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Abstract
This paper investigates the problem of exact com-
munity recovery in the symmetric d-uniform (d ≥
2) hypergraph stochastic block model (d-HSBM).
In this model, a d-uniform hypergraph with n
nodes is generated by first partitioning the n nodes
into K ≥ 2 equal-sized disjoint communities
and then generating hyperedges with a probability
that depends on the community memberships of
d nodes. Despite the non-convex and discrete na-
ture of the maximum likelihood estimation prob-
lem, we develop a simple yet efficient iterative
method, called the projected tensor power method,
to tackle it. As long as the initialization satisfies a
partial recovery condition in the logarithmic de-
gree regime of the problem, we show that our
proposed method can exactly recover the hidden
community structure down to the information-
theoretic limit with high probability. Moreover,
our proposed method exhibits a competitive time
complexity of O(n log2 n/ log log n) when the
aforementioned initialization condition is met.
We also conduct numerical experiments to val-
idate our theoretical findings.

1. Introduction
Community detection (also known as graph clustering) is
a fundamental task in various scientific and engineering
fields ranging from data mining (Cabreros et al., 2016; Shi
& Malik, 2000) to network analysis (Girvan & Newman,
2002). One celebrated and perhaps the simplest probabilis-
tic model for generating random graphs with community
structure is the stochastic block model (SBM) (Holland
et al., 1983), which tends to exhibit more edge connections
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in communities and fewer edge connections across com-
munities. Over the past decades, SBM has served as an
important benchmark for validating and comparing various
statistical theories and computational methods for commu-
nity detection under different settings; see Abbe (2017) for
a recent comprehensive survey of SBM. Despite the great
success of SBM achieved on graph data, pairwise inter-
actions represented by SBM are inadequate for modeling
complex relational information in many real-world appli-
cations. For example, in social/academic networks, many
cooperative relations like chat groups and co-author lists
may consist of more than two people. Other applications
involving such kind of high-order relations include congress
voting networks (Lee et al., 2017), molecular interaction
networks (Michoel & Nachtergaele, 2012), as well as high-
order graph matching (Duchenne et al., 2011). Hence, it is
natural and of keen interest to study an analogous model of
SBM for capturing the aforementioned high-order relations.

In this work, to capture high-order interactions among mul-
tiple objects, we focus on the symmetric d-uniform hyper-
graph stochastic block model (d-HSBM) (Ghoshdastidar
& Dukkipati, 2014; 2017; Kim et al., 2018; Chien et al.,
2018; Ahn et al., 2018; Ke et al., 2019; Cole & Zhu, 2020;
Zhang & Tan, 2022)—a natural extension of the SBM—and
study the problem of exact community recovery. Specifi-
cally, in the d-HSBM, n nodes are partitioned into K ≥ 2
unknown equal-sized non-overlapping communities, and
each subset of nodes with cardinality d independently forms
an order-d hyperedge with probability p if these d nodes
are in the same community and with probability q other-
wise. The goal is to identify the underlying community
structure exactly based on a realization of such a random hy-
pergraph. In the logarithmic degree regime of the d-HSBM,
i.e., p = α log n/nd−1 and q = β log n/nd−1 for some
α > β > 0, it has been recently established in Kim et al.
(2017; 2018); Zhang & Tan (2022) that there exists a sharp
phase transition around a threshold: It is possible to exactly
identify the underlying communities with high probability if
(
√
α−

√
β)2

Kd−1(d−1)!
> 1 and is impossible to recover the communi-

ties with non-vanishing probability if (
√
α−

√
β)2

Kd−1(d−1)!
< 1. On

top of this breakthrough, a natural question arises: Can we
design a computationally tractable algorithm that achieves
exact recovery down to the aforementioned information-
theoretic limit? In the past few decades, many computa-
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tional methods have been developed in addressing this ques-
tion, such as spectral clustering methods (Ghoshdastidar &
Dukkipati, 2015; 2017; Chien et al., 2018; Ahn et al., 2018;
Zhang & Tan, 2022), semidefinite programming-based meth-
ods (Kim et al., 2018; Gaudio & Joshi, 2022), and tensor
decomposition-based methods (Ke et al., 2019; Han et al.,
2022). However, some of these methods lack theoretical
guarantees for exact recovery with high probability at the
information-theoretic limit. Moreover, most of these meth-
ods have a time complexity of at least O(n2), which is less
favorable in contemporary large-scale problems.

In the symmetric d-HSBM with K ≥ 2 communities, the
maximum likelihood (ML) estimation problem takes the
form

max
H∈Rn×K

{〈
A,H⊗d

〉
: H ∈ H

}
. (MLE)

Here, A is the adjacency tensor of the observed hypergraph
(see its definition in (8)), H⊗d is the outer product of the
matrix H (see its definition in (2)),

H =
{
H ∈ {0, 1}n×K : H1K = 1n,H

⊤1n = m1K

}
is the discrete feasible set characterizing the possible com-
munity assignment of n nodes into K clusters, 1n (resp.
1K) is the all-one vector of dimension n (resp. K), and
m = n/K is the number of nodes in each community. It is
known that an ML estimator can achieve exact recovery with
high probability down to the information-theoretic limit;
see, e.g., Kim et al. (2018, Proposition 1; Theorem 1). Al-
though solving the non-convex problem (MLE) is NP-hard
in the worst case, recent advances in different applications
of non-convex optimization, including phase retrieval (Can-
des et al., 2015; Chen et al., 2019), low-rank matrix recovery
(Chi et al., 2019; Li et al., 2020), low-rank tensor decompo-
sition (Richard & Montanari, 2014; Huang et al., 2022; Han
et al., 2022), phase/group synchronization (Liu et al., 2017;
Zhong & Boumal, 2018; Zhu et al., 2021; Ling, 2022), com-
munity detection (Wang et al., 2021a;b; 2020; 2022), and
graph matching (Araya et al., 2022), suggest that it could be
possible to develop some simple iterative method that solves
problem (MLE) down to the information-theoretic limit. In
this work, we propose a simple and scalable method, called
projected tensor power method (PTPM), to tackle the dis-
crete optimization problem (MLE) and establish its exact
recovery guarantee down to the information-theoretic limit.
In contrast to the existing works on generalized power meth-
ods for solving non-convex optimization problems where
theoretical analyses are performed upon a quadratic objec-
tive (Liu et al., 2017; Zhong & Boumal, 2018; Zhu et al.,
2021; Ling, 2022; Wang et al., 2021a;b; 2022; Araya et al.,
2022), it is worth highlighting that this paper establishes
global optimality and fast convergence rate of PTPM for a
polynomial optimization problem. Thus, our work expands

the repertoire of globally solvable non-convex optimization
problems by generalized power methods.

1.1. Related Literature

There are several different goals for community detection
over hypergraphs. One is exact recovery (also known as
strong consistency), which is to identify the true underlying
community structures with high probability based on a real-
ization of a random hypergraph. Regarding the associated
information-theoretic limit, in the logarithmic degree regime
of the symmetric d-HSBM with K = 2, it was proved in
Kim et al. (2018, Theorem 1) that exact recovery is achiev-
able if and only if (

√
α−

√
β)2

2d−1(d−1)!
> 1. Later, the exact recovery

threshold (
√
α−

√
β)2

Kd−1(d−1)!
> 1 was extended to scenarios with

K ≥ 2 in Zhang & Tan (2022, Theorem 2). Another two
goals are almost exact recovery (also known as weak consis-
tency) and partial recovery, respectively. The former aims
at identifying the true communities with a vanishing frac-
tion of misclassified vertices, while the latter merely aims
at correctly identifying a constant fraction of vertices; see
Abbe (2017) for further details of these goals.

Apart from the information-theoretic limits mentioned
above, many efforts have been made to develop algorithms
for the exact recovery of the d-HSBM over the past few
years.

Spectral methods. One popular method is spectral clus-
tering, which generally involves three steps: (i) constructing
a data matrix, (ii) performing eigendecomposition of the
data matrix, and (iii) applying the k-means clustering algo-
rithm to the eigenvectors. For example, in Ghoshdastidar &
Dukkipati (2014; 2015; 2017), the authors first constructed
a weight matrix based on either the hypergraph Laplacian or
the tensor unfolding, and then applied the k-means cluster-
ing algorithms to the leading K eigenvectors of the obtained
weight matrix. However, the theoretical results therein re-
quire the hypergraph to be dense, and hence, the condition
for exact recovery is not optimal. Moreover, spectral clus-
tering methods generally require polynomial running time.
Recently, Gaudio & Joshi (2022) proved that the spectral
method based on the weight matrix (also called the simi-
larity matrix) of a constructed weighted graph can already
achieve exact recovery without performing k-means clus-
tering. Although the approach of projecting the original
hypergraph into a weighted graph allows one to directly ap-
ply existing methods for graph networks, such a method is
not optimal for exact recovery due to the loss of information
(Ke et al., 2019) when constructing the similarity matrix
from the observed adjacency tensor.

Semidefinite programming (SDP)-based methods. The
SDP-based methods with K = 2 have been considered in
Kim et al. (2018); Gaudio & Joshi (2022). However, the
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conditions for achieving exact recovery are not optimal as
the SDP-based methods only utilize the similarity matrix
instead of the original adjacency tensor. Moreover, solving
large-scale SDP is usually computationally heavy.

Two-stage methods. It was suggested in Abbe (2017);
Kim et al. (2018) that a local refinement method together
with an initialization satisfying partial recovery can possibly
lead to exact recovery. Building on such a high-level idea,
there are some follow-up works for tackling the problem
via two-stage methods. Chien et al. (2019) considered a
two-stage algorithm that starts from a weakly consistent
initialization and then refines it by a local maximum like-
lihood estimation method for each node separately. It re-
covers the communities exactly with high probability down
to information-theoretic threshold in O(n3 log n) time; see
Chien et al. (2019, Section IV.C). Zhang & Tan (2022) also
proposed a two-stage algorithm, in which a hypergraph
spectral clustering step in the first stage ensures weak con-
sistency and a follow-up local refinement stage guarantees
exact recovery. Their proposed method achieves exact re-
covery at the information-theoretic limit in polynomial time.
In addition, Ke et al. (2019) considered a degree-corrected
hypergraph SBM and developed a two-step approach includ-
ing a regularized high-order orthogonal iteration algorithm
and the k-means clustering starting from a suitable initial-
ization. Their proposed method generalizes the celebrated
tensor power method for tensor principal component analy-
sis (PCA) (Richard & Montanari, 2014; Huang et al., 2022).
The setting therein is more general as it can deal with degree
heterogeneity. Nevertheless, their theoretical results are not
optimal when applied to the symmetric d-HSBM (Ke et al.,
2019, Corollary 1). Other interesting two-stage methods
include a high-order extension of the Lloyd algorithm for
clustering under the general tensor block model (Han et al.,
2022).

We summarize the above related works in Table 1.

Table 1. Comparison of recovery conditions and time complexities
of the discussed methods for exact recovery in the d-HSBM (K ≥
2).

References Optimal Complexities

Ghoshdastidar & Dukkipati (2015) % Polynomial
Gaudio & Joshi (2022)

(Spectral method) % Polynomial

Kim et al. (2018),
Gaudio & Joshi (2022)

(SDP)
% Polynomial

Chien et al. (2019) " O(n3 logn)

Zhang & Tan (2022) " Polynomial

Ours " O
(

n log2 n
log logn

)

1.2. Our Contributions

In this work, we tackle the non-convex discrete optimiza-
tion problem (MLE) via a simple and scalable projected
tensor power method. Specifically, given an initialization
satisfying a certain partial recovery condition, we refine the
estimate via projected tensor power iteration successively.
In the logarithmic degree regime of the d-HSBM, we prove
that PTPM can exactly recover the underlying community
labels within O(log n/ log log n) iterations with high prob-
ability at the information-theoretic limit. Moreover, each
iteration requires only O(n log n) time. Therefore, the over-
all time complexity of PTPM given a qualified initializa-
tion would be O(n log2 n/ log logn), which is competitive
to the state-of-the-art methods. Besides the simplicity of
PTPM, we remark that it only requires an initialization sat-
isfying the partial recovery condition, which is much milder
than the conditions imposed in the majority of existing two-
stage methods; see, e.g., Chien et al. (2019) and (Zhang &
Tan, 2022). As a result, we provide an affirmative answer
to the question raised in Abbe (2017); Kim et al. (2018)
that whether a local refinement method together with an
initialization only satisfying the partial recovery can lead to
exact recovery. As a byproduct of our analysis, we leverage
the Kahn-Szemerédi argument and provide a novel con-
centration inequality for dealing with the extremely sparse
adjacency tensor (see Lemma 4.3). Our bound is much
tighter than existing concentration bounds for tensors (see,
e.g., Zhou & Zhu (2021, Theorem 2.3; Remark 2.2; Lemma
6.1)) and thus can be of independent interest to applications
with high-order relations.

Our work also contributes to the emerging provable non-
convex optimization area. In particular, despite the non-
convex and discrete nature of problem (MLE), our pro-
posed PTPM solves the problem efficiently and optimally
given a carefully designed initialization. Moreover, prior
to our work, the analyses of the generalized power method
are performed on non-convex optimization problems with
quadratic objectives; see, e.g., Boumal (2016); Chen &
Candès (2018); Zhong & Boumal (2018); Zhu et al. (2021);
Wang et al. (2021b); Araya et al. (2022). By sharp contrast,
our analysis is performed on an optimization problem with
a polynomial objective, which expands the repertoire of
globally solvable non-convex optimization problems.

The rest of this paper is organized as follows. In Section 2,
we review some basic concepts in tensor algebra that will be
used throughout the paper. Next, we introduce the d-HSBM
and the proposed PTPM in Section 3 and present our main
results in Section 4. We then report some numerical results
in Section 5 and conclude in Section 6.
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2. Notation and Preliminaries
We use bold uppercase letters A,B, . . . to denote matrices
and Aj and Aij to denote the j-th column and the (i, j)-
th entry of A, respectively. We use calligraphic letters
A,B, . . . to denote tensors of order three or higher. For
instance, an order-d tensor A ∈ Rp1×···×pd represents a
d-way array of size p1 × p2 × · · · × pd. The (i1, . . . , id)-th
entry of a tensor A is denoted by Ai1,...,id . If p1 = p2 =
· · · = pd = n, we simply write A ∈ T d(Rn). We say a
tensor A ∈ T d(Rn) is symmetric if Ai1,...,id = Aj1,...,jd

whenever (j1, . . . , jd) is a permutation of (i1, . . . , id) and
in this case we write A ∈ Sd(Rn). The inner product
of two tensors X ,Y with the same dimension is defined
as ⟨X ,Y⟩ =

∑
i1,...,id

Xi1,...,idYi1,...,id . The Frobenius
norm of a tensor X is defined as ∥X∥F = ⟨X ,X⟩1/2. The
multilinear multiplication of a tensor X ∈ Rr1×···×rd by
matrices Uk ∈ Rpk×rk for k = 1, . . . , d is defined as

(X ×1 U1 ×2 · · · ×d Ud)i1,...,id

=

r1∑
j1=1

· · ·
rd∑

jd=1

Xj1,...,jd (U1)i1j1 · · · (Ud)idjd ,

which outputs an order-d (p1, . . . , pd)-dimensional tensor.
For a vector x ∈ Rn, the outer product x⊗d is a tensor
X ∈ Sd(Rn) with

Xi1,...,id = xi1 × · · · × xid . (1)

For a matrix H ∈ Rn×K , the outer product H⊗d is a tensor
X ∈ Sd(Rn) (Kolda & Bader, 2009, Eq. (3.4)) with

Xi1,...,id =

K∑
k=1

Hi1k × · · · ×Hidk. (2)

Equivalently, X =
∑K

k=1(Hk)
⊗d. For a tensor A ∈

Sd(Rn), the multilinear operation A
[
H⊗(d−1)

]
(see

Huang et al. (2022, Eq. (2); Section 1.2) and Richard &
Montanari (2014)) outputs an n×K matrix with its (i, k)-th
entry given by(

A
[
H⊗(d−1)

])
ik

=
∑

1≤i2,...,id≤n

(Ai,i2,...,id ×Hi2k × · · · ×Hidk)

=
〈
A, ei ⊗ (Hk)

⊗(d−1)
〉
, (3)

where ei ∈ Rn stands for the zero vector except for the
i-th entry being one and the outer product operation ei ⊗
(Hk)

⊗(d−1) is defined as(
ei ⊗ (Hk)

⊗(d−1)
)
j,i2,...,id

= (ei)j ·
(
(Hk)

⊗(d−1)
)
i2,...,id

(4)

for j = 1, . . . , n and 1 ≤ i2, . . . , id ≤ n. For a tensor
A ∈ Sd(Rn), the mode-1 matricization of A, denoted by
M(A) ∈ Rn×nd−1

, is defined as

(M(A))ij = Ai,i2,...,id with j = 1 +

d∑
k=2

(ik − 1)nk−2;

(5)
see, e.g., Kolda & Bader (2009, Section 2.4) and Han et al.
(2022, Section 2.1). For a matrix H ∈ Rn×K , we use
H⊙(d−1) ∈ Rnd−1×K to represent the Khatri-Rao product
(also known as the column-wise Kronecker product) of H ,
which is defined as(

H⊙(d−1)
)
jk

= Hi2k ×Hi3k × · · · ×Hidk (6)

with j = 1 +
∑d

k=2(ik − 1)nk−2. Combining (5) and (6)
yields a useful fact

A
[
H⊗(d−1)

]
=M(A)

(
H⊙(d−1)

)
. (7)

The readers are referred to Kolda & Bader (2009); Sidiropou-
los et al. (2017); Cichocki et al. (2016) for a more detailed
introduction to tensor algebra. In addition, we use ΠK to
denote the collections of all K ×K permutation matrices
and use Bern(p) to denote the Bernoulli random variable
with parameter p. Given a positive integer n, we denote by
[n] the set {1, . . . , n}. Given a discrete set S, we denote by
|S| the cardinality of S. If two random variables X and Y

are equal in distribution, we write X
d
= Y .

3. Projected Tensor Power Method
We formally state the symmetric d-HSBM in the following
definition.

Definition 3.1 (Symmetric d-HSBM). Let n ≥ 2 be the
number of nodes, K ≥ 2 be the number of communities,
and p, q ∈ (0, 1] be the probability parameters of generating
hyperedges. Furthermore, let H∗ ∈ H represent a hidden
partition of n nodes into K equal-sized disjoint communi-
ties. A random hypergraph is generated according to the
symmetric d-HSBM with parameters (n, d,K, p, q) and H∗

if the adjacency tensor A ∈ T d(Rn) of such a hypergraph
is symmetric and the elements

{Ai1,i2,...,id}1≤i1<i2<···<id≤n

are generated independently by

Ai1,i2,...,id ∼

{
Bern(p), if

(
h∗

i1 ◦ h∗
i2 ◦ · · · ◦ h∗

id

)
1K = 1,

Bern(q), if
(
h∗

i1 ◦ h∗
i2 ◦ · · · ◦ h∗

id

)
1K = 0,

(8)
where h∗

i is the i-th row of H∗ and “◦” denotes the
Hadamard (i.e., element-wise) product. In addition, since
each d-uniform hyperedge consists of exactly d nodes, the
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diagonal elements of A are automatically defined to be 0,
i.e., Ai1,...,id = 0 if some indices among i1, . . . , id are
identical.

Given a realization of a random hypergraph generated by the
symmetric d-HSBM, our goal is to exactly recover the un-
derlying communities (i.e., output H∗Q for some Q ∈ ΠK )
with high probability via a simple iterative procedure. In
view of the fact that problem (MLE) is reminiscent of the
problem formulation of tensor PCA, a natural attempt is
to apply a variant of the tensor power iteration (Richard &
Montanari, 2014; Huang et al., 2022). Although many vari-
ants of the classic power method have been developed for
solving PCA problems with different structural constraints;
see, e.g., Journée et al. (2010); Deshpande et al. (2014);
Chen & Candès (2018); Zhong & Boumal (2018); Zhu et al.
(2021); Wang et al. (2021b), a new variant of the tensor
power iteration method has to be developed for problem
(MLE) as it involves a polynomial objective with a matrix
variable and binary constraints.

Our approach for tackling problem (MLE) is to iteratively
apply a tensor power step and a projection step that ensures
feasibility of the iterate. Specifically, the projected tensor
power iteration for tackling problem (MLE) takes the form

Ht+1 ∈ T
(
A
[(
Ht
)⊗(d−1)

])
for t ≥ 1, (9)

where T : Rn×K ⇒ Rn×K represents the projection opera-
tor ontoH; i.e., for any C ∈ Rn×K ,

T (C) := argmin {∥H −C∥F : H ∈ H} , (10)

and the operator A
[
(Ht)

⊗(d−1)
]

is defined in (3).

As an iterative method, the global convergence of PTPM
relies on a proper initialization. Specifically, the initial point
H0 needs to satisfy the partial recovery condition (see, e.g.,
Dumitriu et al. (2021)):

H0 ∈Mn,K s. t. min
Q∈ΠK

∥H0 −H∗Q∥F ≤ θ
√
n, (11)

where Mn,K represents the set of such n × K matrices
that each row is all zero except for one element being 1,
and θ is a constant that will be specified later. We remark
that condition (11) can be satisfied by a host of existing
initialization methods. For example, Chien et al. (2019)
and Zhang & Tan (2022) proposed spectral initialization
methods, which can obtain an initial point H0 satisfying the
almost exact recovery condition (see Abbe (2017, Definition
4)). The almost exact recovery condition is much more
stringent than (11), and thus these initialization strategies
automatically satisfy the partial recovery requirement in
(11).

Our proposed PTPM for tackling problem (MLE) is sum-
marized in Algorithm 1. With a qualified initialization H0,

it first projects H0 ontoH to guarantee feasibility. Then, it
repeatedly refines the estimate by performing N -step pro-
jected tensor power iterations.

Algorithm 1 Projected Tensor Power Method for Solving
Problem (MLE)

1: Input: adjacency tensor A, positive integer N
2: Initialize an H0 satisfying (11)
3: set H1 ← T (H0)
4: for t = 1, 2, . . . , N do
5: set Ht+1 ∈ T

(
A
[
(Ht)

⊗(d−1)
])

6: end for
7: Output HN+1

Remark 3.2. Although Algorithm 1 is designed for recover-
ing the community of a symmetric d-uniform hypergraph
SBM, it is applicable to the non-uniform hypergraph stochas-
tic block model: Suppose that the observed hypergraph is
non-uniform with the size of the hyperedges ranging from
2 to d0. We can introduce a set of dummy nodes indexed
by −3 to −d0 to reformulate the non-uniform hypergraph
as a uniform hypergraph. Specifically, for any hyperedge
consisting of nodes {i1, i2, . . . , id} with d < d0, we add
the dummy nodes to the hyperedge such that it is of d0
nodes {i1, i2, . . . , id,−(d + 1), . . . ,−d0}. Then, given a
d0-uniform hypergraph, PTPM can be applied to recover
the hidden community structure.
Remark 3.3. It is less straightforward for PTPM to recover
the community structure from an asymmetric hypergraph.
Specifically, the asymmetry induces an extra set of assign-
ment matrix variables in the ML estimation problem cor-
responding to each mode of the observed adjacency tensor.
Therefore, one may have to include an extra inner loop to
update the set of assignment matrices for each mode at ev-
ery projected tensor power iteration when applying the idea
of PTPM. A related algorithm is the classic high-order or-
thogonal iteration (HOOI) (see, e.g., Kolda & Bader (2009,
Figure 4.4)), but it does not involve a projection step.

4. Main Results
We first present the main theorem of this paper, which states
the exact recovery of PTPM in Algorithm 1 down to the
information-theoretic limit and the explicit iteration/time
complexity of the algorithm.

Theorem 4.1. Let A ∈ Sd(Rn) be an observed adja-
cency tensor of the random hypergraph generated accord-
ing to the symmetric d-HSBM in Definition 3.1 with pa-
rameters (n, d,K, p, q) and a planted partition H∗ ∈ H.
Suppose that p = α log n/nd−1, q = β log n/nd−1 with
(
√
α−

√
β)2

Kd−1(d−1)!
> 1 and n is sufficiently large. Then, there

exists a constant γ > 0, whose value depends only on α, β,
d, and K, such that the following statement holds with prob-
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ability at least 1− n−Ω(1): If the initial point satisfies the
partial recovery condition in (11) with

θ =
1

4
min

{
1√

K(d− 1)
,

γKd−3/2

16(d− 1)(α− β)

}
, (12)

then Algorithm 1 outputs a true partition in(
⌈2 log log n⌉+

⌈
2 logn
log logn

⌉
+ 2
)

projected tensor power
iterations. Moreover, Algorithm 1 outputs a true partition
in O(n log2 n/ log log n) time.

Let us give the proof outline here before proceeding. Given
an initialization H0 satisfying the partial recovery condi-
tion (11), we show that its projection ontoH, namely H1,
still lies in a neighborhood of the ground truth using cer-
tain Lipschitz-type inequality (see (57) and (60) for details).
Then, by analyzing the effect of the multilinear operation
A[·] and the projection T (·), we show that each projected
tensor power iteration possesses a local contraction property.
In other words, the iterate Ht gets closer to the ground truth
H∗Q at every iteration (since H∗Q represents the same
partition as H∗ for any permutation matrix Q). Specifically,
we show that the distance between the iterate Ht and the
ground truth H∗Q shrinks by a factor of 1

2 at each iter-
ation (see (58)). Moreover, after N1 = ⌈2 log log n⌉ + 1
iterations, the iterate gets so close to the ground truth that
the contraction factor further reduces to O

(
1√
logn

)
(see

(61)). Then, after additional N2 =
⌈

2 logn
log logn

⌉
iterations, we

can upper bound the distance between the iterate HN1+N2

and the ground truth H∗Q strictly by
√
2 (see (62)). Due

to the discrete nature of the feasible set H, this means
that the iterate HN1+N2 has achieved exact recovery (i.e.,
HN1+N2 = H∗Q). Multiplying the obtained iteration
complexity by the time complexity of each projected tensor
power iteration, we can derive the total time complexity of
PTPM in Theorem 4.1.

In the remaining part of this section, we provide the proof of
Theorem 4.1. We break down the analysis of each projected
tensor power iteration by studying the effect of the multi-
linear operation A[·] (in Lemmas 4.2, 4.3, 4.6, and 4.7) and
the projection T (·) (in Lemma 4.5), respectively, and then
establish a local contraction property of the projected tensor
power iteration in Proposition 4.8. Based on the contraction
property, we derive the iteration complexity of PTPM to
achieve exact community recovery in Theorem 4.9 and also
the time complexity in Theorem 4.1.

We start with characterizing the effect of the multilin-
ear operation A[H⊗(d−1)] in Lemma 4.2. To make the
presentation more concise, we slightly change the defini-
tion of A in this lemma: For the diagonal elements with
some of the indices i1, . . . , id being identical, we have
Ai1,...,id ∼ Bern(p) if the d nodes are in the same commu-

nity and Ai1,...,id ∼ Bern(q) otherwise. In fact, the error
term incurred by this modification is negligible, on which
we will comment in Remark 4.4.

Lemma 4.2. Suppose that ε ∈
(
0, 1/

√
K(d− 1)

)
and

H ∈ H such that ∥H −H∗Q∥F ≤ ε
√
n for some Q ∈

ΠK . Then, with probability at least 1− n−10, we have∥∥∥A [H⊗(d−1)
]
−A

[
(H∗Q)⊗(d−1)

]∥∥∥
F

≤
(
4(d− 1)md−2εn√

K
(p− q) + C

√
log n

)
∥H −H∗Q∥F

(13)

with C > 0 being a constant.

The idea of proving Lemma 4.2 is to separately bound∥∥∥(E[A]) [H⊗(d−1)
]
− (E[A])

[
(H∗Q)⊗(d−1)

]∥∥∥
F

and ∥∥∥∆ [H⊗(d−1)
]
−∆

[
(H∗Q)⊗(d−1)

]∥∥∥
F

with high probability, where ∆ = A−E[A] is the deviation
of A from its expectation. On one hand, the former term
can be computed via the definition of A and some algebraic
inequalities; on the other hand, using (7), the latter term
would yield∥∥∥M(∆)

(
H

⊙(d−1)
k − (H∗Q)

⊙(d−1)
k

)∥∥∥
2

for k ∈ [K];

(14)
see (38). A natural attempt to bound (14) is to directly
apply the inequalities (34) and the results in Zhou & Zhu
(2021, Theorem 2.3; Remark 2.2; Lemma 6.1). Yet, this
approach would yield a loose upper bound. As a remedy,
we present a useful concentration bound of (14), as shown
in Lemma 4.3. The trick is to leverage the Kahn-Szemerédi
argument (Feige & Ofek, 2005), which has been applied to
obtain bounds for the spectral norm of sparse binary random
square matrices (Lei & Rinaldo, 2015) and tensors (Zhou &
Zhu, 2021). The result is new and can be of interest to other
applications with high-order relations.

Lemma 4.3. Let d ≥ 2 and 1
s1
≤ ℓ ≤ n for some constant

s1 ≥ 1. Let A ∈ Rn×nd−1

be a random matrix whose (i, j)-
th entry independently follows Bern(pij). Set P = E[A]
and assume that ξ := nd−1 · pmax ≥ c0 log n for pmax :=
maxi∈[n],j∈[nd−1] pij and some constant c0 > 0. Given a
vector y ∈ Rnd−1

that has exactly ℓ·nd−2 nonzero elements
with half of them taking 1 and the others taking −1, then,
for any r > 0, there exists a constant C > 0 such that

∥(A− P )y∥2 ≤ C
√

ξ ·
√
ℓ (15)

with probability at least 1− n−r.
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Remark 4.4. The results in Lemma 4.2 still hold when the
diagonal entries of A are 0 (as defined in Definition 3.1). In
fact, since the modification on the tensor A only takes place
in the diagonal entries of the tensor, it is negligible when
compared with the effect of E[A] acting on the matrices
H and H∗Q. We will leave a detailed discussion in the
appendix.

Next, we shift our attention to the projection operator T and
present its Lipschitz-like property in the following lemma
(Wang et al., 2021a, Lemma 3).

Lemma 4.5. Let δ > 0,C ∈ Rn×K be arbitrary and m =
n/K. If there exists a collection of index sets I1, . . . , IK
satisfying ∪Kk=1Ik = [n], Ik ∩ Iℓ = ∅, and |Ik| = m such
that C satisfies

Cik − Ciℓ ≥ δ (16)

for all i ∈ Ik and 1 ≤ k ̸= ℓ ≤ K. Then, for any V ∈
T (C), C ′ ∈ Rn×K and V ′ ∈ T (C ′), we have

∥V − V ′∥F ≤
2 ∥C −C ′∥F

δ
. (17)

Considering C = A
[
(H∗)⊗(d−1)

]
, the following two lem-

mas show that condition (16) in Lemma 4.5 can be satisfied
with high probability. We start with a lemma addressing a
binomial tail inequality below.

Lemma 4.6. Let m = n/K and α > β > 0 be constants.

Suppose that {Wi}
(m−1

d−1 )
i=1 are i.i.d. Bern(α log n/nd−1)

and {Zi}
( m
d−1)

i=1 are i.i.d. Bern(β log n/nd−1) that is in-

dependent of {Wi}
(m−1

d−1 )
i=1 . Then, for any γ ∈ R, it holds

that

Pr

(
m−1
d−1 )∑
i=1

Wi −
( m
d−1)∑
i=1

Zi ≤
γ

(d− 1)!
log n


≤ n− (m−1

d−1 )(
√

α−
√

β)2

nd−1 +
γ log(α/β)
2(d−1)!

+
(( m

d−1)−(
m−1
d−1 ))(

√
αβ−β)

nd−1 .
(18)

Lemma 4.6 can be proved by adapting the proof techniques
in Abbe et al. (2020, Lemma 8). This turns out to be the
key to proving the information-theoretic optimality of our
algorithm. Recalling that C = A

[
(H∗)⊗(d−1)

]
, by the

definitions of the adjacency tensor A and the multilinear
operator A[·], one can compute

Cik
d
= (d− 1)! ·

(m−1
d−1 )∑
i=1

Wi, i ∈ Ik = {i ∈ [n] : H∗
ik = 1}

and

Ciℓ
d
= (d− 1)! ·

( m
d−1)∑
i=1

Zi, l ̸= k,

where {Wi} are i.i.d. Bern(α log n/nd−1), and {Zi} are
i.i.d. Bern(β log n/nd−1) and independent of {Wi}. Uti-
lizing the result of Lemma 4.6, we then have the following
lemma.
Lemma 4.7. Let α > β > 0 be constants. Denote C =
A
[
(H∗)⊗(d−1)

]
and Ik = {i ∈ [n] : H∗

ik = 1} for all

k ∈ [K]. If (
√
α−

√
β)2

Kd−1(d−1)!
> 1 and n is sufficiently large, then

there exists a constant γ > 0, which depends only on α, β, d,
and K, such that for all i ∈ Ik and 1 ≤ k ̸= ℓ ≤ K,

Cik − Ciℓ ≥ γ log n (19)

holds with probability at least 1− n−Ω(1).

Collecting the results from all the lemmas above, we can
now show that the projected tensor power iteration possesses
a contraction property in a certain neighborhood of H∗Q
for some Q ∈ ΠK .
Proposition 4.8. Let α > β > 0 be constants
satisfying (

√
α −

√
β)2 > Kd−1(d − 1)!. Sup-

pose that n > exp(16C2/γ2)} and n is sufficiently
large such that (19) holds. Then, with probability at
least 1 − n−Ω(1), for any fixed H ∈ H and ε ∈(
0,min

{
1√

K(d−1)
, γKd−3/2

16(d−1)(α−β)

})
such that

∥H −H∗Q∥F ≤ ε
√
n (20)

for some Q ∈ ΠK , it holds that

∥V −H∗Q∥F ≤ κ∥H −H∗Q∥F (21)

for any V ∈ T
(
A
[
H⊗(d−1)

])
, where

κ = 4max

{
4(d− 1)ε(α− β)

γKd−3/2
,

C

γ
√
log n

}
∈ (0, 1).

Armed with the result of the local contraction property, we
are ready to derive the iteration complexity of PTPM.

Theorem 4.9. Denote ϕ = CKd−3/2

64(d−1)(α−β) and θ =

1
4 min

{
1√

K(d−1)
, γKd−3/2

16(d−1)(α−β)

}
. Suppose that n >

exp
(
max

{
64C2

γ2 , γ2

C2 ,
ϕ2

θ2 , 2ϕ
2, 256C4

γ4

})
and n is suffi-

ciently large such that (19) holds. Then, the following state-
ment holds with probability at least 1−n−Ω(1): If the initial
point H0 satisfies (11), then Algorithm 1 outputs H∗Q

within
(
⌈2 log log n⌉+

⌈
2 logn
log logn

⌉
+ 2
)

projected tensor
power iterations.

Recall that the matrix H∗Q represents the same partition
as H∗ for any permutation matrix Q. Hence, outputting
H∗Q in Theorem 4.9 would imply achieving exact recovery
in Theorem 4.1. Further multiplying the derived iteration
complexity by the time complexity of each projected tensor
power iteration, we can obtain the total time complexity of
PTPM in Theorem 4.1.
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Figure 1. Phase transition in hypergraphs generated by 3-HSBM in the setting of n = 210,K = 3: The x-axis is β, the y-axis is α, and
darker pixels represent lower empirical probability of success. The red curve is the information-theoretic threshold
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(a) (d,K, α, β) = (3, 2, 33, 8)
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(b) (d,K, α, β) = (3, 4, 130, 32)
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(c) (d,K, α, β) = (3, 8, 400, 64)

Figure 2. Convergence performance of PTPM with random initialization: The x-axis is the number of iterations, and the y-axis is the
distance from an iterate to the ground truth, i.e., minQ∈ΠK ∥Ht −H∗Q∥F , where Ht is the t-th iterate generated by PTPM.

5. Experiment Results
In this section, we report the recovery performance and
numerical efficiency of our proposed PTPM for recover-
ing communities on synthetic/real data. We also compare
our method with two existing methods, which are the spec-
tral clustering (SC) method in Ghoshdastidar & Dukkipati
(2015) and the local MLE (LMLE) method in Chien et al.
(2019). In the implementation, we employ Chien et al.
(2019, Algorithm 2) for computing an initial point H0 in
Algorithm 1 if we do not specify the initialization method.
Moreover, to possibly reduce computational time, we im-
plement a simplified version of the LMLE method as stated
in Chien et al. (2019, Remark 4.2). The MATLAB func-
tion eigs for computing the eigenvectors is applied in the
SC method and the first stage of the LMLE method. The
MATLAB function kmeans for computing the partition
is used in the SC method. We use the Tensor Toolbox
(Kolda et al., 2017) to perform tensor operations and com-
pute A

[
(Ht)

⊗(d−1)
]

based on (7).

5.1. Phase Transition and Computational Time

We first conduct experiments to examine the phase transi-
tion property and the running time of the aforementioned
methods for exact recovery under the symmetric 3-HSBM.

We set n = 210,K = 3 in the experiments and let the
parameter α vary from 0 to 120 with increments of 3 and
the parameter β vary from 0 to 40 with increments of 1. For
each pair of α and β, we generate 5 instances and calculate
the success ratio of exact recovery for all the tested meth-
ods. The phase transition results are shown in Figure 1. It
can be observed that all the methods exhibit a phase tran-
sition phenomenon. Moreover, Figure 1(a) indicates that
PTPM achieves the optimal recovery threshold, which com-
plements our theoretical findings. Besides, we record the
total CPU time consumed by each method for completing
the phase transition experiments with different parameters
in Table 2. It can be observed that PTPM is faster than SC
and substantially faster than LMLE.

Table 2. Total CPU time (in seconds) of the different methods in
the phase transition experiments.

Time (s) PTPM SC LMLE
n = 210,K = 3, d = 3 76 246 > 500
n = 210,K = 6, d = 3 157 451 > 1000
n = 420,K = 3, d = 3 189 321 > 1000
n = 420,K = 6, d = 3 330 628 > 1000
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5.2. Convergence Performance

Next, we test the convergence performance of PTPM for
exact community recovery under the symmetric d-HSBM.
Specifically, we choose three different sets of (d,K, α, β)

such that (
√
α−

√
β)2

Kd−1(d−1)!
> 1 and generate hypergraphs with

n = 480 nodes. In addition, the initial point H0 in Algo-
rithm 1 is generated via H0 ∈ T (G), where G ∈ Rn×K is
a random Gaussian matrix. In each hypergraph realization,
we run PTPM 8 times with different random initial points
and then plot the distances of the iterative points to the
ground truth, i.e., minQ∈ΠK

∥Ht −H∗Q∥F , against the
iteration number in Figure 2. We see that PTPM achieves ex-
act community recovery within 30 iterations even with ran-
dom initialization. This demonstrates the power of PTPM
in the ML estimation problem of the symmetric d-HSBM.

We also run a few experiments to assess the performance of
PTPM when applying to a non-uniform hypergraph with 400
nodes (n = 400), where the 2-hyperedges and 3-hyperedges
are generated independently via the graph SBM and the 3-
HSBM with two underlying communities (K = 2), respec-
tively. We follow the procedure mentioned in Remark 3.2
to reformulate each hypergraph as a uniform hypergraph
and run the experiment 6 times with random initialization.
The results show that exact community recovery could be
achieved within 10 iterations, which demonstrates the power
of PTPM when it is applied to non-uniform hypergraphs.

5.3. Recovery Accuracy and Efficiency

To evaluate the performance of PTPM, we also conduct a
real data experiment shown as follows. Based on the 1984
US Congressional voting records available at the UCI repos-
itory1, we choose two balanced communities (K = 2) with
n = 336 number of Congressmen and randomly generate a
3-way symmetric adjacency tensor according to their votes
on four issues (namely, columns 4, 5, 12, and 15 in the
record). Specifically, if the three Congressmen indicate the
same stance on a specific issue, we generate a 3-uniform
hyperedge with a probability of 0.05 and no hyperedge oth-
erwise; cf. Ghoshdastidar & Dukkipati (2017); Chien et al.
(2019). To test the performance of PTPM, we generate an
initial point H0 ∈ T (G) for some randomly generated
Gaussian matrix G and terminate PTPM when the itera-
tion number reaches 20. We run each algorithm 10 times
and select the solution with the lowest function value as
its recovered solution. The misclassification rate and run-
ning time are recorded in Table 3. As can be seen, our
proposed method has better accuracy and efficiency than
existing methods.

1http://archive.ics.uci.edu/ml

Table 3. The misclassification rate and the total CPU times (in
seconds) of the methods on the UCI dataset.

Algorithms PTPM SC LMLE
Misclassification rate 0.07 0.08 0.10

Time (s) 0.85 1.56 > 10

6. Conclusion
In this work, we developed a simple method, namely PTPM,
for tackling the ML estimation problem of the symmet-
ric d-HSBM. Our theory guarantees that, given an ini-
tialization satisfying the mild partial recovery condition,
PTPM achieves exact community recovery down to the
information-theoretic limit and has a low time complexity
ofO(n log2 n/ log log n). One intriguing future direction is
to design a simple iterative method (e.g., Wang et al. (2021b,
Algorithm 1)) for obtaining a qualified initial point. Another
future direction is to apply our method to other complex
relational models with underlying community structures,
such as multilayer networks (Jing et al., 2021; Fan et al.,
2022; Chen et al., 2022) and multiplex networks (Pensky &
Wang, 2021; Noroozi & Pensky, 2022).
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Appendix
In the appendix, we provide proofs of the technical results presented in Section 4.

A. Proof of Theorem 4.1
Proof. From Theorem 4.9, we know that Algorithm 1 yields a true partition in

(
⌈2 log log n⌉+

⌈
2 logn
log logn

⌉
+ 2
)

projected

tensor power iterations with probability at least 1− n−Ω(1). Besides, the time complexity of performing the projection oper-
ation T (i.e., solving (10)) is O(K2n log n) (Wang et al., 2021a, Proposition 1). It remains to show that the time complexity
of computing A

[
(Ht)

⊗(d−1)
]

(or equivalentlyM(A)
(
(Ht)⊙(d−1)

)
by (7)) is O(n log n) with high probability. Since A

is generated according to the symmetric d-HSBM with p = α log n/nd−1 and q = β log n/nd−1, by denoting the number
of nonzero entries of A as ∥A∥0, we have

∥A∥0
d
= d! ·

K
(
m
d

)∑
i=1

Wi + d! ·

(
n
d

)
−K
(
m
d

)∑
i=1

Zi, (22)

where {Wi}
K
(
m
d

)
i=1 are i.i.d. Bern(p) and {Zi}

(
n
d

)
−K
(
m
d

)
i=1 are i.i.d. Bern(q), independent of {Wi}

K
(
m
d

)
i=1 . The expectation

and variance of ∥A∥0 are given by

E[∥A∥0] = d! ·
(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)
,

Var [∥A∥0] = (d!)2 ·
(
K
(
m
d

)
p(1− p) +

((
n
d

)
−K

(
m
d

))
q(1− q)

)
≤ (d!)2 ·

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)
.

Applying Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.4) gives

Pr
[∣∣∥A∥0 − d! ·

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)∣∣ ≥ 2d! ·

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)]

= Pr

[∣∣∣∣∥A∥0d!
−
(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)∣∣∣∣ ≥ 2

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)]

≤ 2 exp

(
−

2
(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)2(

K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)
+ 2

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)
/3

)
≤ 2 exp

(
−
(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
))

≤ 2 exp

(
−
(

Kmd

2d−1d!
p+

nd

2d−1d!
q −K

md

d!
q

))
= 2n−( β

2d−1d!
+ Kα

2d−1Kdd!
− Kβ

Kdd!
)n ≤ 2n−( Kα

2d−1Kdd!
)n,

where we assume m− d+ 1 ≥ m/2 in the third inequality and the last inequality is due to K ≥ 2. It holds with probability
at least 1 − 2n−( Kα

2d−1Kdd!
)n that the number of nonzero entries in A is less than 3d! ·

(
K
(
m
d

)
p+

((
n
d

)
−K

(
m
d

))
q
)
≤

3α+3Kd−1β
Kd−1 n log n. Thus, the time complexity of computing A

[
(Ht)

⊗(d−1)
]

is 3α+3Kd−1β
Kd−1 n log n with probability at

least 1− 2n−( Kα

2d−1Kdd!
)n. The desired bound on the total time complexity of Algorithm 1 then follows.

B. Proof of Lemma 4.2
Proof. Let ∆ = A− E[A]. Without loss of generality, we assume that H∗ = IK ⊗ 1m ∈ Rn×K , which implies that

(H∗)
⊗d

=
(
I⊗d
K

)
⊗
(
1⊗d
m

)
∈ Sd(Rn);

see Cichocki et al. (2016, Section 2.1) for the Kronecker product of tensors. By the definition of A, one can verify that

E[A] = B ⊗
(
1⊗d
m

)
= q ·

(
1⊗d
n

)
+ (p− q) · (H∗)

⊗d
, (23)

12
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where B ∈ Sd(RK) is such that Bk1,...,kd
equals to p if k1 = · · · = kd and q otherwise. Let us decompose (Hj)

⊗(d−1), j ∈
[K] into several orthogonal parts:

(Hj)
⊗(d−1) =

K∑
k=1

((H∗Q)k)
⊗(d−1)Zkj + Gj . (24)

Here, Z ∈ RK×K is given by

Zkj =
1

md−1

〈
(Hj)

⊗(d−1), ((H∗Q)k)
⊗(d−1)

〉
=

1

md−1
(⟨Hj , (H

∗Q)k⟩)d−1 (25)

and Gj ∈ Sd−1(Rn) satisfies
〈
Gj , ((H∗Q)k)

⊗(d−1)
〉
= 0 for k ∈ [K]. It follows from the definition in (3) that for

i ∈ [n], k ∈ [K], ((
1⊗d
n

) [
H⊗(d−1)

])
ik

=
(
1⊤
nHk

)d−1
= md−1 =

((
1⊗d
n

) [
(H∗Q)⊗(d−1)

])
ik
. (26)

In addition, it is implied by (3) that((
(H∗)

⊗d
) [

H⊗(d−1)
])

ik

=
((

(IK ⊗ 1m)
⊗d
) [

H⊗(d−1)
])

ik

=
∑

1≤i2,...,id≤n

(
(IK ⊗ 1m)

⊗d
)
i,i2,...,id

×Hi2k × · · · ×Hidk

=
∑

1≤i2,...,id≤n

K∑
j=1

(IK ⊗ 1m)ij × (IK ⊗ 1m)i2j × · · · × (IK ⊗ 1m)idj ×Hi2k × · · · ×Hidk

=

K∑
j=1

(IK ⊗ 1m)ij

 ∑
1≤i2,...,id≤n

(IK ⊗ 1m)i2j × · · · × (IK ⊗ 1m)idj ×Hi2k × · · · ×Hidk


=

K∑
j=1

(IK ⊗ 1m)ij

(
1⊤
n

(
(IK ⊗ 1m)j ◦Hk

))d−1

=

K∑
j=1

(IK ⊗ 1m)ijDjk. (27)

Here, “ ◦ ” represents element-wise multiplication, Hj,k ∈ Rm denotes the subvector of Hk from Hi1k to Hi2k with
i1 = (j − 1) ·m+ 1 and i2 = j ·m, and D ∈ RK×K is the matrix given by Djk = (1⊤

mHj,k)
d−1 for j ∈ [K], k ∈ [K].

One can verify that D = md−1QZ according to (25). Combining (26), (27) as well as (23) yields

(E[A])
[
H⊗(d−1)

]
− (E[A])

[
(H∗Q)⊗(d−1)

]
= (p− q) ·

((
(H∗)

⊗d
) [

H⊗(d−1)
]
−
(
(H∗)

⊗d
) [

(H∗Q)⊗(d−1)
])

= (p− q) · (IK ⊗ 1m)(md−1QZ −md−1Q).

This implies that ∥∥∥(E[A]) [H⊗(d−1)
]
− (E[A])

[
(H∗Q)⊗(d−1)

]∥∥∥
F
≤
√
m(p− q)md−1∥IK −Z∥F . (28)

Next, we provide an upper bound for the term ∥IK −Z∥F . Note that

∥IK −Z∥2F =

K∑
k=1

(1− Zkk)
2 +

∑
k ̸=ℓ

Z2
kℓ. (29)

13
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Since Zkℓ ∈ [0, 1] for k, ℓ ∈ [K], it follows that

∥IK −Z∥F ≤
K∑

k=1

|1− Zkk|+
∑
k ̸=ℓ

|Zkℓ| =
K∑

k=1

(1− Zkk) +
∑
k ̸=ℓ

Zkℓ

≤
K∑

k=1

(1− Zkk) +
∑
k ̸=ℓ

Z
1

d−1

kℓ . (30)

By the definition of Z in (25), we have

K∑
ℓ=1

Z
1

d−1

kℓ =
1

m

K∑
ℓ=1

⟨Hℓ, (H
∗Q)k⟩ = 1 (31)

for k ∈ [K]. Then, we can further estimate (30) by

∥IK −Z∥F ≤
K∑

k=1

(1− Zkk) +

K∑
k=1

(
1− Z

1
d−1

kk

)
≤ 2

K∑
k=1

(1− Zkk). (32)

Here, again, we have used the fact that Zkk ∈ [0, 1] for k ∈ [K]. The orthogonal decomposition in (24) gives

K∑
j=1

⟨Gj ,Gj⟩ = md−1K −md−1
K∑

k=1

K∑
j=1

Z2
kj . (33)

In addition, using the fact that

md−1 − sd−1 = (m− s)
(
md−2 +md−3s+ · · ·+msd−3 + sd−2

)
for 0 ≤ s ≤ m,

one can verify the following inequalities:

md−2∥H −H∗Q∥2F ≤
K∑

k=1

∥∥∥(Hk)
⊗(d−1) − ((H∗Q)k)

⊗(d−1)
∥∥∥2
F
≤ (d− 1)md−2∥H −H∗Q∥2F . (34)

According to ∥H −H∗Q∥F ≤ ε
√
n, we have

K∑
k=1

∥(Hk)
⊗(d−1) − ((H∗Q)k)

⊗(d−1)∥2F = md−1

 K∑
k=1

(1− Zkk)
2 +

∑
k ̸=j

Z2
kj

+

K∑
j=1

⟨Gj ,Gj⟩

= md−1∥IK −Z∥2F +

K∑
j=1

⟨Gj ,Gj⟩ ≤ (d− 1)md−2ε2n,

where the first equality is due to (24) and the inequality comes from (34). This, together with (29) and (33), implies that

K∑
k=1

Zkk ≥
(
1− (d− 1)ε2

2

)
K. (35)

Then, for any ℓ ∈ [K], we have

Zℓℓ ≥
(
1− (d− 1)ε2

2

)
K −

∑
k ̸=ℓ

Zkk ≥ 1− K

2
(d− 1)ε2 ≥ 1

2
, (36)
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where the second inequality is due to Zkk ≤ 1 for all k ∈ [K] and the last inequality is from ε ∈ (0, 1/
√

K(d− 1)).
According to (33), we know that

1

md−1

K∑
j=1

⟨Gj ,Gj⟩ = K −
K∑

k=1

K∑
ℓ=1

Z2
kℓ ≥ K −

K∑
k=1

Z2
kk −

∑
k ̸=ℓ

Z
1

d−1

kℓ

= K −
K∑

k=1

Z2
kk −

K∑
k=1

(
1− Z

1
d−1

kk

)
=

K∑
k=1

Z
1

d−1

kk

(
1− Z

2− 1
d−1

kk

)

≥
K∑

k=1

(
1

2

) 1
d−1

(1− Zkk) , (37)

where the first inequality is due to Zkℓ ∈ [0, 1] for k ∈ [K], ℓ ∈ [K], the second equality comes from (31), and the last
inequality uses (36) and 2− 1

d−1 ≥ 1 when d ≥ 2. This, together with (32) and (34), gives

∥IK −Z∥F ≤ 2
1

d−1
2

md−1

K∑
j=1

⟨Gj ,Gj⟩ ≤
4

md−1

K∑
k=1

∥∥∥(Hk)
⊗(d−1) − ((H∗Q)k)

⊗(d−1)
∥∥∥2
F

≤ 4

md−1
(d− 1)md−2∥H −H∗Q∥2F ≤

4(d− 1)ε
√
n

m
∥H −H∗Q∥F .

Next, we consider the term
∥∥∆ [H⊗(d−1)

]
−∆

[
(H∗Q)⊗(d−1)

]∥∥
F

and provide an upper bound for it. Note that∥∥∥∆ [H⊗(d−1)
k

]
−∆

[
(H∗Q)

⊗(d−1)
k

]∥∥∥
2
=
∥∥∥M(∆)

(
H

⊙(d−1)
k − (H∗Q)

⊙(d−1)
k

)∥∥∥
2
. (38)

From Lemma 4.3, we know that∥∥∥M(∆)
(
H

⊙(d−1)
k − (H∗Q)

⊙(d−1)
k

)∥∥∥
2
≤ C

√
log n∥Hk − (H∗Q)k∥2, (39)

which implies that ∥∥∥∆ [H⊗(d−1)
]
−∆

[
(H∗Q)⊗(d−1)

]∥∥∥
F
≤ C

√
log n∥H −H∗Q∥F . (40)

The desired result (13) is then established, because∥∥∥A [H⊗(d−1)
]
−A

[
(H∗Q)⊗(d−1)

]∥∥∥
F

≤
∥∥∥(E[A]) [H⊗(d−1)

]
− (E[A])

[
(H∗Q)⊗(d−1)

]∥∥∥
F
+
∥∥∥∆ [H⊗(d−1)

]
−∆

[
(H∗Q)⊗(d−1)

]∥∥∥
F

=

(
4(d− 1)md−2εn√

K
(p− q) + C

√
log n

)
∥H −H∗Q∥F .

This completes the proof.

C. Proof of Lemma 4.3
Proof. By replacing y with y

∥y∥2
in (15), it suffices to prove that for any r > 0 and any vector y ∈ Rnd−1

with ℓ · nd−2

nonzero elements, in which half of them take values of 1/
√
ℓ · nd−2 and others take −1/

√
ℓ · nd−2, there exists a constant

C > 0 such that

∥(A− P )y∥2 ≤ C
√
ξ/nd−2.

The fact that
∥(A− P )y∥2 = sup

x∈Rn,∥x∥2≤1

x⊤(A− P )y (41)

motivates us to utilize the Kahn-Szemerédi argument to provide an upper bound for (41). The idea of the proof is to
discretize the set {x ∈ Rn : ∥x∥2 ≤ 1} into a finite set of grid points and estimate the supremum of xT (A − P )y by
dividing the pairs of vectors (x,y) into two parts: (i) the small entries of x and y, which we call the light part; and (ii) the
larger entries of x and y, which we call the heavy part.
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Discretization Fix δ ∈ (0, 1), for example δ = 1
2 , and define the sets St := {x ∈ Rn : ∥x∥2 ≤ t} and

T :=
{
x = (x1, . . . , xn)

⊤ ∈ S1 :
√
nxi/δ ∈ Z,∀i ∈ [n]

}
.

Following Lei & Rinaldo (2015, Supplementary material: Lemma 2.1), we have the following inequality:

∥(A− P )y∥2 = sup
x∈Rn,∥x∥2≤1

x⊤(A− P )y ≤ (1− δ)−1 max
x∈T

∣∣x⊤(A− P )y
∣∣ . (42)

Note that, for any vector x ∈ T ,

x⊤(A− P )y =
∑

i∈[n],j∈[nd−1]

xiyj (aij − pij) .

Consider the light pairs

L = L(x,y) :=

{
(i, j) : |xiyj | ≤

√
ξ

nd

}
and heavy pairs

L = L(x,y) :=

{
(i, j) : |xiyj | >

√
ξ

nd

}
.

Then, it follows from (42) that

∥(A− P )y∥2 ≤ (1− δ)−1 max
x∈T

∣∣∣∣∣∣
∑

i∈[n],j∈[nd−1]

xiyj (aij − pij)

∣∣∣∣∣∣
≤ (1− δ)−1

max
x∈T

∣∣∣∣∣∣
∑

(i,j)∈L

xiyj (aij − pij)

∣∣∣∣∣∣+max
x∈T

∣∣∣∣∣∣
∑

(i,j)∈L

xiyj (aij − pij)

∣∣∣∣∣∣
 .

Bounding the light part Denote W := A− P and uij := xiyj1(
|xiyj |≤

√
ξ/nd

) for i ∈ [n], j ∈ [nd−1]. The light part

of x⊤Wy is given by ∑
i∈[n],j∈[nd−1]

wijuij .

Since |uij | ≤
√
ξ/nd, the term wijuij is of mean zero and bounded in absolute value by

√
ξ/nd. By Bernstein’s inequality

(Vershynin, 2018, Theorem 2.8.4), we have

Pr

∣∣∣∣∣∣
∑
i,j

wijuij

∣∣∣∣∣∣ ≥ c

√
ξ

nd−2

 ≤ 2 exp

 − 1
2c

2ξ/nd−2∑
i,j pij (1− pij)u2

ij +
1
3

√
ξ
nd c
√

ξ
nd−2


≤ 2 exp

(
− 1

2c
2ξ/nd−2

pmax

∑
i,j u

2
ij +

cξ
3nd−1

)

≤ 2 exp

(
−3c2ξ/nd−2

6ξ/nd−1 + 2cξ
nd−1

)
≤ 2 exp

(
−3c2

6 + 2c
n

)
.

The third inequality follows from the facts that ξ ≥ nd−1pmax and∑
i,j

u2
ij ≤

∑
i,j

x2
i y

2
j = ∥x∥22∥y∥22 ≤ 1.

Applying the union bound and the volume bound |T | ≤ en log(7/δ) (Lei & Rinaldo, 2015), we obtain

Pr

max
x∈T

∣∣∣∣∣∣
∑

(i,j)∈L(x,y)

xiyjwij

∣∣∣∣∣∣ ≥ c

√
ξ

nd−2

 ≤ 2 exp

(
−
(

3c2

6 + 2c
− log

(
7

δ

))
n

)
. (43)
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Bounding the heavy part The more challenging part of the proof is to show that the heavy part

max
x∈T

∣∣∣∣∣∣
∑

(i,j)∈L(x,y)

xiyjwij

∣∣∣∣∣∣
is upper bounded by c

√
ξ

nd−2 with high probability for some universal constant c. Observe that the expectation of∑
(i,j)∈L(x,y) xiyjaij can be well controlled:∣∣∣∣∣∣

∑
(i,j)∈L(x,y)

xiyjpij

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
(i,j)∈L(x,y)

x2
i y

2
j

xiyj
pij

∣∣∣∣∣∣ ≤
∑

(i,j)∈L(x,y)

x2
i y

2
j

|xiyj |
pij

≤ pmax

√
nd

ξ

∑
(i,j)∈L(x,y)

x2
i y

2
j ≤ pmax

√
nd

ξ
=

√
ξ

nd−2
,

where the second inequality comes from the definition of heavy pairs. Then, it suffices to show that∣∣∣∣∣∣
∑

(i,j)∈L(x,y)

xiyjaij

∣∣∣∣∣∣ = O
(√

ξ

nd−2

)
(44)

with high probability.

We will focus on the heavy pairs (i, j) such that xi > 0, yj > 0 and denote

L1 :=
{
(i, j) ∈ L : xi > 0, yj > 0

}
.

The other three cases are similar. Notice that if yj ̸= 0, given the assumption that ℓ ≤ n, we have |yj | = 1√
nd−1

√
n
ℓ ≥

δ√
nd−1

. In what follows, we use the following notation:

• I1 :=
{
i : δ√

n
≤ xi ≤ 2δ√

n

}
, Is :=

{
i : δ√

n
2s−1 < xi ≤ δ√

n
2s
}

for s = 2, 3, . . . ,
⌈
log2

√
n
δ

⌉
.

• J1 :=
{
j : δ√

nd−1
≤ yj ≤ 2δ√

nd−1

}
, Jt :=

{
j : δ√

nd−1
2t−1 < yj ≤ δ√

nd−1
2t
}

for t = 2, 3, . . . ,
⌈
log2

√
nd−1

δ

⌉
.

• e(I, J) :=
∑

i∈I,j∈J aij .

• µ(I, J) := E[e(I, J)], µ̄(I, J) := pmax|I||J |. For simplicity, we will use µ and µ̄ when we do not need to specify
their dependence on I and J .

• λst := e (Is, Jt) /µ̄st, where µ̄st := µ̄ (Is, Jt).

• αs := |Is| 22s/n, βt := |Jt| 22t/nd−1, σst := λst

√
ξ2−(s+t).

The following two lemmas are important to the rest of the proof.

Lemma C.1 (Bounded degree). For c > 0, there exists a constant c1 = c1(c) such that with probability at least 1− n−c,∑
j∈[nd−1]

aij ≤ c1ξ for all i ∈ [n]. (45)

Proof. The result follows directly by applying Bernstein’s inequality and the union bound.

Lemma C.2 (Bounded discrepancy). For any c > 0, there exist constants c2 = c2(c) > 1 and c3 = c3(c) > 1 such that
with probability at least 1− 2n−c, for a fixed index set J ⊆ [nd−1] and any index set I ⊆ [n] with |I| ≤ |J |/nd−2, at least
one of the following hold:
1) e(I,J)

µ̄(I,J) ≤ ec2;

2) e(I, J) log e(I,J)
µ̄(I,J) ≤ c3

|J|
nd−2 log

nd−1

|J| .
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Proof. Suppose that the event in (45) holds. If |J |/nd−2 ≥ n/e, then (45) implies that e(I,J)
ξ|I||J|/nd−1 ≤ |I|c1ξ

ξ|I|/e ≤ c1e. If
|J |/nd−2 < n/e, then by Zhou & Zhu (2021, Lemma 4.5), we have for any τ > 1,

Pr[e(I, J) ≥ τ µ̄(I, J)] ≤ Pr

 ∑
i∈I,j∈J

(aij − pij) ≥ τ µ̄(I, J)−
∑

i∈I,j∈J

pij


≤ Pr

 ∑
i∈I,j∈J

wij ≥ (τ − 1)µ̄(I, J)


≤ exp ((τ − 1)µ̄− τ µ̄ log τ) ≤ exp

[
−1

2
(τ log τ)µ̄

]
, (46)

where the last inequality holds when τ ≥ 8. For any given c3 > 0, let t(I, J) denote the unique value of t satisfying
t log t = c3|J|/nd−2

µ̄(I,J) log nd−1

|J| . Let τ(I, J) := max{8, t(I, J)}. Then, by (46), we have

Pr[e(I, J) ≥ τ(I, J)µ̄(I, J)] ≤ exp

[
−1

2
µ̄(I, J)τ(I, J) log τ(I, J)

]
≤ exp

[
−1

2
c3
|J |
nd−2

log
nd−1

|J |

]
.

Let Ω :=
{
(I, J) : |I| ≤ g = |J|

nd−2 ≤ n
e

}
. We bound

Pr [∃(I, J) ∈ Ω, e(I, J) ≥ τ(I, J)µ̄(I, J)] ≤
∑

(I,J)∈Ω

exp

[
−1

2
c3
|J |
nd−2

log
nd−1

|J |

]

≤
∑

h:1≤h≤g≤n/e

∑
I:|I|=h

exp

[
−1

2
c3g log

n

g

]

≤
∑

h:1≤h≤g≤n/e

(
n
h

)
exp

[
−1

2
c3g log

n

g

]
.

Since
(
n
h

)
≤ (neh )h for any integer 1 ≤ h ≤ n, the last line above is bounded by

∑
h:1≤h≤g≤n/e

(ne
h

)h
exp

[
−1

2
c3g log

n

g

]
=

∑
h:1≤h≤g≤n/e

exp

[
−1

2
c3g log

n

g
+ h log

n

h
+ h

]

≤
∑

h:1≤h≤g≤n/e

exp

[
−1

2
c3g log

n

g
+ g log

n

g
+ g

]

≤
∑

h:1≤h≤g≤n/e

exp

[
−1

2
(c3 − 4) g log

n

g

]
≤

∑
h:1≤h≤g≤n/e

n− 1
2 (c3−4) ≤ n− 1

2 (c3−6),

where the inequalities repeatedly use the assumption that h ≤ g ≤ n/e and the fact that t 7→ t log n
t is increasing on

[1, n/e].

Hence, with probability at least 1 − n− 1
2 (c3−6), we know e(I, J) ≤ τ(I, J)µ̄(I, J) for all |I| ≤ |J |/nd−2 ≤ n/e. We

further divide the set of pairs (I, J) satisfying |I| ≤ |J |/nd−2 ≤ n/e into two groups by the value of τ(I, J). For the pairs
satisfying τ(I, J) = 8, we get

e(I, J) ≤ τ(I, J)µ̄(I, J) = 8µ̄(I, J).

For all the other pairs, we have τ(I, J) = t(I, J) > 8 and e(I,J)
µ̄(I,J) ≤ t(I, J). It follows that

e(I, J)

µ̄(I, J)
log

e(I, J)

µ̄(I, J)
≤ t(I, J) log t(I, J) =

c3|J |/nd−2

µ̄(I, J)
log

nd−1

|J |
,
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which implies that

e(I, J) log
e(I, J)

µ̄(I, J)
≤ c3

|J |
nd−2

log
nd−1

|J |
.

The desired result follows by letting c2 = max {c1, 8} and c3 = 2c+ 6.

Now, we write the left-hand side of (44) as∑
(i,j)∈L1

xiyjaij ≤
∑

(s,t): 2s+t≥
√
ξ

e (Is, Jt)
2sδ√
n

2tδ√
nd−1

= δ2
√

ξ

nd−2

∑
(s,t): 2s+t≥

√
ξ

αsβtσst. (47)

We estimate this sum by splitting the pairs of (s, t) into twelve different categories. Denote by Jt′ the nonempty set in{
Jt : t = 1, . . . ,

⌈
log2

√
nd−1

δ

⌉}
. Let

C :=
{
s : 2s+t′ ≥

√
ξ, |Is| ≤ |Jt′ | /nd−2

}
and define the following sets:

• C1 := {s ∈ C : σst′ ≤ 1},

• C2 := {s ∈ C\C1 : λst′ ≤ ec2},

• C3 :=
{
s ∈ C\ (C1 ∪ C2) : 2s ≥

√
ξ2t

′
}

,

• C4 :=
{
s ∈ C\ (C1 ∪ C2 ∪ C3) : log λst′ >

1
4

(
2t′ log 2 + log(β−1

t′ )
)}

,

• C5 :=
{
s ∈ C\ (C1 ∪ C2 ∪ C3 ∪ C4) : 2t′ log 2 ≥ log(β−1

t′ )
}

,

• C6 := {s ∈ C\ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5)}.

The other six categories can be defined using a similar partition of

C′ :=
{
s : 2s+t′ ≥

√
ξ, |Is| > |Jt′ | /nd−2

}
and can be analyzed similarly. We now analyze each of the six cases separately. To that end, we will repeatedly make use of
the following estimates:∑

s

αs ≤
∑
i

|2xi/δ|2 ≤ 4δ−2, βt′ ≤ l · nd−222t
′
/nd−1, and βt = 0 for t ̸= t′.

In addition, we have βt′ =
∑

t βt ≤ 4δ−2.

Indices in C1: Since σst′ ≤ 1, we have ∑
s

αsβt′σst′1(s∈C1) ≤ 16δ−4. (48)

Indices in C2: By definition, it holds that σst′ = λst′
√
ξ2−(s+t′) ≤ λst′ ≤ ec2. Hence,∑

s

αsβt′σst′1(s∈C2) ≤ ec216δ
−4. (49)

Indices in C3: We know from Lemma C.1 that e(Is, Jt′) ≤ c1|Is|ξ holds with probability at least 1− n−c. It follows that
λst′ ≤ c1n

d−1/|Jt′ | and∑
s

αsβt′σst′1(s∈C3) ≤
∑
s

αs
|Jt′ |22t

′

nd−1

c1n
d−1

|Jt′ |
√
ξ2−(s+t′)

1(s∈C3) ≤ c1
∑
s

αs

√
ξ

2s−t′
1(s∈C3) ≤ 4c1δ

−2,
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where the last inequality comes from 2s−t′ ≥
√
ξ.

To cope with C4, C5, and C6, we rely on the second case in Lemma C.2, which is equivalent to

λst′ |Is∥Jt′ |
ξ

nd−1
log λst′ ≤ c3

|Jt′ |
nd−2

log
nd−1

|Jt′ |

⇐⇒ σst′αs log λst′ ≤ c3
2s−t′

√
ξ

log
nd−1

|Jt′ |

⇐⇒ σst′αs log λst′ ≤ c3
2s−t′

√
ξ

(
2t′ log 2 + log(β−1

t′ )
)
. (50)

Indices in C4: The inequality log λst′ >
1
4

(
2t′ log 2 + log(β−1

t′ )
)

and (50) imply that σst′αs ≤ 4c32
s−t′/

√
ξ. Then, we

have ∑
s

αsβt′σst′1(s∈C4) = βt′

∑
s

αsσst′1(s∈C4) ≤ 8c3βt′ ≤ 32c3δ
−2,

where the first inequality is from s /∈ C3.

Indices in C5: In this case, we have 2t′ log 2 ≥ log(β−1
t′ ). Also, since s /∈ C4, we have log λst′ ≤

1
4

(
2t′ log 2 + log(β−1

t′ )
)
≤ t′ log 2. Thus, λst′ ≤ 2t

′
. Besides, since s /∈ C1, we have 1 ≤ σst′ = λst′

√
ξ2−(s+t′) ≤√

ξ2−s. It follows that 2s ≤
√
ξ.

Since s /∈ C2, we have log λst′ ≥ 1. Together with 2t′ log 2 ≥ log β−1
t′ , (50) implies that

σst′αs ≤ c3
2s−t′

√
ξ

4t′ log 2.

Hence, ∑
s

αsβt′σst′1(s∈C5) = βt′

∑
s

αsσst′1(s∈C5) ≤ βt′

∑
s

c3
2s−t′

√
ξ

4t′(log 2)1(s∈C5)

≤ 4c3(log 2)βt′t
′2−t′

∑
s

2s√
ξ
1(s∈C5) ≤ 4c3(log 2)βt′ ≤ 16c3δ

−2.

Indices in C6: In this case, we have 2t′ log 2 < log(β−1
t′ ). Since s /∈ C2 ∪ C4, we have log λst′ ≥ 1 and log λst′ ≤

1
2 log β

−1
t′ ≤ log β−1

t′ . Now, we compute∑
s

αsβt′σst′1(s∈C6) =
∑
s

αsβt′λst′
√
ξ2−(s+t′)

1(s∈C6)

≤
∑
s

αs

√
ξ2−(s+t′)

1(s∈C6) ≤
∑
s

αs ≤ 4δ−2.

The proof is complete.

D. Proof of Remark 4.4
Proof. LetR ∈ Sd(Rn) be a tensor, whose entries are given by

Ri1,i2,...,id =


p, if there exist ij , ik such that ij = ik and i1, . . . , id belong to the same community;
q, if there exist ij , ik such that ij = ik and i1, . . . , id belong to different communities;
0, otherwise.

Then, the expectation of the adjacency tensor defined in Definition 3.1 can be written as

E[A] = q ·
(
1⊗d
n

)
+ (p− q) · (H∗)

⊗d −R. (51)
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Following the argument in (28), it remains to show that the effect brought by the multilinear operator of the tensorR on the
estimation error is negligible. Indeed, consider∥∥∥R [H⊗(d−1)

]
−R

[
(H∗Q)⊗(d−1)

]∥∥∥2
F
=
∥∥∥M(R)

(
H⊙(d−1) − (H∗Q)⊙(d−1)

)∥∥∥2
F

≤ ∥M(R)∥2F
∥∥∥H⊙(d−1) − (H∗Q)⊙(d−1)

∥∥∥2
F
. (52)

Then, on the one hand, since the number of nonzero elements ofR is at most n
(
d
2

)
nd−2, we can estimate ∥M(R)∥2F by

∥M(R)∥2F ≤ p2
(
d

2

)
nd−1.

On the other hand, upon applying (34), we see that

∥∥∥H⊙(d−1) − (H∗Q)⊙(d−1)
∥∥∥2
F
=

K∑
k=1

∥∥∥H⊗(d−1)
k − (H∗Q)

⊗(d−1)
k

∥∥∥2
F
≤ (d− 1)md−2∥H −H∗Q∥2F .

Combining the above two facts, (52) then implies that∥∥∥R [H⊗(d−1)
]
−R

[
(H∗Q)⊗(d−1)

]∥∥∥
F
≤ O(pnd−3/2) · ∥H −H∗Q∥F ,

which is dominated by O((p− q)nd−1) · ∥H −H∗Q∥F (i.e., the first term on the right-hand side of (13)).

E. Proof of Lemma 4.7
Proof. Since A is generated according to the d-HSBM, we know that for all i ∈ Ik with ℓ ̸= k,

Cik − Ciℓ =
∑

1≤i2,...,id≤n

Ai,i2,...,idH
∗
i2k . . . H

∗
idk
−

∑
1≤i2,...,id≤n

Ai,i2,··· ,idH
∗
i2ℓ · · ·H

∗
idℓ

(53)

d
= (d− 1)! ·

(m−1
d−1 )∑
i=1

Wi − (d− 1)! ·
( m
d−1)∑
i=1

Zi, (54)

where {Wi} are i.i.d. Bern(α log n/nd−1) and {Zi} are i.i.d. Bern(β log n/nd−1) that are independent of {Wi}. By
Lemma 4.6 and the fact that n is sufficiently large, we have

Pr [Cik − Ciℓ ≥ γ log n, ∀i ∈ Ik, 1 ≤ k ̸= ℓ ≤ K] ≥ 1−Kn−c2/2 (55)

with

c2 =
(
√
α−
√
β)2

Kd−1(d− 1)!
− γ log(α/β)

2(d− 1)!
− 1 > 0. (56)

This completes the proof.

F. Proof of Proposition 4.8
Proof. Suppose that V ∈ T

(
A[H⊗(d−1)]

)
. From Wang et al. (2021a, Lemma 9), it follows that

V Q⊤ ∈ T
(
A[H⊗(d−1)]Q⊤

)
for any Q ∈ ΠK . In addition, by Lemma 4.2, Lemma 4.5, and the fact that

A[(H∗)⊗(d−1)]Q = A[(H∗Q)⊗(d−1)], Q ∈ ΠK ,
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we have

∥V −H∗Q∥F = ∥V Q⊤ −H∗∥F ≤
2
∥∥A[H⊗(d−1)]Q⊤ −A[(H∗)⊗(d−1)]

∥∥
F

γ log n

=
2
∥∥A[H⊗(d−1)]−A[(H∗Q)⊗(d−1)]

∥∥
F

γ log n

≤
(
8(d− 1)md−2εn√

K
(p− q) + 2C

√
log n

)
∥H −H∗Q∥F /(γ log n)

≤
(
8(d− 1)ε(α− β)

γKd−3/2
+

2C

γ
√
log n

)
∥H −H∗Q∥F

≤ 4max

{
4(d− 1)ε(α− β)

γKd−3/2
,

C

γ
√
log n

}
∥H −H∗Q∥F .

This completes the proof.

G. Proof of Theorem 4.9
Proof. The iteration H1 ∈ T (H0) yields

∥H1 −H∗Q∥F = ∥H1Q⊤ −H∗∥F ≤ 2∥H0Q⊤ −H∗∥F = 2∥H0 −H∗Q∥F , (57)

where the inequality comes from Lemma 4.5. The following proof is divided into two parts. We first show that for all t ≥ 2,
Ht ∈ H satisfies

∥Ht −H∗Q∥F ≤
1

2
∥Ht−1 −H∗Q∥F and ∥Ht −H∗Q∥F ≤ 2θ

√
n, (58)

and estimate the iteration number N1 such that

∥HN1 −H∗Q∥F ≤ 2ϕ

√
n

log n
. (59)

Suppose that H0 ∈Mn,K satisfies (11). Combining this initialization condition with (57) gives

H1 ∈ H and ∥H1 −H∗Q∥F ≤ 2θ
√
n. (60)

According to Proposition 4.8, we have

∥H2 −H∗Q∥F ≤ 4max

{
4(d− 1)θ(α− β)

γKd−3/2
,

C

γ
√
log n

}
∥H1 −H∗Q∥F

≤ 4max

{
1

8
,

C

γ
√
log n

}
∥H1 −H∗Q∥F =

1

2
∥H1 −H∗Q∥F ≤ 2θ

√
n,

where the equality comes from n ≥ exp(64C2/γ2). Therefore, (58) holds for t = 2. By a simple inductive argument, we
can show that (58) holds for t ≥ 3. Let N1 := ⌈2 log log n⌉+ 1. It then follows from (58) that

∥HN1 −H∗Q∥F ≤
(
1

2

)⌈2 log logn⌉

∥H1 −H∗Q∥F ≤
(
1

2

)2 log logn

2θ
√
n ≤

(
1

2

)log logn+2 log( θ
ϕ )

2θ
√
n

≤
(
1

2

) log log n+2 log( θ
ϕ )

2 log 2

2θ
√
n = 2ϕ

√
n

log n
,

where the third inequality is from n ≥ exp
(
γ2/C2

)
≥ exp

(
θ2/ϕ2

)
and the last inequality comes from 2 log 2 ≥ 1. Thus,

(59) holds for N1 = ⌈2 log log n⌉+ 1.
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Next, we show that for all k ≥ 1, HN1+k ∈ H satisfies ∥HN1+k −H∗Q∥F ≤ 2ϕ
√

n/ log n and

∥HN1+k −H∗Q∥F ≤
4C

γ
√
log n

∥HN1+k−1 −H∗Q∥F , (61)

and compute the iteration number N2 such that

∥HN2+N1 −H∗Q∥F <
√
2. (62)

Since n ≥ exp
(
ϕ2/θ2

)
, it follows that 2ϕ/

√
log n ≤ 4ϕ/

√
log n ≤ 4θ. According to Proposition 4.8, we obtain

∥HN1+1 −H∗Q∥F ≤ 4max

{
8(d− 1)ϕ(α− β)

γKd−3/2
√
log n

,
C

γ
√
log n

}
∥HN1 −H∗Q∥F ≤

4C

γ
√
log n

∥HN1 −H∗Q∥F .

Then, (61) holds for k = 1. We can show that (61) holds for k ≥ 2 by a simple inductive argument. Let N2 :=
⌈

2 logn
log logn

⌉
.

According to n ≥ exp(256C4/γ4) and n ≥ exp
(
2ϕ2
)
, we have log logn ≥ 4 log(4C/γ) and 2ϕ/

√
log n <

√
2. This,

together with (61), yields

∥HN1+N2 −H∗Q∥F ≤
(

4C

γ
√
log n

)⌈ 2 log n
log log n⌉

∥HN1 −H∗Q∥F ≤ 2ϕ

√
n

log n

(
4C

γ
√
log n

) 2 log n
log log n

≤ 2ϕ

√
n

log n

(
4C

γ
√
log n

) log n
log log n+2 log(γ/(4C))

=
2ϕ√
log n

<
√
2.

Thus, (62) holds for N2 =
⌈

2 logn
log logn

⌉
.

Once (62) holds, we have HN1+N2 = H∗Q. This, together with T
(
A[(H∗Q)⊗(d−1)]

)
= {H∗Q}, gives the desired

result.
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