this work
	Our contributions
	Notation
	Organization

	Preliminaries
	Manifold optimization
	Natural gradient descent method

	Riemannian natural gradient method
	Fisher information matrix on manifold
	Algorithmic framework

	Practical Riemannian natural gradient descent methods
	RFIM and REFIM on Grassmann manifold
	Applications
	Low-rank matrix completion
	Low-dimension subspace learning
	Fully connected network with batch normalization


	Convergence Analysis
	Global convergence to a stationary point
	Convergence rate analysis of RNGD
	Convergence rate
	 Jacobian stability of two-layer neural network with batch normalization


	Numerical results
	Low-rank matrix completion
	Low-dimension subspace learning
	 Deep learning model training

	Conclusion
	References

