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Abstract—We focus on a class of non-smooth optimization
problems over the Stiefel manifold in the decentralized setting,
where a connected network of many agents cooperatively mini-
mize a finite-sum objective function with each component being
weakly convex in the ambient Euclidean space. Such optimization
problems, albeit frequently encountered in applications, are quite
challenging due to their non-smoothness and non-convexity.
To tackle them, we propose an iterative method called the
decentralized Riemannian subgradient method (DRSM). When
the problem at hand possesses a sharpness property, we show
the local linear convergence of DRSM using geometrically di-
minishing stepsizes. Numerical experiments are conducted to
demonstrate the superior performance of DRSM in different
applications.

Index Terms—decentralized non-smooth optimization, Stiefel
manifold, Riemannian subgradient method, sharpness

I. INTRODUCTION

Decentralized optimization has gained more and more at-
tention during the past decades in various fields ranging from
machine learning to control [1]–[3]. The decentralized network
operates differently from a centralized network as it does not
require a central server, offering several advantages. First,
eliminating the server as an intermediate step results in sig-
nificant savings in communication resources. With no unified
coordination and configuration of servers, the communica-
tion network among clients becomes more diverse, allowing
for more flexible and efficient communication structures—
an essential advantage over centralized networks. Second,
by removing the central server, the decentralized network
eradicates a single point of failure, potentially increasing
the robustness and reliability of the learning system. Despite
the advantages of the decentralized setting, algorithms for
non-smooth optimization problems with non-convex manifold
constraints remain largely unexplored, which motivates us to
delve into and address this gap in our research.

In this paper, we consider the following problem of weakly
convex (possibly non-smooth) optimization over the Stiefel
manifold in a decentralized (i.e., multi-agent) manner:
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min f(x) :=
1

n

n∑
i=1

fi (x) s.t. x ∈ M. (1)

Here, each local component fi : Rd×r → R (i ∈ [n] :=
{1, . . . , n}) is assumed to be ρ-weakly convex in the ambient
Euclidean space Rd×r (recall that g(·) is ρ-weakly convex
if g(·) + ρ

2∥ · ∥2F is convex for some constant ρ ≥ 0) and
M := St(d, r) =

{
x ∈ Rd×r : d ≥ r, x⊤x = Ir

}
is the Stiefel

manifold.
In the multi-agent setting, there is a connected undirected

communication network represented by the graph G. Each
node of G corresponds to an agent, and the network of n agents
aim to collectively solve (1). The i-th agent holds a local copy
xi of the variable x in (1). Let Ni be the neighborhood of i
including itself. For any i ∈ [n] and j ∈ Ni, the equality
constraint xi = xj is required. As G is connected, we have
the consensus constraint x1 = x2 = · · · = xn. Then, an
equivalent reformulation of (1) is

min f(x) :=
1

n

n∑
i=1

fi (xi)

s.t. x1 = x2 = · · · = xn, xi ∈ M, ∀i ∈ [n],

(2)

where the variable x⊤ := (x⊤
1 , x

⊤
2 , . . . , x

⊤
n ) ∈ Rr×nd. It is

worth noting that various machine learning applications, such
as decentralized robust subspace recovery and decentralized
dictionary learning, can be captured by the formulation (2)
[4]–[7].

To obtain the consensual optimal solution to problem (2),
each node of G needs to mix its local decision variable with
its immediate neighbors according to predefined weights. We
introduce a mixing matrix W ∈ Rn×n to model the mixing
process, whose (i, j)-th entry Wij ≥ 0 represents the weight
assigned to node j by node i. The following assumption on
W is commonly used in decentralized learning.

Assumption 1.1: The mixing matrix W ∈ Rn×n is sym-
metric and doubly stochastic, that is, W = W⊤,W ≥
0,
∑

j∈[n] Wij = 1 for all i ∈ [n]. Moreover, we have Wij = 0
if and only if j /∈ Ni.



An immediate consequence of the Perron-Frobenius theorem
[8] is that the eigenvalues of W lie in (−1, 1]. In addition, the
second-largest singular value σ2 of W satisfies σ2 ∈ [0, 1).
A. Related work

Problem (2), a weakly convex optimization problem over
the Stiefel manifold, can be non-smooth and non-convex,
rendering it quite challenging to solve. If the Stiefel manifold
constraint is absent in problem (2), decentralized (sub)gradient
methods were studied in [1], [9]–[12] and a distributed dual
averaging subgradient method was proposed in [13], [14].
During the past few years, there have been significant efforts
in designing decentralized algorithms for smooth optimization
over the Stiefel manifold [15]–[17]. Specifically, the work [15]
developed a decentralized version of the Riemannian gradient
method, the work [16] studied a decentralized power method
for solving the distributed principal component analysis prob-
lem, and the work [17] proposed a decentralized augmented
Lagrangian method. The related works are summarized in
Table I. By sharp contrast, the study of the general decen-
tralized non-smooth non-convex problem (2) is still in its
infancy. The work closest to ours is [18], which established a
convergence guarantee for the Riemannian subgradient method
when solving the centralized counterpart (1).

TABLE I
COMPARISON WITH RELATED WORKS. “S.T.” MEANS “SUBJECT TO”,

WHICH INDICATES THE FEASIBLE REGION.

s.t.
fi L-smooth, non-convex Non-smooth, weakly convex

Rd×r DGD [11] DPSM [12]

M DRSGD/DRGTA [15]
DESTINY [17] DRSM (this paper)

B. Our contribution
In this paper, we propose the decentralized Riemannian

subgradient method (DRSM) for solving non-smooth weakly
convex optimization problems over the Stiefel manifold of
the form (2). To the best of our knowledge, this is the first
work to propose a decentralized method for solving problem
(2). We show the local linear convergence rate of DRSM
using geometrically diminishing stepsizes under the regularity
condition of sharpness. Numerical experiments are conducted
to demonstrate the superior performance of DRSM in different
applications.

II. PRELIMINARIES
A. Notation

We use ⊗ to denote the Kronecker product. Given a
vector x, we use ∥x∥2 and ∥x∥1 to denote its Euclidean
norm and ℓ1-norm, respectively. Given a matrix x, we
use ∥x∥F to denote its Frobenius norm and ∥x∥F,∞ with
x⊤ := (x⊤

1 , x
⊤
2 , . . . , x

⊤
n ) ∈ Rr×nd to denote the norm

maxi∈[n] ∥xi∥F . We denote by 1n the n-dimensional all-
one vector. Given a symmetric matrix W ∈ Rn×n, we use
λ2(W ) and λn(W ) to denote its second-largest eigenvalue
and smallest eigenvalue, respectively. For a nonempty closed
set X , we use dist(x,X ) := infy∈X ∥x − y∥F to denote the
distance between a point x and X . We denote the Euclidean
average of the points x1, . . . , xn ∈ Rd×r as x̂ := 1

n

∑n
i=1 xi.

B. Consensus on the Stiefel manifold
The consensus problem over the Stiefel manifold M is

to minimize the weighted squared distance among all local
variables, which can be formulated as

min φt(x) :=
1

4

n∑
i=1

n∑
j=1

W t
ij∥xi − xj∥2F

s.t. xi ∈ M, ∀i ∈ [n].

(C-St)

Here, W t denotes the t-th power of the doubly stochastic ma-
trix W with t ≥ 1 being an integer. In the k-th (k = 0, 1, . . . )
iteration, the Riemannian gradient method DRCS proposed in
[19] for problem (C-St) is given by

xi,k+1 = Rxi,k
(−α gradφt

i(xk))

= Rxi,k
(αPTxi,k

M(

n∑
j=1

W t
ijxj,k)).

(DRCS)

Here, gradφt
i(xk) ∈ Rd×r represents the Riemannian gradi-

ent of φt with respect to xi,k, TxM is the tangent space to
M at x, PTxM(y) is the projection of y ∈ Rd×r onto TxM,
and Rxi,k

(·) is a retraction operator. We refer the reader to
[20]–[22] for an introduction to manifold optimization. In the
sequel, we only use the polar decomposition-based retraction
to simplify theoretical analysis. Although problem (C-St) is
non-convex, it has been shown in [19] that DRCS converges
Q-linearly in a local region. Specifically, define

N := N1 ∩N2, N1 :=
{
x : ∥x− x̄∥2F ≤ nδ21

}
,

N2 := {x : ∥x− x̄∥F,∞ ≤ δ2} ,
(3)

where x̄ := PM(x̂) ∈ argminy∈M
∑n

i=1 ∥y − xi∥2F is
the induced arithmetic mean (IMA) on the Stiefel manifold,
PM(x̂) represents any point that is the projection of x̂ onto
M, x̄ := 1n ⊗ x̄, and δ1, δ2 satisfy δ1 ≤ 1

5
√
r
δ2 and δ2 ≤ 1

6 .
We have the following local linear convergence result [19]:

Fact 2.1: Suppose that Assumption 1.1 holds. Let the
stepsize α satisfy 0 < α ≤ ᾱ := min{ν Φ

Lt
, 1, 1

M } and
t ≥ ⌈logσ2

( 1
2
√
n
)⌉, where ν ∈ [0, 1], Φ = 2 − δ22 , Lt =

1−λn(W
t) ∈ (0, 2], and M is a finite constant depending on

the specific choice of the retraction. The sequence of iterates
{xk} generated by (DRCS) achieves consensus at a linear rate
if the initialization satisfies x0 ∈ N . That is, we have xk ∈ N
for all k ≥ 0 and ∥xk+1 − x̄k+1∥F ≤ ρt∥xk − x̄k∥F , where
x̄k := 1n ⊗

(
PM( 1n

∑n
i=1 xi,k)

)
, ρt :=

√
1− 2(1− ν)αγt,

µt = 1 − λ2(W
t), and γt = (1 − 4rδ21)(1 − δ22

2 )µt ≥ µt

2 ≥
1−σt

2

2 .

III. OUR METHOD

Motivated by Fact 2.1, our proposed DRSM proceeds as
follows. In the k-th iteration, it performs a consensus step and
then updates the local variable using a Riemannian subgradient
direction, i.e., for i ∈ [n],

xi,k+1 = Rxi,k
(αPTxi,k

M(

n∑
j=1

W t
ijxj,k)− βk∇̃Rfi(xi,k)),

(DRSM)



Algorithm 1 Decentralized Riemannian Subgradient Method
(DRSM) for Solving Problem (2)

1: Input: x0 ∈ N , an integer t ≥ logσ2

(
1

2
√
n

)
, 0 < α ≤ ᾱ

with ᾱ being given in Fact 2.1.
2: for k = 1, 2, . . . {each node i ∈ [n] in parallel} do
3: Choose geometrically diminishing stepsizes βk.
4: Perform the update according to (DRSM).
5: end for

where ∇̃Rfi(xi,k) is a Riemannian subgradient of fi at the
point xi,k (see [23, Section 2.2]), α and βk are stepsizes to
be determined shortly, and t ≥ 1 is an integer denoting the
t-th power of the mixing matrix W (i.e., performing multistep
consensus). We summarize the algorithm in Algorithm 1. One
can view the update (DRSM) as applying the Riemannian
subgradient method to the following penalized version of prob-
lem (2): minxi∈M βkf(x) + αφt(x). To gradually approach
consensus, we need to increase the effect of φt, or equivalently,
decrease the effect of f . Therefore, βk should be diminishing.
We will formally specify this requirement later.

IV. LOCAL LINEAR CONVERGENCE UNDER SHARPNESS

In this section, we aim at deriving convergence guarantee
for DRSM when applied to problem (2) with the sharpness
property besides just weak convexity. In the centralized setting,
to establish the (local) linear convergence rate of iterative
methods for non-convex problems or convex but not strongly-
convex problems, certain regularity conditions (e.g., the error
bound condition [24], the Kurdyka-Łojasiewicz inequality
[25], or the sharpness property [26]) are usually required. In
addition, there have been many attempts to establish strong
convergence results in decentralized settings under the afore-
mentioned regularity properties; see, e.g., [12], [27]. Motivated
by such a line of research, we show that if problem (1)
possesses the following sharpness property [18], [28], then
with geometrically diminishing stepsizes (i.e., βk = µ0γ

k with
µ0 > 0 and γ ∈ (0, 1)), our proposed DRSM for problem (2)
would converge at a linear rate, provided that it is initialized
with a suitable point.

Definition 4.1 (Sharpness): A set X ⊆ M is called a set
of weak sharp minima for the function f : Rd×r → R with
parameter κ > 0 if there exists a constant B > 0 such that
for every x ∈ UX (B) ∩M and every y ∈ X , f(x)− f(y) ≥
κ · dist(x,X ), where UX (B) is the B-tube around X defined
as UX (B) := {y ∈ Rd×r : dist(y,X ) < B}.

Note that if X is a set of weak sharp minima for f , then it
is the set of minimizers of f over UX (B) ∩M. In addition,
when f is continuous (e.g., if f is weakly convex; see [23,
Section 2.2]), then X can be chosen as a closed set.

We first estimate the consensus error ∥xk − x̄k∥F when
using geometrically diminishing stepsizes.

Lemma 4.2: Let the stepsizes in DRSM be chosen as βk =
µ0γ

k, k ≥ 0, where 0 < µ0 ≤ min
{

1−ρt

L δ1,
αδ1
5L

}
, L satisfies

∥∇̃Rfi(x)∥F ≤ L, and ρδt ≤ γ < 1, δ ∈ (0, 1). If Assumption
1.1 holds and x0 ∈ N , then we have ∥xk − x̄k∥F = O(βk).

The following two assumptions are required to prove the local
linear convergence of DRSM under the sharpness condition.

Assumption 4.3: There exists a weak sharp minimum x∗ ∈
M of problem (1) that is isolated.

Assumption 4.4: Let x⊤
0 = (x⊤

1,0, . . . , x
⊤
n,0) be the initial

point of DRSM. Let Γ ≥ 3 be a constant. Define

e0 := min

max

 κ

(ρ+ L)Γ
,

√√√√ n∑
i=1

∥xi,0 − x∗∥2F
n

 ,
B

Γ

 ,

a := 2(L+ κ+ αLLt)L, b := (4α
√
r + 2α2r)LtL

2,

q :=
2κe0
Γ

− (ρ+ L)e20.

We assume that the constant µ0 > 0 is strictly less than

min

{
e0

2κ− (ρ+ L)e0
,

q

L2e20 +
4(a+b)

(1−ρt)2

,
(1− ρt)e0
2
√
nL

}
. (4)

With the above setup, we establish the local linear conver-
gence result in the following theorem. Its proof can be found
in [23].

Theorem 4.5: Suppose that the conditions in Lemma 4.2,
Assumption 4.3, and Assumption 4.4 hold. Suppose further
that the initial point x0 satisfies the following two conditions:

n∑
i=1

∥xi,0 − x∗∥2F <
n

Γ2
min

{(
2κ

ρ+ L

)2

, B2

}
, (5)

∥x0 − x̄0∥F = 0. (6)

Then, there exists a sufficiently small constant δ > 0 such that
for γ = ρδt , we have for every i ∈ [n],

n∑
i=1

∥xi,k − x∗∥2F ≤ nγ2ke20, ∥xi,k − x∗∥2F ≤ Γ2γ2ke20 (7)

for the sequence {xi,k}k≥0 generated by DRSM.
Some comments on Theorem 4.5 are in order.

i) The condition (5) requires that the initial points xi,0, i ∈
[n] should be all close to x∗. One can simply initialize
all agents with the same value, i.e., x1,0 = x2,0 = · · · =
xn,0, to satisfy (6).

ii) An immediate conclusion is that

∥x̄k − x∗∥2F ≤ 4∥x̂k − x∗∥2F

≤ 4

n

n∑
i=1

∥xi,k − x∗∥2F ≤ 4γ2ke20, (8)

where the first inequality comes from [23, Lemma 2.3]
and the last inequality is from (7).

V. NUMERICAL EXPERIMENTS

We conduct numerical experiments on the decentralized
dual principal component pursuit (DPCP) problem as well
as the decentralized orthogonal dictionary learning (ODL)
problem to compare our DRSM algorithm with its centralized
counterpart (CRSM) [18]. Throughout the experiments, for the
network topology, we consider three different choices: A com-
plete graph, a ring graph, and an Erdös-Rényi (ER) random
graph where each possible edge is generated independently
with probability 0.3.
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Fig. 1. Convergence performance of Riemannian subgradient-type methods
for solving the DPCP problem.

A. Dual principal component pursuit (DPCP)

In the DPCP problem, one is given some measurements
Ỹ = [Y O]Γ ∈ Rd×m, where the columns of Y ∈ Rd×m1

form inlier points spanning a (d−r)-dimensional subspace S,
the columns of O ∈ Rd×m2 form outlier points with no linear
structure, and Γ ∈ Rm×m with m = m1 +m2 is an unknown
permutation. To recover the subspace S (or S⊥), one aims to
solve

min
X∈Rnd×r

f(X) := 1
n

n∑
i=1

( 1
N

N∑
j=1

∥∥(ỹi,j)⊤Xi

∥∥
2
)

s.t. X1 = X2 = · · · = Xn, Xi ∈ St(d, r),

(9)

where X⊤ := (X⊤
1 , X⊤

2 , . . . , X⊤
n ), m = n×N , and ỹi,j ∈ Rd

is the j-th column vector of the data in the i-th local node.
We generate the measurements Ỹ following [18] with d = 100
and r = 10. After that, we randomly allocate the m column
vectors of Ỹ to n = 10 local nodes such that each node has
N = 500 column vectors. The initialization is set to satisfy
X1 = · · · = Xn and we randomly generate X1 on St(d, r).

The DPCP problem is weakly convex and possesses the
sharpness property with high probability under suitable con-
ditions [18]. In our experiments, suppose that the underlying
subspace S⊥ is the column space of a matrix Xtrue ∈ St(d, r).
We measure the performance by the distance between the IMA
in the k-th iteration and the low-dimensional subspace S⊥, that
is dist(X̄k,S⊥) = minQ∈O(r) ∥X̄kQ−Xtrue∥F , where O(r)
represents the set of r × r orthogonal matrices.

We present the linear convergence rate of DRSM with
geometrically decaying stepsizes. In each epoch k, we set
the stepsize for DRSM and CRSM as βk = 50 × 0.98k

and set t = 1, α = 1 for the multistep consensus in our
DRSM. The convergence results are shown in Figure 1(a).
From Figure 1(a), our proposed DRSM converges linearly in
all three graphs, which is in line with our theoretical analysis.
In Figure 1(b), we show the convergence performance of
DRSM with geometrically diminishing stepsizes and varying
t. It can be observed that the convergence behavior of DRSM
with different t is similar.

B. Orthogonal dictionary learning (ODL)

For the ODL problem, the goal is to obtain a suitable
compact representation of the observed data Y ∈ Rd×m.
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Fig. 2. Convergence performance of Riemannian subgradient-type methods
for solving the ODL problem.

Assuming that the observation Y can be approximated by
Y ≈ AS, where A ∈ St(d, d) represents the underlying
orthogonal dictionary to be estimated and each column of
S ∈ Rd×m is sparse, we try to recover the entire dictionary
A by considering the formulation

min
X∈Rnd×d

f(X) := 1
n

n∑
i=1

( 1
N

N∑
j=1

∥∥(yi,j)⊤Xi

∥∥
1
)

s.t. X1 = X2 = · · · = Xn, Xi ∈ St(d, d),

(10)

where X⊤ = (X⊤
1 , X⊤

2 , . . . , X⊤
n ), m = n×N , and yi,j ∈ Rd

is the j-th column vector of the data in the i-th local node.
We generate the data A,S, and Y following [18] with d = 30
and m = 1650. Then, we randomly allocate the m columns
of Y to n = 10 local nodes with N = 165 column vectors
on each node. We also use random Gaussian initialization
to generate X1 ∈ St(d, d) and set X1 = · · · = Xn. The
performance measure is defined as the error between X̄ and
A; i.e., err(X̄, A) =

∑d
i=1 |max1≤j≤d |[X̄⊤

i A]j | − 1|.
Figure 2(a) shows the linear convergence of DRSM and

CRSM when geometrically diminishing stepsizes of the form
βk = µ0γ

k are used. As shown in Theorem 4.5, smaller γ
can be used for DRSM on graphs with better connectivity.
Hence, we set µ0 = 3, γ = 0.97 for the ring and ER
graphs, µ0 = 3, γ = 0.965 for the complete graph, and
µ0 = 3, γ = 0.95 for CRSM. We also show the performance of
DRSM with geometrically diminishing stepsizes and varying
t in Figure 2(b). It can be observed that DRSM with t = 5
or 10 converges faster in the initial process than DRSM with
t = 1 and they behave similarly later.

VI. CONCLUDING REMARKS

We proposed the decentralized Riemannian subgradient
method (DRSM) for solving decentralized weakly convex
(possibly non-smooth) optimization problems over the Stiefel
manifold and showed that it enjoys a local linear convergence
rate if the problem at hand exhibits the sharpness prop-
erty. Future directions include exploring practical optimization
problems over other embedded manifolds and provably alle-
viating the communication burden since multiple rounds of
communications are required per iteration in DRSM.
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