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Abstract

Hyperparameter tuning is an important task
of machine learning, which can be formulated
as a bilevel program (BLP). However, most ex-
isting algorithms are not applicable for BLP
with non-smooth lower-level problems. To
address this, we propose a single-level refor-
mulation of the BLP based on lower-level dual-
ity without involving any implicit value func-
tion. To solve the reformulation, we propose
a majorization minimization algorithm that
marjorizes the constraint in each iteration.
Furthermore, we show that the subproblems
of the proposed algorithm for several widely-
used hyperparameter turning models can be
reformulated into conic programs that can be
efficiently solved by the off-the-shelf solvers.
We theoretically prove the convergence of the
proposed algorithm and demonstrate its su-
periority through numerical experiments.

1 Introduction

Machine learning research is focused on developing
methods that can effectively extract important ele-
ments from given datasets. Various learning methods
has emerged, encompassing biologically inspired neu-
ral networks (Bishop et al., 1995), ensemble models
(Claesen et al., 2014), adversarial learning (Brückner
and Scheffer, 2011; Wang et al., 2021, 2022), and rein-
forcement learning (Yang et al., 2019; Wu et al., 2020).
These methods commonly rely on a set of hyperparam-
eters, which are adjustable parameters that configure
various aspects of the learning algorithm. The choice of
hyperparameters can significantly impact the resulting
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model and its performance, leading to a wide range of
effects.

Finding the optimal hyperparameters for a machine
learning model is often considered one of the most
challenging aspects of the workflow. Regularization, a
widely employed technique in model fitting for regres-
sion and classification tasks, involves adding a regu-
larization penalty to the empirical risk term, thereby
controlling complexity. An advanced strategy for adapt-
ing hyperparameters is to employ a training/validation
approach, which entails optimizing the parameters with
regularization on a training set and subsequently eval-
uating the performance by computing its loss on a
separate validation set. Mathematically, the process of
hyperparameter selection can be formulated into the
following bilevel program (BLP):

min
x∈Rn,λ∈Rτ

+

L(x)

s.t. x ∈ argmin
x̂∈Rn

{
l(x̂) +

τ∑
i=1

λiPi(x̂)

}
,

(1)
where L, l, Pi : Rn → R ∪ {+∞} are proper convex
closed functions, x is the parameter to learn, and λ is a
vector of hyperparameters. Note that all the functions
can be nonsmooth. In BLP (1), the upper-level (UL)
problem minimizes the validation error affected by the
hyperparameters, and the lower-level (LL) problem
aims to minimize structural risk on given training data
incorporating a regularizer penalized by hyperparam-
eters that need to be tuned. Table Table 1 provides
some illustrative examples of bilevel hyperparameter
selection problems in form (1).

1.1 Related Work

In the existing literature, various approaches have
been proposed for hyperparameter selection. The sim-
pler approaches include brute force grid search and
Bayesian optimization, which handle hyperparameters
and datasets of small-scale but suffer from high com-
putational requirements. These gradient-free methods
face limitations when dealing with a large number of
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parameters.

Gradient-based methods for BLPs are popular in litera-
ture. It can be broadly categorized into two groups. Ex-
plicit Gradient-Based Methods (EGBMs) (Franceschi
et al., 2017, 2018) utilize dynamic frameworks and it-
erative algorithms to solve the LL problem. Implicit
Gradient-Based Methods (IGBMs) (Pedregosa, 2016;
Rajeswaran et al., 2019; Lorraine et al., 2020) rely on
the first-order optimality condition for the LL prob-
lem and the chain rule to derive the hyper-gradient
by solving a linear system. To mitigate computational
complexity, techniques such as the Conjugate Gradi-
ent (CG) method or the Neumann method (Pedregosa,
2016; Lorraine et al., 2020) are often employed for fast
inverse computations. Recently, Liu et al. (2022) in-
troduce an approach that drops the implicit gradient
and Shen and Chen (2023) tackle the bilevel problem
through the penalty methods. However, all the above
mentioned methods are only applicable to smooth LL
problems, and may not be suitable for (1).

For nonsmooth functions, Bertrand et al. (2020) pro-
pose a new implicit differentiation method combined
with block coordinate descent to solve Lasso-type mod-
els for hyperparameter optimization. In their subse-
quent work (Bertrand et al., 2022), it is extended to
solve more general non-smooth hyperparameter opti-
mization problems. However, their methods are re-
stricted to l1 regularized LL problems, which cannot
deal with general Pi. In the context of difference of
convex bilevel programs, Ye et al. (2021) develop a
numerical algorithm called iP-DCA and applies it to
hyperparameter selection, particularly in support vec-
tor machine models. Gao et al. (2022) propose the
Value Function Based Difference-of-Convex Algorithm
(VF-iDCA) to handle BLPs like the one presented in
equation (1), where the LL problems involve complex
regularization terms. However, these DCA-based meth-
ods requires to compute the optimal value of the LL
problem to obtain a subgradient, which is used to
linearizes the concave term in DC constraint at each
iteration. Recently, Chen et al. (2023) have introduced
an inexact gradient-free method whose subproblem is a
simple bilevel program, which is still difficult to solve.

1.2 Our Motivations and Contributions

This paper presents a novel single-level reformulation
for the structured BLP (1). By leveraging Fenchel’s
duality, the proposed reformulation only requires the ex-
pression of the conjugate of each atom function, which
is often more easily accessible compared to the value
function used in previous works (Bertrand et al., 2022;
Gao et al., 2022; Pedregosa, 2016). Moreover, we in-
troduce a Lower-level Duality based Majorization Min-
imization Algorithm (LDMMA) for hyperparameter

selection in form (1). Notably, this algorithm accom-
modates lower-level problems that are nonsmooth and
non-strongly convex in x. We first reformulate (1) into
a single-level problem without involving any value func-
tion. However, a drawback of this convex subproblem
is that it lacks an interior point, rendering most convex
optimization methods ineffective. To remedy this, a
small positive constant ε is added to the right side
of the constraint in (1), leading to a relaxed convex
approximation with interior points. Based on this re-
formulation, we propose an iterative algorithm that
sequentially solves convex subproblems using majoriza-
tion minimization (MM) techniques to approximate the
constraint. Furthermore, we show that the subproblems
of several widely-used hyperparameter models can be
reformulated to conic programs that can be efficiently
solved by the off-the-shelf solvers. Additionally, we
demonstrate that the obtained solutions converge sub-
sequentially to a Karush-Kuhn-Tucker (KKT) point
of the ε-perturbation of problem (1) under mild condi-
tions. Numerical experiments are conducted to show-
case the efficiency of our method. We summarize our
contributions as follows

• We provide a novel reformulation for a class of
structured BLPs that is a single-level problem and
do not involve value functions.

• Based on the reformulation and using MM tech-
niques, we further propose an iterative algorithm,
LDMMA, where the subproblem in each iteration
is a convex problem. For many practical applica-
tions, the subproblem is a convex conic program.

• Theoretically, we prove that our algorithm gen-
erates a sequence whose accumulation points are
KKT points under mild conditions.

• We conduct numerical experiments on both syn-
thetic and real-world datasets and show that LD-
MMA exceeds the state-of-the-art.

2 Fenchel’s Duality Based
Reformulation for BLP

We propose a Fenchel’s duality based reformulation for
the following problem, which is a generalization of (1)

min
x∈Rn,λ∈D

f(x,λ) s.t. x ∈ argmin
x̂

τ∑
i=0

gi(x̂,λ), (2)

where λ is a vector of hyperparameters in a convex
closed set D and f, gi are proper convex closed function
in x and λ but possibly non-smooth. The core idea is
to replace the min operator in LL problem with max
operator by invoking Fenchel’s duality in the conven-
tional value function reformulation, and then the max
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Table 1: Examples of bilevel hyperparameter selection problems of the form (1), see Kunapuli et al. (2008); Feng
and Simon (2018) for reference.

Machine learning algorithm LL variable UL variable L(x)/l(x) Regularization

elastic net x λ1, λ2
1
2

∑
i∈Ival/i∈Itr

|bi − xTai|2 λ1‖x‖1 + λ2
2
‖x‖22

sparse group lasso x λ ∈ RM+1
+

1
2

∑
i∈Ival/i∈Itr

|bi − xTai|2
∑M

m=1 λm‖x(m)‖2 + λM+1‖x‖1
support vector machine w, c λ,w

∑
j∈Ival/j∈Itr

max(1− bj(x
Taj − c), 0) λ

2
‖x‖2 (with constraint −w ≤ x ≤ w)

low-rank matrix completion θ, β,Γ λ ∈ R2G+1
+

∑
(i,j)∈Ωval/(i,j)∈Ωtr

1
2
|Mij − xiθ − zjβ − Γij | λ0‖Γ‖∗ +

∑G
g=1 λg‖θ(g)‖2 +

∑G
g=1 λg+G‖β(g)‖2

operator can be omitted due to the direction of the
inequality. Hence we obtain an equivalent inequality
constraint only involving LL functions and their conju-
gates. Let us begin with the following equivalent form
of LL problem.

min
x

g0(x,λ) +

τ∑
i=1

gi(zi,λ) s.t. x = zi. (3)

Since gi, i = 0, 1, . . . , τ are convex and the constraints
are affine, it is know that strong duality holds under
Slater’s condition. That is, if ∩τ

i=0ri(dom gi(·,λ)) 6= ∅1,
(3) is equivalent to the following problem:

−min
ρi

max
x,zi

−g0(x,λ)−
τ∑

i=1

gi(zi,λ)−
τ∑

i=1

ρT
i (x− zi). (4)

Here ρi ∈ Rn, i = 1, . . . , τ are Lagrangian multipliers
associated with constraint x = zi, and the min and max
operators have been exchanged by adding the negative
signs. We define g∗i (y,λ) := maxx yTx − gi(x,λ) as
the conjugate functions regarding x for gi. We then
simplify (4) as

max
ρi

−g∗0

(
−

τ∑
i=1

ρi,λ

)
−

τ∑
i=1

g∗i (ρi,λ).

Note that the constraint of problem (2), namely, x ∈
argminx̂

∑τ
i=0 gi(x̂,λ), is equivalent to

τ∑
i=0

gi(x,λ) ≤ min
x

τ∑
i=0

gi(x,λ)

= max
ρi

−g∗0

(
−

τ∑
i=0

ρi,λ

)
−

τ∑
i=1

g∗i (ρi,λ).

We can remove the max operator and find the identical
constraint that

τ∑
i=0

gi(x,λ) + g∗0

(
−

τ∑
i=1

ρi,λ

)
+

τ∑
i=1

g∗i (ρi,λ) ≤ 0.

The result is summarized in the following theorem.
Theorem 2.1. Given convex, lower semi-continuous
functions f and gi, if

⋂τ
i=0 ri(dom gi) 6= ∅, then Prob-

1Here, ri(·) denotes the relative interior of the set ·.

lem (2) has the following equivalent form:

min
x,ρi∈Rn,λ∈D

f(x,λ)

s.t.
τ∑

i=0

gi(x,λ) + g∗0

(
−

τ∑
i=1

ρi,λ

)
+

τ∑
i=1

g∗i (ρi,λ) ≤ 0.

(5)

The main benefit of reformulation (5) is circumventing
the computation of complex value functions. Instead, it
reduces to calculate the conjugate of each atom function
gi respectively, which has closed-form expression in
many practical problems. We then demonstrate the
power of this reformulation in hyperparameter selection
problems. As a straightforward application of Theorem
2.1, (1) is equivalent to

min
x,ρi∈Rn,λ∈Rτ

+

L(x)

s.t. F (x,λ,ρ) +

τ∑
i=1

λiPi(x) ≤ 0,
(6)

where we use the conventions 0P ∗
i (

ρi

0 ) = 02 and

F (x,λ,ρ) = l(x) + l∗
(
−

τ∑
i=1

ρi

)
+

τ∑
i=1

λiP
∗
i

(
ρi

λi

)
. (7)

By introducing an auxiliary variables ri satisfying
Pi(x) ≤ ri, since λi ≥ 0, constraint (6) is equivalent
to

F (x,λ,ρ) +
τ∑

i=1

λiri ≤ 0,

Pi(x) ≤ ri for i ∈ [τ ].

This directly gives the following result.
Proposition 2.2. Problem (1) can be reformulated as
the following problem.

min
x,ρi∈Rn,r,λ∈Rτ

+

L(x)

s.t. F (x,λ,ρ) +
∑τ

i=1 λiri ≤ 0,
Pi(x) ≤ ri, i ∈ [τ ], λ ≥ 0.

(8)

2By definition, λiP
∗
i (

ρi
λi
) = maxzi ρ

T
i zi−λiP (zi). When

λi = 0, λiP
∗
i (

ρi
λi
) = maxzi ρ

T
i zi is 0 if ρi = 0 and ∞

otherwise. The latter case contradicts strong duality and
thus is abandoned.
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Note that the function F (x,λ,ρ) is convex because
the conjugate functions l∗ and P ∗

i are convex, and
λiP

∗
i

(
ρi

λi

)
is convex as it is the perspective of func-

tion P ∗
i (ρi) (Boyd et al., 2004). We remark that the

reformulation in Proposition 2.2 for (8) is proposed for
the first time. The advantage of this reformulation is
that it is a single level problem and does not involve
any implicit function like the value function of the LL
problem.

3 Majorization Minimization
Algorithm for Hyperparameter
Selection

In this section, we describe an algorithm that utilizes
the reformulation (8).

3.1 Approximation via Majorization Function

Note that the only nonconvex term in (8) is the bi-
linear term

∑τ
i=1 λiri. We adopt a majorization and

minimization technique to handle this nonconvex term
(Lange, 2016). To this end, we define a majorization
function as follows.
Definition 3.1. We say m(•, •; ξ̄, ζ̄) is a majorization
for the bilinear form ξζ at (ξ̄, ζ̄) if it satisfies

1. m(ξ, ζ; ξ̄, ζ̄) ≥ ξζ and m(ξ̄, ζ̄; ξ̄, ζ̄) = ξ̄ζ̄;

2. m(ξ, ζ; ξ̄, ζ̄) is a continuously differentiable func-
tion for (ξ, ζ), and ∂m(ξ,ζ;ξ̄,ζ̄)

∂ξ |(ξ,ζ)=(ξ̄,ζ̄)= ζ̄,
∂m(ξ,ζ;ξ̄,ζ̄)

∂ζ |(ξ,ζ)=(ξ̄,ζ̄)= ξ̄;

3. ∂m(ξ,ζ;ξ̄,ζ̄)
∂ξ and ∂m(ξ,ζ;ξ̄,ζ̄)

∂ζ are locally Lipschitz con-
tinuous with respect to (ξ̄, ζ̄).

There are various ways to construct such majorizations.
For instance, when ξ̄, ζ̄ > 0, we can set

m(ξ, ζ; ξ̄, ζ̄) =
1

2

(
ξ̄

ζ̄
ζ2 +

ζ̄

ξ̄
ξ2
)

(9)

by using the Cauchy inequality. Another method is to
use the identity

ξζ =
1

4
(ξ + ζ)2 − 1

4
(ξ − ζ)2,

and set

m(ξ, ζ; ξ̄, ζ̄) =
1

4
(ξ+ ζ)2+

1

4
(ξ̄− ζ̄)2− 1

2
(ξ̄− ζ̄)(ξ− ζ) (10)

by linearizing the second term in the above identity
at (ξ̄, ζ̄).

Let m be a majorization of ξζ according to Defini-
tion 3.1. We now have the following inner approxima-
tion of (8) at (λk, rk),

min
x,λ,ρ,r

L(x)

s.t. F (x,λ,ρ) +
∑τ

i=1 m(λi, ri;λ
k
i , r

k
i ) ≤ 0,

Pi(x) ≤ ri, i ∈ [τ ], λ ≥ 0.
(11)

Traditional MM algorithms solve the convex prob-
lem (11) iteratively. However, we point out that the
above problem does not satisfy general constraint qual-
ifications(CQs) like the Slater condition, which re-
quires that there exists an interior point in the fea-
sible region. Indeed, according to Proposition 2.2 and
item 2 of Definition 3.1, we obtain that F (x,λ,ρ) +∑τ

i=1 m(λi, ri;λ
k
i , r

k
i ) ≥ 0 for any feasible solution, and

thus there does not exist any interior point.

The absence of CQ not only prevents the use of general
interior point methods for efficiently solving (8) (Wright
et al., 1999), but also makes it difficult to show the
convergence of solutions by sequentially solving (8) to
KKT points (Andreani et al., 2016). To address this,
we add a small positive number ε to the right-hand side
of the first constraint in (8), and obtain the following
approximation problem

min
x,λ,ρ,r

L(x) + β
2

∥∥∥(x− xk,λ− λk, r− rk,ρ− ρk
)∥∥∥2

s.t. F (x,λ,ρ) +
∑τ

i=1 m(λi, ri;λ
k
i , r

k
i ) ≤ ε,

Pi(x) ≤ ri, i ∈ [τ ], λ ≥ 0.
(12)

Here we also add a proximal term in the objective func-
tion to ensure the convergence of our algorithm. We
summarise our method in Algorithm 1. We remark that
line 1 of Algorithm 1 helps us find a feasible solution
for problem (12), which guarantees the feasibility of
problem (13), thanks to Definition 3.1.

Algorithm 1 Lower-level Dual based Majorization
Minimization algorithm (LDMMA)
Require: initial ε > 0, β > 0, and λ0 ≥ 0.
1: Solve the lower-level subproblem minx l(x) +∑τ

i=1 λ
0
iPi(x) and set r0i = Pi(x), i = 1, 2, . . . , τ

2: for k = 0, 1, . . . , do
3: Solve problem (12) and obtain an optimal solu-

tion (xk+1, rk+1,λk+1,ρk+1)
4: if Termination criteria is met then
5: Stop
6: end if
7: end for

3.2 Conic Formulations of Subproblems

We point out that for all hyperparameter selection
problems in Table 1, the subproblems of (11) or (12)
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have explicit conic convex formulations, which can be
solved by existing off-the-shelf solvers efficiently.

Here, we give an example of the elastic net problem.
Other problems in Table 1 admit similar conic reformu-
lations. We note that the full row rank condition is not
necessary for the conic reformulation. Without such a
condition, we can still obtain a conic program for the
subproblem but with one extra linear constraint. See
Appendix B for proofs, remarks, and more details on
other problems.

Proposition 3.2. Consider the elastic net prob-
lem with training data Atr,btr and validation data
Aval,bval,

min
x

L(x) = 1
2‖Avalx− bval‖22

s.t. x ∈ argmin 1
2‖Atrx− btr‖22 + λ1‖x‖1 + λ2

2 ‖x‖22.

If Atr is of full row rank, then using (9) or (10), we
obtain that the subproblem (11) for the above problem
can be reformulated into the following conic program:

min
x,λ,ρ,r,t

t

s.t. AT
trw + ρ1 + ρ2 = 0,

‖x‖1 ≤ r1, ‖ρ1‖∞ ≤ λ1,
SOCs(x,λ,ρ, r, t),

where SOCs(x,λ,ρ, r, t) represents second-order cone
constraints with variables (x,λ,ρ, r, t).

Equipped with the conic reformulations for the sub-
problems, one can take clear and concrete steps to ap-
ply Algorithm 1 to solve the hyperparameter selection
problems. This enhances the implementability of the
proposed algorithm, making it practical for real-world
applications.

Before we end this section, we would like to emphasize
the differences between our approach and the duality-
based method in Ouattara and Aswani (2016). First,
the main novelty of Ouattara and Aswani (2016) is
to use the Lagrangian duality of the LL problem to
deal with the constraints of LL problems, while we
focus on Fenchels duality for unconstrained LL prob-
lems. Second, the duality approach in Ouattara and
Aswani (2016) still necessitate the calculation of an
abstract value function h. In contrast, we utilize the
splitting structures to obtain a reformulation that only
consists of primal atom functions and their conjugates.
Our approach circumvents the computation of complex
value functions. Third, our reformulation leads to im-
plementable subproblems in the form of conic programs
for many problems of interest while that of Ouattara
and Aswani (2016) does not.

4 Theoretical Investigations

In this section, we show that the sequence generated
by Algorithm 1 converges to a KKT point of the
ε-approximate problem

min
x,λ,ρ,r

L(x)

s.t. F (x,λ,ρ) +
∑τ

i=1 λiri ≤ ε,
Pi(x) ≤ ri, i ∈ [τ ], λ ≥ 0.

(13)

Note that in the above problem, we add a positive ε to
the LL constraint. We remark that similar techniques
are widely used in value function approaches in the
literature Liu et al. (2021); Ye et al. (2022).

We begin with formal definitions of the KKT point and
a nonsmooth CQ. Let NX (x) denote the normal cone
of the set X and ∂ϕ denote the limiting sub-differential
of the function ϕ (Rockafellar and Wets, 2009).
Definition 4.1. For a constrained optimization

min
x∈X

f̂(x) s.t. ĥi(x) ≤ 0, i = 1, 2, . . . ,m, (14)

we say that x∗ is its KKT point if there exists µ∗ ∈ R+

such that µ∗
i ĥi(x

∗) = 0, ĥi(x
∗) ≤ 0 and

0 ∈ ∂f̂(x∗) +

m∑
i=1

µ∗
i ∂ĥi(x

∗) +NX (x∗).

The following CQ is the nonsmooth version of the
MFCQ that is frequently used for many algorithms.
Definition 4.2 (Jourani (1994); Ye et al. (2022)).
Let x∗ be a feasible point of (14). We say that the
nonzero abnormal multiplier constraint qualification
(NNAMCQ) holds at x∗ for problem (14) if ĥi(x

∗) < 0
for i ∈ [m] or 0 /∈{

m∑
i=1

µi∂ĥi(x
∗) +NX (x∗) : µiĥi(x

∗) = 0, µi ≥ 0,µ 6= 0

}
.

Lemma 4.3 (NNAMCQ). (i) Let x∗ be a solution of
(14). If NNAMCQ holds at x∗, then x∗ is a KKT point
of problem (14). (ii) NNAMCQ holds at any feasible
point for problem (13).

Let zk := (xk,λk, rk,ρk) be the k-th iteration point of
Algorithm 1. We use the following notations for the
concerned problem (13) and its subproblem (12):

X = {(x,λ, r,ρ) : ρ = (ρ1, . . . ,ρτ ),λ, r ≥ 0},
z = (x,λ, r,ρ) ∈ X ,

f(z) = L(x),

fk(z) = L(x) + β
2 (‖r− rk‖2 + ‖λ− λk‖2),

g(z) = F (x,λ,ρ) +
∑τ

i=1 λiri − ε,
ḡk(z) = F (x,λ,ρ) +

∑τ
i=1 m(λi, ri;λ

k
i , r

k
i )− ε,

hj(z) = Pi(x)− ri, i = 1, 2, . . . , τ.

By the definition of m in Definition 3.1, the following
lemma naturally holds.
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Lemma 4.4. For k = 0, 1, 2, . . . , we have the follow-
ing results: (i) ḡk(z) ≥ g(z) and ḡk(zk) = g(zk); (ii)
∂ḡk(zk) = ∂g(zk).

We then introduce a sufficient decrease property of
Algorithm 1.
Lemma 4.5. Assume L(x) is bounded below. Then for
all k ∈ N, we have (i) L(xk+1)− L(xk) ≤ −β

2 ‖z
k+1 −

zk‖2; (ii) limk→∞ ‖zk+1 − zk‖ = 0.

Theorem 4.6. Assume L(x) is bounded below and
{zk}k∈N is bounded. The following two statements
hold:

(i) If ε > 0 in (13), then any accumulation point of
{zk}k∈N is a KKT point of (13);

(ii) Furthermore, if L(x), l(x), and Pi(x), i ∈ [τ ] are
semi-algebraic functions, then {zk}k∈N converges
to a KKT point of (13).

The ε perturbation in (13) is essential, which can be
found in many value function based BLP algorithms
(Ye et al., 2022; Gao et al., 2022; Xu and Ye, 2014). We
suggest referring to Xu and Ye (2014); Ye et al. (2022)
for the analysis of this relaxation. We remark that
boundedness assumptions on {zk}k∈N are widely used
in relevant literature; see Ye et al. (2022) and Gao et al.
(2022). We argue its necessity by referring to Theorem
4.2 in Attouch et al. (2013), a well-known convergence
result requiring very mild conditions but needs the
boundedness of the iterate sequence. We also remark
that the convergence of our algorithm does not require
the lower-level problem to be strongly convex, unlike
many existing methods for BLP (Feng and Simon, 2018;
Pedregosa, 2016).

5 Experiments

In this section, we conduct experiments to compare
LDMMA with existing algorithms for hyperparame-
ter optimization on synthetic data and real datasets,
respectively. We briefly introduce our competitors in
experiments:

• Grid Search: We perform a 10× 10 uniformly-
spaced grid search.

• Random Search: We uniformly sample 100 times
for each direction of hyperparameters.

• Implicit Differentiation: We implement the
IGJO algorithm in Feng and Simon (2018).

• TPE: We use the Tree-structured Parzen Estima-
tor approach in Bergstra et al. (2013) which is
known as a Bayesian optimization method.

• VF-iDCA: We implement the VF-iDCA algo-
rithm in Gao et al. (2022), which considers the
LL value function and applies DC program to
approximately solve the BLP.

We consider hyperparameter optimization for elastic
net, sparse group lasso, and support vector machines
(Kunapuli et al., 2008; Feng and Simon, 2018; Gao
et al., 2022). These three models only use a combina-
tion of regularization functions ‖ · ‖1, ‖ · ‖2 and 1

2‖ · ‖
2
2

that are included by our previous analysis. The elastic
net (Zou and Hastie, 2003) is a linear combination
of the lasso and ridge penalties and the sparse group
lasso (Simon et al., 2013) combines the group lasso
and lasso penalties, which are designed to encourage
sparsity and grouping of predictors (Feng and Simon,
2018). The support vector machine is a classical ma-
chine learning model that assigns labels to objects
(Noble, 2006) and its related BLP has been intensively
studied (Kunapuli et al., 2008; Couellan and Wang,
2015; Jiang and Siddiqui, 2020). To compare the per-
formance of each method, we calculate validation and
test error with obtained LL minimizers from solving
subproblems in each experiment. Our competitors are
implemented using code from https://github.com/
SUSTech-Optimization?tab=repositories. We use
the off-the-shelf solver MOSEK3 to solve the subprob-
lem (12) at each iteration of LDMMA. The formulations
of the three models and their associated subproblems
can be found in Appendix B.

5.1 Experiments on Synthetic Data

The synthetic data consists of observation matrix sam-
ples from specific distribution and response vectors
with rational noise. Detailed descriptions of the syn-
thetic data generation settings and parameter settings
of each method are in Appendix C.

5.1.1 Elastic Net

The numerical results on elastic net are reported in Ta-
ble 2. We conduct 30 repeated experiments in each data
size and take the average. Overall, LDMMA achieves
the highest solution quality in the shortest running time
on this problem model. Traditional gradient-free meth-
ods (grid search, random search, and TPE) still suffer
from limitations in testing error and expensive time
costs. Gradient-based methods IGJO perform slightly
better on accuracy and efficiency, and VF-iDCA is the
best among existing methods in the literature. Fur-
thermore, LDMMA achieves more exquisite validation
and test error beyond the reach of other methods along
with greatly reduced time cost.

3https://docs.mosek.com/9.3/toolbox/index.html

https://github.com/SUSTech-Optimization?tab=repositories
https://github.com/SUSTech-Optimization?tab=repositories
https://docs.mosek.com/9.3/toolbox/index.html
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Table 2: Elastic net problems on synthetic data, where |Itr|, |Ival|, |Ite| and p represent the number of training
observations, validation observations, predictors and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

|Itr| = 100
|Ival| = 20
|Ite| = 250
p = 250

Grid 6.14± 2.34 6.31± 0.84 6.55± 0.91
|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 450

7.49± 0.26 7.40± 1.29 6.05± 1.06
Random 9.54± 0.28 5.98± 2.24 6.56± 0.89 17.12± 0.40 7.40± 1.31 7.10± 1.08
TPE 10.10± 0.44 6.05± 1.35 6.53± 0.90 17.86± 0.92 7.38± 1.30 7.06± 1.06
IGJO 3.92± 2.42 4.46± 1.75 6.76± 0.97 4.02± 2.99 5.63± 1.24 5.36± 1.07
VF-iDCA 0.84± 0.25 2.14± 0.76 4.03± 0.65 2.57± 0.96 3.64± 0.53 4.73± 0.69
LDMMA 0.64± 0.20 2.06± 0.42 3.91± 0.63 1.85± 0.21 3.15± 0.32 4.25± 0.48

|Itr| = 100
|Ival| = 100
|Ite| = 250
p = 250

Grid 9.71± 0.21 6.82± 1.14 6.55± 0.91
|Itr| = 100
|Ival| = 100
|Ite| = 100
p = 2500

13.17± 3.43 7.81± 1.53 8.82± 0.92
Random 9.54± 0.28 6.31± 0.84 6.68± 1.13 15.29± 2.60 6.44± 1.53 8.67± 0.94
TPE 10.10± 0.44 6.30± 0.85 6.54± 1.15 22.42± 1.30 7.71± 1.32 8.43± 0.80
IGJO 3.92± 2.42 4.36± 0.96 5.54± 0.82 31.30± 6.41 7.78± 1.12 8.61± 0.82
VF-iDCA 1.90± 0.56 3.04± 1.51 4.52± 0.62 23.57± 4.06 1.83± 0.71 5.13± 1.02
LDMMA 1.12± 0.15 2.63± 0.41 4.05± 0.97 9.30± 2.61 2.25± 1.09 4.19± 0.76

Table 3: Sparse group lasso problems on synthetic data, where p and M represent the number of covariates and
covariate groups, respectively, and n represent the data scale described above.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

n = 300
p = 600
M = 30

Grid 35.68± 1.85 43.80± 7.31 45.43± 7.87
n = 450
p = 900
M = 60

45.72± 4.88 39.58± 5.31 46.66± 5.33
Random 26.32± 1.51 36.94± 7.01 43.54± 8.87 58.58± 1.24 43.91± 4.90 41.08± 9.05
IGJO 49.00± 4.11 38.90± 6.21 41.94± 6.73 64.90± 10.63 29.90± 7.15 48.82± 6.74
VF-iDCA 8.69± 1.25 0.04± 0.01 37.31± 4.01 25.41± 1.56 20.19± 6.04 36.36± 5.45
LDMMA 6.85± 0.74 22.94± 2.56 21.25± 4.63 20.15± 2.61 21.04± 2.99 28.83± 6.76

n = 300
p = 900
M = 60

Grid 40.84± 1.04 42.45± 7.67 44.56± 7.33
n = 600
p = 1200
M = 150

74.22± 8.89 50.52± 4.14 59.90± 9.01
Random 66.58± 1.01 39.27± 7.32 43.00± 8.83 72.15± 4.49 53.21± 7.64 57.84± 14.52
IGJO 60.67± 5.77 28.32± 4.93 43.43± 7.44 80.52± 5.66 41.70± 5.37 56.01± 12.74
VF-iDCA 31.75± 5.62 17.85± 3.27 32.65± 4.83 33.57± 7.48 25.64± 6.35 29.55± 3.88
LDMMA 24.78± 0.92 24.54± 3.77 24.91± 3.58 27.34± 3.73 20.94± 3.52 23.74± 2.01

Table 4: Support Vector Machine problems with 3-fold and 6-fold cross-validation on three datasets, where the
number of features p and samples |Ω|, |Ωtest| are displayed together with dataset names. Results on other datasets
are presented in Appendix C.

Dataset Methods 3-fold 6-fold
Times(s) Val. Err. Test Err. Times(s) Val. Err. Test Err.

diabetes-scale
p = 8
|Ω| = 384
|Ωtest| = 384

Grid 3.17± 0.08 0.55± 0.03 0.19± 0.03 6.22± 0.21 0.54± 0.03 0.33± 0.04
Random 3.47± 0.14 0.56± 0.03 0.32± 0.05 7.18± 0.30 0.55± 0.04 0.30± 0.05
TPE 10.21± 6.68 0.55± 0.04 0.29± 0.06 76.67± 36.39 0.54± 0.03 0.34± 0.06
VF-iDCA 0.28± 0.04 0.48± 0.03 0.23± 0.01 0.65± 0.03 0.43± 0.03 0.23± 0.02
LDMMA 0.22± 0.03 0.49± 0.02 0.19± 0.01 0.55± 0.10 0.39± 0.05 0.20± 0.02

breast-cancer-scale
p = 14
|Ω| = 336
|Ωtest| = 347

Grid 3.32± 0.09 0.08± 0.01 0.16± 0.08 6.32± 0.11 0.08± 0.01 0.15± 0.12
Random 3.69± 0.07 0.09± 0.01 0.08± 0.08 7.20± 0.12 0.09± 0.02 0.10± 0.11
TPE 17.88± 10.05 0.09± 0.01 0.10± 0.11 34.66± 20.57 0.09± 0.01 0.18± 0.13
VF-iDCA 0.24± 0.04 0.09± 0.01 0.04± 0.01 0.57± 0.12 0.08± 0.01 0.03± 0.01
LDMMA 0.12± 0.01 0.08± 0.01 0.03± 0.01 0.42± 0.17 0.08± 0.01 0.02± 0.01

w1a
p = 300
|Ω| = 1236
|Ωtest| = 1241

Grid 20.08± 0.33 0.59± 0.10 0.41± 0.14 104.47± 2.99 0.06± 0.01 0.03± 0.00
Random 20.30± 0.18 0.55± 0.07 0.31± 0.08 147.88± 8.64 0.05± 0.00 0.02± 0.00
TPE 85.80± 13.95 0.64± 0.13 0.45± 0.11 682.35± 17.52 0.06± 0.01 0.03± 0.00
VF-iDCA 4.32± 0.23 0.03± 0.02 0.03± 0.00 25.37± 3.10 0.01± 0.00 0.03± 0.00
LDMMA 2.19± 0.24 0.01± 0.00 0.01± 0.00 15.25± 2.90 0.01± 0.00 0.02± 0.00
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Figure 1: Comparison for variation trend of validation error and test error with time in SVM experiments.

Table 5: Elastic net problem on datasets gisette and sensit, where |Itr|, |Ival|, |Ite| and p represent the number of
training samples, validation samples, test samples and features, respectively.

Settings Methods Time(s) Val. Err. Test Err. Settings Time(s) Val. Err. Test Err.

gisette
p = 5000
|Itr| = 50
|Ival| = 50
|Ite| = 5900

Grid 36.14± 4.52 0.22± 0.04 0.23± 0.01 sensit
p = 78823
|Itr| = 25
|Ival| = 25
|Ite| = 50

1.39± 0.15 1.40± 0.79 1.31± 0.45
Random 55.44± 9.21 0.22± 0.05 0.23± 0.03 1.28± 0.10 1.52± 0.55 1.45± 0.40
TPE 40.01± 7.04 0.22± 0.05 0.24± 0.02 1.78± 0.09 1.38± 0.96 1.39± 0.55
IGJO 6.15± 1.54 0.24± 0.05 0.24± 0.03 0.49± 0.74 0.52± 0.20 0.61± 0.11
VF-iDCA 5.38± 1.65 0.00± 0.00 0.19± 0.01 0.16± 0.08 0.23± 0.11 0.51± 0.06
LDMMA 5.64± 0.94 0.00± 0.00 0.17± 0.01 0.16± 0.07 0.25± 0.12 0.40± 0.09
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5.1.2 Sparse Group Lasso

We conduct experiments with different data scales and
report numerical results averaged over 30 repetitions in
Table 3. For each experiment, the generated datasets
consist of n training, n/3 validation, and 100 test sam-
ples. LDMMA still performs the best in the sense that
it achieves the minimum time cost and test error, mean-
while a similar validation error with VF-iDCA. As the
dimension of data increases, our methods appear to
offer all-round fitness for the problem, which indicates
the superiority of LDMMA in large-scale hyperparame-
ter optimization. It is worth noting that our algorithm
can obtain the optimal solution for both hyperparame-
ters and upper-level variables by solving problem (12).
This is a significant advantage of our algorithm.

5.2 Experiments on Real Data

5.2.1 Support Vector Machine with
Cross-validation

We conduct experiments for support vector machine
(SVM) model on real-world datasets. Real-world
datasets tend to be lager in size than synthetic datasets
and exhibit more complex and irregular sample distri-
butions. Consequently, hyperparameter selection will
be heavily influenced by the partition of the train-
ing, validation, and test sets. Different partition can
lead to substantial variations in the predictive perfor-
mance of the models. Therefore, we perform 3-fold and
6-fold cross-validation using six moderately sized real
datasets: liver-disorders, diabetes, breast-cancer, sonar,
a1a (Asuncion and Newman, 2007), and w1a (Catan-
zaro et al., 2008). These datasets are derived from
medical statistics and offer rich features and samples
for analysis.

The details of corresponding subproblem for cross-
validation with dataset partition and experimental set-
tings are presented in Appendix C. We report numerical
results on three datasets in Table 4 and Figure 1. As
shown in Table 4, comparison results demonstrate that
LDMMA consistently outperforms other optimization
algorithms in terms of both the validation error and
test error (except the case of diabetes-scal with 3-fold).
Moreover, LDMMA achieves faster convergence than
other methods. Figure 1 reports the variation trend
of validation error and test error versus time from our
experiments with 6-fold cross-validation. We empha-
size that LDMMA remarkably reduces the validation
and test errors at a faster speed than other algorithms.
These results verify the superiority and applicability of
our algorithm for SVM on real-world datasets.

5.2.2 Elastic Net with High Dimensional
datasets

Furthermore, to certify the robustness of our algorithm,
it is necessary to conduct experiments with larger scale
which may capture more practical settings. We con-
sider elastic net problem on high dimendional datasets
gisette(Guyon et al., 2004) and sensit (Duarte and
Hu, 2004). Experimental results are reported in Table
5, demonstrating that even in relatively high dimen-
sional problems, LDMMA still achieves competitive
performance at a fast speed.

6 Conclusion

In this paper, we propose a novel single-level refor-
mulation for a group of hyperparameter optimization
problems, where the main steps are leveraging the struc-
ture of the lower-level problem and applying Fenchel’s
duality. Our reformulation does not involve complex im-
plicit functions but conjugates of some atom functions.
Based on the new reformulation, we then propose the
LDMMA, which applies the majorization-minimization
method to obtain a convex subproblem. One superior-
ity of our method is that for many practical problems,
our subproblem are conic programs so that the subprob-
lem can be efficiently solved by the off-the-shelf solvers.
Theoretically, we prove the sequence convergence of the
LDMMA. Numerical experiments on both synthetic
and real-world data demonstrate the outperformance
of LDMMA over existing methods.

We remark that the methods for solving subproblem
(12) are not limited to the off-the-shelf solvers. In fu-
ture work, we will explore first-order methods that are
suitable for high-dimension settings for solving sub-
problem (12); see, e.g., Lan et al. (2011) and Necoara
et al. (2019).
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The appendix is organized as follows. In Appendix A, we provide missing proofs of Sec. 4. In Appendix. B, we
use several widely used machine learning models to illustrate that the constraints in (11) can often be represented
by conic inequalities. In Appendix C, we provide details of our numerical experiments and give some additional
experiments results.

A Proofs in Section 4

A.1 Proof for Lemma 4.3

Proof. (i) The first item follows from Ye et al. (2022).

(ii) The second item can be proved by contradiction. If NNAMCQ fails at some feasible point z := (x,λ, r, ρ),
i.e., there exists vector (µ0, µ1, . . . , µτ ) such that 0 ∈ µ0∂g(z) +

∑τ
i=1 µi∂hj(z), one can obtain a contradiction

whether the constraint g(z) = F (x,λ, ρ) +
∑

i λiri − ε ≤ 0 is active or not.

1. When F (x,λ, ρ) +
∑

i λiri − ε < 0, µ0 = 0 and we observe that ∂hi(z) = ∂ (Pi(x)− ri), i ∈ [τ ] are linearly
independent due to term ri. Then 0 ∈ µ0∂g(z) +

∑τ
i=1 µi∂hj(z) implies µi = 0 for i ∈ [τ ], which contradicts

the definition of NNAMCQ that requires µ 6= 0.

2. When F (x,λ, ρ) +
∑

i λiri − ε = 0 is active, the condition 0 ∈ µ0∂g(z) +
∑τ

i=1 µi∂hj(z) implies z =
argminzF (x,λ, ρ) +

∑
i λiri. This implies F (x,λ, ρ) +

∑
i λiri = 0 because the left hand side of the

constraint in (5) is always larger than or equal to 0 due to strong duality of the lower-level problem. This
contradicts F (x,λ, ρ) +

∑
i λiri − ε = 0.

A.2 Proof for Lemma 4.5

Proof. We first prove that for k ≥ 0, zk is a feasible point of (12) for all k ∈ N by induction. Suppose this
statement holds for some k = d ≥ 0, we prove it holds for k = d+1. Note that (xd+1,λd+1, rd+1,ρd+1) is optimal
for problem (12) with rd and λd. From the optimality of zd+1 to (12), we have

hj(z
d+1) ≤ 0, ∀ j ∈ J and ḡd(zd+1) ≤ 0.

Since ḡd(zd+1) ≥ g(zd+1) = ḡd+1(zd+1) due to Lemma 4.4, it follows that ḡd+1(zd+1) ≤ 0 and thus zd+1 is
feasible for problem (12) with k = d+ 1. Finally, z0 is obviously feasible for (12) with k = 0 due to our special
choice of λ0 and r0.

Note that (xk+1,λk+1, rk+1,ρk+1) is optimal for problem (12). By the optimality of zk+1 and the feasibility of
zk, we have

L(xk+1) +
β

2
‖zk+1 − zk‖2 ≤ L(xk),

which proves (i). (Here x0 can be any feasible point.) Item (ii) directly follows from (i) and that L is bounded
below.

A.3 Proof for Theorem 4.6

Proof. (i) Assume subsequence {zkj}j∈N converges to z∗. By Lemma 4.3, the NNAMCQ holds at zkj for problem
(12) with k = kj − 1. Moreover, the KKT optimality conditions implies that there exist acceptable Lagrange
multipliers µkj = (µ

kj

0 , µ
kj

1 . . . , µ
kj
τ ) such that

µ
kj

0 ḡkj (zkj ) = 0, µ
kj

i hi(z
kj ) = 0, i = 1, . . . τ

and
0 ∈ ∂fkj−1(zkj ) + µ

kj

0 ∂ḡkj−1(zkj ) +

τ∑
i=1

µ
kj

i ∂hi(z
kj ) +NX (zkj ). (15)
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We then claim {µlj}j∈N is bounded. Since ‖rlj − rlj−1‖ → 0 and ‖λlj −λlj−1‖ → 0 by Lemma 4.5, from zlj → z∗

and Definition 3.1 we have

∂

τ∑
i=1

m(λi, ri;λ
lj−1
i , r

lj−1
i ) |

(λ
lj
i ,r

lj
i )

→ ∂

τ∑
i=1

λiri |(λ∗
i ,r

∗
i )

. (16)

According to Exercise 8.8(c) in Rockafellar and Wets (2009) and the expressions of ḡk and g, (16) yields

lim sup
j→∞

∂ḡlj−1(zlj ) ⊆ ∂g(z∗).

If {µlj}j∈N is unbounded, by passing to a further subsequence if necessary, we assumeµlj/‖µlj‖ → µ̄. Note that
‖µlj‖ → ∞ and ∂f(zlj ) is bounded. Multiplying 1

‖µlj ‖
on the right-hand side of (15) and taking limit to (15),

we have
0 ∈ µ̄0∂g(z

∗) +
∑m

i=1 µ̄i∂hi(z
∗) +NX (z∗) with ‖µ̄‖ = 1,

µ̄0g(x
∗) = 0, µ̄ihi(x

∗) = 0, i ∈ [τ ], µ̄i ≥ 0, i = 0, . . . , τ.

which contradicts the NNAMCQ at z∗. Therefore, {µlj}j∈N is bounded.

Then we assume µkj → µ∗ by passing to a subsequence if necessary. Note that lim supj→∞ ∂fkj (zkj ) ⊆ ∂f(z∗)

also holds because of the expression of fk and the outer semi-continuity of ∂L(x) (see, e.g., Definition 5.4
and Proposition 8.7 in Rockafellar and Wets (2009)). By zkj → z∗, lim supj→∞ ∂ḡkj−1(zkj ) ⊆ ∂g(z∗) and
lim supj→∞ ∂fkj (zkj ) ⊆ ∂f(z∗), (15) yields

0 ∈ ∂f(z∗) + µ∗
0∂g(z

∗) +

τ∑
i=1

µ∗
i ∂hi(z

∗) +NX (z∗),

which says that z∗ is a KKT point of (13).

(ii) We construct a simple merit function for our model, which is defined by

G(z) = L(x) + δX (z) + δ{z:g(z)≤0}(z) +

τ∑
j=1

δ{z:hj(z)≤0}(z).

By the feasibility of zk+1 in (12) and Definition 3.1, hj(z
k+1) ≤ 0, j ∈ [τ ] and g(zk+1) ≤ ḡk(zk+1) ≤ 0. Hence,

G
(
zk+1

)
= L(xk+1) for all k ∈ N.

This, together with L(xk+1) ≤ L(xk)− β
2

∥∥zk+1 − zk
∥∥2 given by Lemma 4.5, yields

G
(
zk+1

)
≤ G

(
zk
)
− β

2

∥∥zk+1 − zk
∥∥2 . (17)

We then establish the relative error, which needs to estimate dist(0, ∂G(z)). To begin with, by the convexity of
L(x) and Pi(x), L(x) and hj(z), j ∈ [τ ] are regular. By the convexity of F and weak convexity of

∑τ
i=1 λiri, g(z)

is regular due to Proposition 4.5 in Vial (1983). Then, δ{z:g(z)≤0}(z) and δ{z:hj(z)≤0}(z), j ∈ [τ ] are regular by
Exercise 8.14 in Rockafellar and Wets (2009). It follows from Corollary 10.9 in Rockafellar and Wets (2009) that

∂G(z) = ∂L(x) + ∂δX (z) + ∂δ{z:g(z)≤0}(z) +

τ∑
j=1

∂δ{z:hj(z)≤0}(z).

Since Exercise 8.14 in Rockafellar and Wets (2009) ensures that ∂δX (z) = NX (z), ∂δ{z:g(z)≤0}(z) = N{z:g(z)≤0}(z),
and ∂δ{z:hj(z)≤0}(z) = N{z:hj(z)≤0}(z), j ∈ [τ ], we have

∂G(z) = ∂L(x) +NX (z) +N{z:g(z)≤0}(z) +

τ∑
j=1

N{z:hj(z)≤0}(z).
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By Corollary 10.50 in Rockafellar and Wets (2009), it follows that ∂G(z) = ∇L(x) + NX (z) + µ0∂g(z)(z) +∑τ
j=1 µi∂hj(z), where µ0, µj ≥ 0, µ0g(z) = 0, and µjhj(z) = 0 for j ∈ [τ ]. Thus,

∂G(zk) = {∂L(xk) +NX (zk) + µk
0∂g(z

k) +
∑τ

j=1 µ
k
i ∂hj(z

k) :

µk
0 , µ

k
j ≥ 0, µk

0g(z
k) = 0, µk

jhj(z
k) = 0 for j ∈ [τ ]}. (18)

Note that ∂fk−1(zk) = ∂L(xk) + β(zk − zk−1) and that Definition 3.1 implies

∂ḡk−1(zk) = ∂g(zk) +

τ∑
i=1

(
∇m(λk

i , r
k
i ;λ

k−1
i , rk−1

i )−∇m(λk
i , r

k
i ;λ

k
i , r

k
i )
)
.

Comparing (18) and the optimality conditions (15), we have

0 ∈ ∂G(zk) + β(zk − zk−1) + µk
0

τ∑
i=1

(∇m(λk
i , r

k
i ;λ

k−1
i , rk−1

i )−∇m(λk
i , r

k
i ;λ

k
i , r

k
i )),

where µk
0 is an acceptable Lagrange multiplier. This is equivalent to

β(zk−1 − zk) +

τ∑
i=1

(
∇m(λk

i , r
k
i ;λ

k
i , r

k
i )−∇m(λk

i , r
k
i ;λ

k−1
i , rk−1

i )
)
∈ ∂G(zk).

By the triangle inequality, it follows that

dist
(
0, ∂G(zk)

)
≤β
∥∥zk−1 − zk

∥∥+ µk
0

τ∑
i=1

∥∥∇m(λk
i , r

k
i ;λ

k
i , r

k
i )−∇m(λk

i , r
k
i ;λ

k−1
i , rk−1

i )
∥∥ . (19)

Recall that we have proved that sub-sequence {µkj}j∈N is bounded in (i) by the NNAMFCQ if {zkj}j∈N converges.
This, together with the boundedness of {zk}k∈N ensures that {µk}k∈N is bounded. Thus,

µk
0 ≤ M1 for some M1 > 0. (20)

Furthermore, by the local Lipschitz continuity of ∇m(ξ, ζ; ξ̄, ζ̄) w.r.t. (ξ̄, ζ̄) given by Definition 3.1, for {zk}k∈N,
there exists M2 > 0 such that

‖∇m(λk
i , r

k
i ;λ

k
i , r

k
i )−∇m(λk

i , r
k
i ;λ

k−1
i , rk−1

i )‖ ≤ M2‖(λk
i − λk−1

i , rki − rk−1
i )‖

≤ M2

∥∥zk−1 − zk
∥∥ , (21)

where the second inequality directly follows from z = (x,λ, r,ρ). Combining (19), (20), and (21), we have

dist
(
0, ∂G(zk)

)
≤ (β + τM1M2)

∥∥zk−1 − zk
∥∥ . (22)

Next, we verify that G satisfies the Kurdyka-Lojasiewicz (KL) property. It suffices to show that G is a semi-
algebraic function by Bolte et al. (2007). Note that it has been shown by Attouch et al. (2010, 2013); Facchinei
and Pang (2003); Bolte et al. (2014) that the semi-algebraic property is preserved under many operations such as
finite sum, product, and partial maximization operations. Moreover, the epi-graphs of semi-algebraic functions
are semi-algebraic sets and indicator functions of semi-algebraic sets are semi-algebraic functions. As a direct
consequence, L(x), g(z), and hj(z), j ∈ [τ ] are all semi-algebraic functions. X , {z : g(z) ≤ 0}, and {z : hj(z) ≤ 0},
j ∈ [τ ] are semi-algebraic sets and δ{z:g(z)≤0}, δ{z:hj(z)≤0}, j ∈ [τ ] are semi-algebraic functions. Hence, G is
semi-algebraic and satisfies the KL property.

Finally, combining (17), (22), and that G satisfies the KL property, Theorem 2.9 in Attouch et al. (2013) implies
the convergence of {zk}k∈N and that the limiting point z∗ is a stationary of G, i.e., 0 ∈ ∂G(z∗). By (18), this is
equivalent to that z∗ is a KKT point of (13). The proof is complete.
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B Reformulations and Subproblems of LDMMA for Different Models

In this section, we consider several widely used machine learning models to illustrate that the constraints in
(11) can often be represented by conic inequalities. We choose m(ξ, ζ; ξ̄, ζ̄) = 1

2

(
ξ̄
ζ̄
ζ2 + ζ̄

ξ̄
ξ2
)

to demonstrate the
tractability of our subproblems when rk,λk > 04.

B.1 Elastic Net and Sparse Group Lasso

We recall the elastic net problem

min
x

L(x) = 1
2‖Avalx− bval‖2

s.t. x ∈ argmin 1
2‖Atrx− btr‖2 + λ1‖x‖1 + λ2

2 ‖x‖22
and the sparse group lasso problem

min
x

L(x) = 1
2‖Avalx− bval‖2

s.t. x ∈ argmin 1
2‖Atrx− btr‖2 + λM+1‖x‖1 +

M∑
i=1

λi‖x(i)‖2,

where x(i) is a sub-vector of x.

The following two propositions show the explicit formulation of (11), which are closely related to (12), subproblems
of the proposed LDMMA.
Proposition B.1. For the elastic net problem with linearly independent {ai : i ∈ Itr}, let Atr = (ai)i∈Itr ,btr =
(bi)i∈Itr denote the training data and Aval = (ai)i∈Ival

,bval = (bi)i∈Ival
denote the validation data, then (11) can

be reformulated into the following conic program:

min t

s.t.
∥∥∥(Atrx− btr,

√
λ0
1

r01
r1,
√

r01
λ0
1
λ1,
√

λ0
2

r02
r2,
√

r02
λ0
2
λ2,w + btr,

s
‖btr‖2

)∥∥∥
2
≤ ‖btr‖2 − 1

‖b‖2
s,

AT
trw + ρ1 + ρ2 = 0,

‖x‖1 ≤ r1, ‖ρ1‖∞ ≤ λ1,∥∥∥∥( x
r2 − 1

2

)∥∥∥∥
2

≤ r2 +
1
2 ,

∥∥∥∥(√
2ρ2

s− λ2

)∥∥∥∥
2

≤ s+ λ2,∥∥∥∥(Avalx− bval

t− 1
2

)∥∥∥∥
2

≤ t+ 1
2 .

Proposition B.2. For the sparse group lasso problem with linearly independent {ai : i ∈ Itr}, let Atr =
(ai)i∈Itr ,btr = (bi)i∈Itr denote the training data and Aval = (ai)i∈Ival

,bval = (bi)i∈Ival
denote the validation

data, then (11) can be reformulated into the following conic program:

min t

s.t.

∥∥∥∥(Atrx− btr,
√

λ0
1

r01
r1,
√

r01
λ0
1
λ1, . . .

√
λ0
M+1

r0M+1
rM+1,

√
r0M+1

λ0
M+1

λM+1,w + btr

)∥∥∥∥
2

≤ ‖btr‖2,

AT
trw +

M+1∑
i=1

ρi = 0,

‖x‖1 ≤ rM+1, ‖ρ1‖∞ ≤ λM+1,
‖x(i)‖2 ≤ ri, ‖ρi‖2 ≤ λi for i = 1, 2, . . . ,M,∥∥∥∥(Avalx− bval

t− 1
2

)∥∥∥∥
2

≤ t+ 1
2 .

As a comparison, the reformulation (8) for elastic net and sparse group lasso are respectively

min 1
2‖Avalx− bval‖22

s.t. 1
2‖Atrx− btr‖22 + 1

2‖w + b‖22 − 1
2‖b‖

2
2 + λ1r1 + λ2r2 +

1
2λ2

‖ρ2‖22 ≤ 0,

ATw + ρ1 + ρ2 = 0,
‖x‖1 ≤ r1,

1
2‖x‖

2
2 ≤ r2, ‖ρ‖∞ ≤ λ1, λ ≥ 0

(23)

4We note that for the case that rki = 0 or λk
i = 0, we can choose m by (10) and conclude similar results.
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and
min 1

2‖Avalx− bval‖22
s.t. 1

2‖Atrx− btr‖22 + 1
2‖w + b‖22 − 1

2‖b‖
2
2 +

∑M+1
i=1 λiri ≤ 0,

ATw +
∑M+1

i=1 ρi = 0,
‖x‖1 ≤ rM+1, ‖ρM+1‖∞ ≤ λM+1 ‖x(i)‖2 ≤ ri, ‖ρi‖2 ≤ λi, i = 1, . . .M, λ ≥ 0.

(24)

We use a unified proof for the two problems. To this end, let Pi denote ‖ · ‖1, ‖ · ‖2 or 1
2‖ · ‖

2
2 of x(i), where x(i) is

a sub-vector of x. Further, we let
[τ ] = J1 ∪ J2 ∪ J3,
Pi1 = ‖ · ‖1, i1 ∈ J1,
Pi2 = ‖ · ‖2, i2 ∈ J2,
Pi3 = 1

2‖ · ‖
2
2, i3 ∈ J3.

Lemma B.3. (11) is equivalent to

min L(x)

s.t. l(x) +
∑τ

i=1

λk
i

rk
i

r2i+
rki
λk
i

λ2
i

2 + l∗(−
τ∑

i=1

ρi) +
∑
i∈J3

si ≤ 0

‖x‖1 ≤ ri, i ∈ J1, ‖x‖2 ≤ ri, i ∈ J2∥∥∥∥( x
ri − 1

2

)∥∥∥∥
2

≤ ri +
1
2 , i ∈ J3

‖ρi‖∞ ≤ λi for i ∈ J1, ‖ρi‖2 ≤ λi for i ∈ J2∥∥∥∥( √
2ρi

si − λi

)∥∥∥∥
2

≤ si + λi for i ∈ J3.

(25)

Proof. We first simplify F defined by (7). Note that for i ∈ J1

P ∗
i (y) =

{
0, if ‖y‖∞ ≤ 1

∞ otherwise,

for i ∈ J2

P ∗
i (y) =

{
0, if ‖y‖2 ≤ 1

∞ otherwise,

and for i ∈ J3 Pi(y) =
1
2‖y‖

2
2. For i ∈ J3, we introduce λiP

∗
i (

ρi

λi
) ≤ si. Then the constraints of (11) amount to

l(x) +
∑τ

i=1

λk
i

rk
i

r2i+
rki
λk
i

λ2
i

2 + l∗(−
τ∑

i=1

ρi) ≤ 0

‖x‖1 ≤ ri, i ∈ J1, ‖x‖2 ≤ ri, i ∈ J2
1
2‖x‖

2
2 ≤ ri, i ∈ J3

‖ρi‖∞ ≤ λi, i ∈ J1, ‖ρi‖2 ≤ λi, i ∈ J2,
‖ρi‖

2
2

λi
≤ 2si i ∈ J3.

By siλi =
(si+λi)

2−(si−λi)
2

4 , 2ri = (ri +
1
2 )

2 − (ri − 1
2 )

2 and taking square root, ‖ρi‖
2
2

λi
≤ 2si and 1

2‖x‖
2
2 ≤ ri are

further equivalent to second-order cone constraints∥∥∥∥( √
2ρi

si − λi

)∥∥∥∥
2

≤ si + λi,

∥∥∥∥( x
ri − 1

2

)∥∥∥∥
2

≤ ri +
1

2

which concludes the result.

Many practical problems of interest choose the least square error as the loss function, i.e., l(x) = 1
2‖Ax− b‖22.

Particularly, we consider AT to be of full row rank, i.e., the feature vectors of the data are linearly independent.
In this case, (11) is further equivalent to a conically constrained convex problem.
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Lemma B.4. If l(x) = 1
2‖Ax− b‖22 with A ∈ Rm×n being of full row rank, (11) can be further written as

min L(x)

s.t.

∥∥∥∥(Ax− b, . . . ,

√
λk
i

rki
ri,

√
rki
λk
i

λi, . . . ,w + b,

∑
i∈J3

si

‖b‖2

)∥∥∥∥
2

≤ ‖b‖2 − 1
‖b‖2

∑
i∈J3

si

ATw +
τ∑

i=1

ρi = 0

‖x‖1 ≤ ri, i ∈ J1, ‖x‖2 ≤ ri, i ∈ J2∥∥∥∥( x
ri − 1

2

)∥∥∥∥
2

≤ ri +
1
2 , i ∈ J3

‖ρi‖∞ ≤ λi, i ∈ J1, ‖ρi‖2 ≤ λi, i ∈ J2∥∥∥∥( √
2ρi

si − λi

)∥∥∥∥
2

≤ si + λi, i ∈ J3.

(26)

Proof. We first compute l∗(y) := max
x

yTx− 1
2‖Ax− b‖22, which is

l∗(y) = max
x

−1

2
xTATAx+ xT

(
ATb+ y

)
− 1

2
‖b‖2.

By Example 9.1.1 in Boyd et al. (2004), if the above problem is solvable, ATAx∗ = ATb+ y is solvable with x∗

being the optimal solution. This is equivalent to y = ATw for some w ∈ Rm and then the full column rank of A
yields Ax∗ = b+w. Substituting it into l∗(y), we have l∗(y) = 1

2‖w + b‖22 − 1
2‖b‖

2
2, hence

l∗(y) =

{
1
2‖w + b‖22 − 1

2‖b‖
2
2 if y = ATw

∞ otherwise.

Then the first constraint of (25) can be replaced with
‖Ax− b‖22 +

τ∑
i=1

∥∥∥∥∥∥
√λ0

i

r0i
ri√

r0i
λ0
i
λi

∥∥∥∥∥∥
2

2

+ ‖w + b‖22 + 2
∑
i∈J3

si ≤ ‖b‖22

ATw +
τ∑

i=1

ρi = 0.

By using

‖b‖22 − 2
∑
i∈J3

si =

‖b‖2 −

∑
i∈J3

si

‖b‖2

2

−


∑
i∈J3

si

‖b‖2

2

and taking the square root, we conclude the result.

Now we are ready to give proofs for Propositions 3.2 and B.2.

Proof. Based on the above propositions, we give the expressions of the subproblems of the elastic net and sparse
group lasso. Note that the expression of (8) is very similar to that of (11), we omit the augments for simplicity.

For the elastic net problem, J1 = {1} and J2 = ∅ and J3 = {2}. Then the conclusion follows from Lemma B.4 and

introducing the variable t such that t ≥ L(x) = 1
2‖Avalx− bval‖22, which is equivalent to

∥∥∥∥(Avalx− bval

t− 1
2

)∥∥∥∥
2

≤

t+ 1
2 .

For the sparse group lasso problem, we let J2 = {1, 2, . . . ,M} and J1 = {M + 1} and the augments are the same
as that of Proposition 3.2.

Remark B.5. Without the linear independence of the data, we can still obtain a conic program for the subproblem
but with one extra linear constraint. In fact, the linear independence, i.e., the full column rank of AT , is only
used in the proof of Lemma B.4 to yield Ax∗ = b +w from ATAx∗ = ATb + y and y = ATw. Without this
condition, we could have

Ax∗ = b+w + v with ATv = 0,

and the arguments of conic program reformulation still go through.
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B.2 Support Vector Machine

We now consider the support vector machine (SVM) problem

min
w,c

L(w, c) =
∑

j∈Ival

max(1− bj(w
>aj − c), 0)

s.t. w ∈ argmin
−w≤w≤w

∑
j∈Itr

max(1− bj(w
>aj − c), 0) + λ

2 ‖w‖22.
(27)

Proposition B.6. For the SVM problem, let Btr = diag{bj , j ∈ Itr} denote the diagonal matrix whose diagnal
elements consist of {bi : i ∈ Itr} in sequence. Let Atr = (ai)i∈Itr denote the training data (without labels),
w, r2 ∈ Rp and [r2]j denotes the j-th element of r2. Given w0, r02 > 0, (11) for problem (27) can be reformulated
as

min L(w, c) =
∑

j∈Ival

max(1− bj(w
>aj − c), 0)

s.t.
∑

j∈Itr

max(1− bj(w
>aj − c), 0) + 1

2 (
λ0

r01
r21 +

r01
λ0λ

2) + 1
2

p∑
j=1

(
w0

j

[r02 ]j
[r2]j

2
+

[r02 ]j
w0

j
w2

j

)
+ s− 1Tv ≤ 0,

1
2‖w‖2 ≤ r1,∥∥∥∥√2ρ
λ− s

∥∥∥∥
2

≤ λ+ s,(
AT

tr

1T

)
Btrv +

(
−ρ
0

)
+

(
α2 −α1

0

)
= 0,

α1 +α2 = r2,
0 ≤ v ≤ 1,α1,α2 ≥ 0,
−w ≤ w ≤ w.

(28)

Moreover, (8) for SVM is

min L(w, c) =
∑

j∈Ival

max(1− bj(w
>aj − c), 0),

s.t.
∑

j∈Itr

max(1− bj(w
>aj − c), 0) + r1λ+ r>2 w + s− 1Tv ≤ 0,

1
2‖w‖2 ≤ r1,∥∥∥∥√2ρ
λ− s

∥∥∥∥
2

≤ λ+ s,(
AT

tr

1T

)
Btrv +

(
−ρ
0

)
+

(
α2 −α1

0

)
= 0,

α1 +α2 = r2,
0 ≤ v ≤ 1,α1,α2 ≥ 0,
−w ≤ w ≤ w.

(29)

We remark that (28) is also equivalent to a conic program by the same augments of Lemma B.4 and the proofs
are omitted for the sake of brevity.

Proof. The lower-level problem can be written as

min
w,c,z

l(w, c) + λP (z)

s.t. w = z, g1(w, c) ≤ 0, g2(w, c) ≤ 0,

where l(w, c) =
∑

j∈Itr

max(1 − bj(w
>aj − c), 0), P = 1

2‖ · ‖22, g1(w, c) = w − w and g2(w, c) = −w − w. The

strong duality holds since the constraints are linear, then the above problem is further equivalent to

max
ρ,α1≥0,α2≥0

min
w,c,z

l(w, c) + λP (z) + ρT (w − z) +αT
1 g1(w, c) +αT

2 g2(w, c)

= max
ρ,α1≥0,α2≥0

−max
w,c,z

−ρ>w − l(w, c) + ρ>z− λP (z)− (αT
1 g1(w, c) +αT

2 g2(w, c))

= max
ρ,α1≥0,α2≥0

−l∗g(−ρ, 0)− λP ∗(ρλ )

= − min
ρ,α1≥0,α2≥0

l∗g(−ρ, 0) + λP ∗(ρλ ),
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where lg(w, c) = l(w, c) +αT
1 g1(w, c) +αT

2 g2(w, c). Then problem (8) for SVM is equivalent to

min
w,c

L(w, c)

s.t. l(w, c) + λP (w) ≤ −l∗g(−ρ)− λP ∗( ρλ ).
(30)

Specifically, by Table 1, we have

lg(w, c) =
∑
j∈Itr

max(1− bj(w
>aj − c), 0) +αT

1 (w −w) +αT
2 (−w −w).

We calculate the conjugate function as follows

l∗g(y, t) = max
w,c

{(y>, t)(w, c)> −
∑

j∈Itr

max(1− bj(w
>aj − c), 0)−αT

1 (w −w)−αT
2 (−w −w)}

= max
w,c,u

{(y>, t)(w, c)> −
∑

j∈Itr

uj −αT
1 (w −w)−αT

2 (−w −w)}

s.t. uj ≥ 1− bj(w
>aj − c), uj ≥ 0, j ∈ Itr.

Hence we have
l∗g(y, t) = max

w,c,u
{(y>, t)(w, c)> − 1>u+ (αT

1 +αT
2 )w − (αT

1 −αT
2 )w}

s.t. uj ≥ 1− bj(w
>aj − c), zj ≥ 0, j ∈ Itr.

(31)

Note that (31) is indeed a linear program and we simplify it by using duality. Let Lγ denote the Lagrange
function of (31) and γ1,γ2 denote the multipliers. Then

Lγ(w, c,u;γ1,γ2) = (y, t)T (w, c)−1>z+(α1+α2)
Tw−(α1−α2)

Tw+γ>
1 u+γ>

2 (u−1+BtrA
>
trw−cBtr1). (32)

where Btr = diag{bj , j ∈ Itr} is a diagonal matrix whose diagnal elements consist of {[btr]i : i ∈ Itr} in sequence.
By calculating the minimum value of the Lagrangian over (w, c,u), we obtain the dual function as follows.

l∗g(y, t) = min
y,t

−γ>
2 1+ (α1 +α2)

>w

s.t. γ1 + γ2 − 1 = 0,(
y
t

)
+

(
A>

tr

1T

)
Btrγ2 +

(
α2 −α1

0

)
= 0.

(33)

By introducing r2 = α1 +α2 and recalling α1,α2 ≥ 0, we conclude that (33) is equivalent to

l∗g(y, t) = min
y,t

−γ>
2 1+ r>2 w

s.t. γ1 + γ2 − 1 = 0,
α1 +α2 = r2,α1,α2 ≥ 0,(
y
t

)
+

(
A>

tr

1T

)
Btrγ2 +

(
α2 −α1

0

)
= 0.

(34)

Note that in (30), λP ∗(ρλ ) =
‖ρ‖2

2

2λ . We introduce 1
2‖w‖22 ≤ r1,

‖ρ‖2
2

2λ ≤ s. By combining (30) (33) and using
similar augments of Lemma B.3, we conclude that (8) is equivalent to (29) for SVM. Using the expression
m1(λ, r1;λ

0, r01) =
1
2

(
λ0

r01
r21 +

r01
λ0λ

2
)

and m2(w, r2;w
0, r02) =

1
2

p∑
j=1

(
w0

j

[r02 ]j
[r2]j

2
+

[r02 ]j
w0

j
w2

j

)
, (28) follows.

B.3 Low-rank Matrix Completion

We now discuss the low-rank matrix completion model and summarise problem as follows

min
λ∈R2G+1

+

1
2‖Mval −Xvalθ1

T − (Zvalβ1T )T − Γ‖2F

s.t. (β,Γ) ∈ argminβ,Γ
1
2‖Mtr −Xtrθ1

T − (Ztrβ1T )T − Γ‖2F
+λ0‖Γ‖∗ +

G∑
g=1

λg‖θ(g)‖2 +
G∑

g=1
‖β(g)‖2

(35)

where Mval = {Mij}(i,j)∈Ωval
,Mtr = {Mij}(i,j)∈Ωtr

, Xval = (xi)i∈Ival
, Xtr = (xi)i∈Itr and Zval =

(zj)j∈Ival
, Ztr = (zj)j∈Itr
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Proposition B.7. We denote the spectral norm of W as ‖W‖p and corresponding matrice as above. (11) for
problem (35) can be reformulated as

min
λ∈R2G+1

+

1
2‖Mval −Xvalθ1

T − (Zvalβ1T )T − Γ‖2F

s.t. 1
2‖Mtr −Xtrθ1

T − (Ztrβ1T )T − Γ‖2F + tr(MT
trW ) + 1

2‖W‖2F + 1
2

2G∑
g=0

λ0
g

r0g
r2g +

r0g
λ0
g
λ2
g ≤ 0,

−ρ1 +XT
trW1 = 0,

−ρ2 + ZT
trW

T1 = 0,
‖Γ‖∗ ≤ r0,∥∥∥θ(g)

∥∥∥
2
≤ rg, g = 1, ..., G,∥∥∥β(g)

∥∥∥
2
≤ rg+G, g = 1, ..., G,∥∥∥ρ(g)

1

∥∥∥
2
≤ λg, g = 1, ..., G,∥∥∥ρ(g)

2

∥∥∥
2
≤ λg+G, g = 1, ..., G,

‖W‖p ≤ λ0.

(36)

Moreover, (8) for low-rank matrix completion is

min
λ∈R2G+1

+

1
2‖Mval −Xvalθ1

T − (Zvalβ1T )T − Γ‖2F

s.t. 1
2‖Mtr −Xtrθ1

T − (Ztrβ1T )T − Γ‖2F + tr(MT
trW ) + 1

2‖W‖2F +
2G∑
g=0

λgrg ≤ 0,

−ρ1 +XT
trW1 = 0

−ρ2 + ZT
trW

T1 = 0
‖Γ‖∗ ≤ r0,∥∥∥θ(g)

∥∥∥
2
≤ rg, g = 1, ..., G,∥∥∥β(g)

∥∥∥
2
≤ rg+G, g = 1, ..., G,∥∥∥ρ(g)

1

∥∥∥
2
≤ λg, g = 1, ..., G,∥∥∥ρ(g)

2

∥∥∥
2
≤ λg+G, g = 1, ..., G,

‖W‖p ≤ λ0.

(37)

Proof. We define
l(θ,β,Γ) =

1

2
‖Mtr −Xtrθ1

T − (Ztrβ1T )T − Γ‖2F ,

and compute its conjugate function

l∗(u,v,W ) = max
θ,β,Γ

g(θ,β,Γ) := maxθTu+ βTv + tr(ΓTW )− l(θ,β,Γ).

By first order condition, for optimal (θ∗,β∗,Γ∗), it holds that

∇θg(θ,β,Γ) = 0,

∇βg(θ,β,Γ) = 0,

∇Γg(θ,β,Γ) = 0,

which are equivalent to

u+XT
tr(Mtr −Xtrθ1

T − (Ztrβ1
T )T − Γ)1 = 0, (38)

v + ZT
tr(Mtr −Xtrθ1

T − (Ztrβ1
T )T − Γ)T1 = 0, (39)

W − (Mtr −Xtrθ1
T − (Ztrβ1

T )T − Γ) = 0. (40)

Substituting (40) into (39) and (38), we obtain

u−XT
trW1 = 0, v − ZT

trW
T1 = 0. (41)
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Hence l∗(u,v,W ) = +∞ if (41) is not satisfied. We choose θ∗ = 0,β∗ = 0,Γ∗ = Mtr +W and obtain that

l∗(u,v,W ) =

{
tr(MT

trW ) + 1
2‖W‖2F if (41) holds,

+∞ otherwise.
(42)

By combining (42) and using similar augments of Lemma B.3, we conclude that (35) is equivalent to for low-rank
matrix completion. Using the expression m(λg, rg;λ

0
g, r

0
g) =

1
2

(
λ0
g

r0g
r2g +

r0g
λ0
g
λ2
g

)
, (36) follows.

C Detials for Experiments and Data

C.1 Elastic Net

The generation of feature matrix A ∈ Rn×p and response vector b ∈ Rn follows Feng and Simon (2018), where
the column vectors ai ∈ Rp : i ∈ Itr \ Ival satisfy the marginal distribution N(0, I), and the correlation matrix
between column vectors satisfies cor(aij , aik) = 0.5|j−k|. The feature matrix is full rank and satisfies the conditions
in Lemma B.4. Next, we generate a random vector β ∈ Rp with 15 non-zero elements, where each element βi

is either 0 or 1. The response vector b is obtained by applying the feature matrix to the random vector and
adding a certain amount of noise, i.e., b = Aβ+ σε, where we set the signal-to-noise ratio to σ = 2 and the noise
ε ∼ N(0, In). Random search is implemented using 100 uniformly random samples. The variable space of TPE
is set to a uniform distribution on [−5, 2] for both u1 and u2. We follow Gao et al. (2022) and use the same
parameter settings and stopping criteria to implement the VF-iDCA algorithm. For LDMMA algorithm, we set
the initial point to λ0 = (0.01, 0.01). For the ε-perturbation problem (13), we set ε = 0.01.

C.2 Sparse Group Lasso

The generation of the feature matrix A ∈ Rn×p and the response vector b ∈ Rn follows Feng and Simon
(2018). The generated dataset includes n training samples, n/3 validation samples, and 100 fixed testing samples.
The observation matrix A satisfies that each column vector ai follows the standard normal distribution. The
random vector β = [β(1),β(2),β(3)] ∈ Rp, where β(i) = (1, 2, 3, 4, 5, 0, ..., 0). The response vector b is generated
by applying the feature matrix to the random vector and adding some noise. Specifically, bi = βTai + σεi
and b = (b1, b2, ..., bn). Like the elastic net model, we set the signal-to-noise ratio to σ = 2 and the noise
ε = (ε1, ..., εn) ∼ N(0, I). For the experiments with four different data sizes, the algorithm details of VF-iDCA
are the same as Gao et al. (2022), including parameter tuning. For LDMMA, the initial value of the iteration is
set to λ0 = (0.1, ..., 0.1), and ε = 1 is also set. It is worth noting that if ε is too small, the feasible domain of
problem (13) is insufficient to complete the iteration. This premature termination will result in an abnormally
low validation error and a larger test error. In machine learning, we call it overfitting, which is usually caused by
poor generalization performance of the model. The occurrence of overfitting indicates that the model only has a
good learning effect on the training and validation data but has no practical value for unlearned test data and
more extensive data. Overall, in this series of experiments, we need to choose an appropriate value of ε, which
can avoid overfitting and prevent the solution of problem (13) from deviating too much from the solution of the
original problem (1).

C.3 Support Vector Machine

We fetch the datasets with libSVM toolbox and obtain the corresponding observation matrix and label vector of
all datasets. Each dataset is divided into two seperate parts: a cross-validation training set Ω containing 3bN/6c
samples, and a test set Ωtest containing the remaining samples. Based on this devision, we partition the entire
training set into multiple equal parts and iteratively use one part as the validation set and the remaining parts as
the training set to solve the SVM problem. In the experiment, we performed 3-fold and 6-fold cross-validation on
the training and validation sets for each of the six datasets to optimize hyperparameters.

Finally, we use the obtained hyperparameters and corresponding model to compute the error on the validation
set. We repeat this process for each part to reduce the impact of data variability on the model. However, in the
process of solving the SVM problem, cross-validation is involved, and the obtained hyperparameters satisfy the
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minimization of the lower-level function of the SVM problem. Therefore, we need to use the hyperparameters to
solve the upper-level problem to obtain the corresponding validation and test errors. We randomly divide the
cross-validation training set Ω into K mutually exclusive subsets {Ωk

val}Kk=1, each of which will be used as the
validation set. The remaining parts will be used as the training set Ωk

tr = Ω \ Ωk
val. We define the loss function

on the validation set in the cross-validation process as:

Θval(w
1,w2, . . . ,wK , c) := 1

K

K∑
k=1

1
|Ωk

val|
∑

j∈Ωk
val

max(1− bj(a
>
j w

k − ck), 0), (43)

The primal problem of the support vector machine (27) is then transformed into the following bilevel program
(Kunapuli et al., 2008):

min
w,c

Θval(w
1,w2, . . . ,wK , c)

s.t. λ > 0, w̄lb ≤ w̄ ≤ w̄ub

(wk, ck) ∈ argmin
−w≤w≤w

{ ∑
j∈Ωk

tr

max(1− bj(a
>
j w − c), 0) + λ

2 ‖w‖22

}
,

k = 1, 2, . . . ,K.

(44)

where c = (c1, c2, . . . , cK), c1, c2, . . . , cK and w1,w2, . . . ,wK are K parallel copies of c and w. w̄lb and w̄lb are
the upper and lower bounds of w̄, respectively. We can define a loss function on the test set analogous to (43):

Θtr(w
1,w2, . . . ,wK , c)

:= 1
K

K∑
k=1

1
|Ωk

tr|
∑

j∈Ωk
tr

max(1− bj(a
>
j w

k − ck), 0), (45)

Correspondingly, the subproblem (29) to be solved is transformed into:

min
λ,w̄,w1,w2,...,wK ,c

Θval(w
1,w2, . . . ,wK , c),

s.t. Θtr(w
1,w2, . . . ,wK , c) + r1λ+ r>2 w + s− 1Tv ≤ 0,

1
2‖w

k‖2 ≤ r1, k = 1, 2, . . . ,K∥∥∥∥√2ρ
λ− s

∥∥∥∥
2

≤ λ+ s,(
Ak

tr
T

1T

)
Bk

trv +

(
−ρ
0

)
+

(
α2 −α1

0

)
= 0, k = 1, 2, ...,K

α1 +α2 = r2,
0 ≤ v ≤ 1,α1,α2 ≥ 0,
−w ≤ wk ≤ w, k = 1, 2, . . . ,K
w̄lb ≤ w̄ ≤ w̄ub

(46)

Finally, we substitute the optimal solutions w̄, λ obtained from the above problem into the following problem and
solve it again to obtain the optimal (w, c),

(w, c) ∈ argmin
−w≤w≤w

∑
j∈Ω

max(1− bj(a
>
j w − c), 0) +

λ

2
‖w‖22

 .

We use MOSEK solver to handle the 2-norm term in the objective function of the upper-level problem, which is
convex and smooth. We also conduct VF-iDCA and other methods according to the setting in Gao et al. (2022).
For LDMMA, we set the initial point of the iteration to λ0 = (0.1, . . . , 0.1) and parameters w̄lb = (10−6, . . . , 10−6),
w̄ub = (10, . . . , 10) for the lower and upper bounds of w̄, respectively. We choose ε = 1 for 3-fold cross-validation
and ε = 5 for 6-fold cross-validation to ensure the primal and dual feasibility of the subproblems in each iteration,
which is crucial for MOSEK and prevents overfitting.

C.4 Elastic Net with High Dimensional Datasets

Compared with Section C.1, we only replace the synthetic datasets with real datasets. The gisette dataset
comprises 5000 features and 6000 samples, whereas the sensit dataset encompasses 78823 features. For dataset
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partition, we extract 50, 25 examples as training set and 50, 25 examples as validation set, respectively. We set
the initial point as λ0 = (0.01, 0.01) and perturbation parameter ε = 1 for our algorithm. Meanwhile, we also
conduct VF-iDCA and other methods according to the setting in Gao et al. (2022).

Table 6: Support Vector Machine problems with 3-fold and 6-fold cross-validation on three datasets, where the
number of features p and samples |Ω|, |Ωtest| are displayed together with dataset names.

Dataset Methods 3-fold 6-fold
Times(s) Val. Err. Test Err. Times(s) Val. Err. Test Err.

liver-disorders-scale
p = 5
|Ω| = 72
|Ωtest| = 73

Grid 0.74± 0.01 0.65± 0.08 0.32± 0.07 1.16± 0.02 0.61± 0.08 0.32± 0.06
Random 0.75± 0.02 0.63± 0.07 0.32± 0.05 1.16± 0.04 0.59± 0.06 0.32± 0.05
TPE 0.68± 0.55 0.65± 0.08 0.32± 0.07 2.26± 1.67 0.62± 0.06 0.32± 0.06
VF-iDCA 0.13± 0.03 0.52± 0.07 0.27± 0.04 0.27± 0.03 0.40± 0.05 0.30± 0.04
LDMMA 0.08± 0.01 0.46± 0.08 0.23± 0.10 0.15± 0.04 0.19± 0.08 0.24± 0.08

diabetes-scale
p = 8
|Ω| = 384
|Ωtest| = 384

Grid 3.17± 0.08 0.55± 0.03 0.19± 0.03 6.22± 0.21 0.54± 0.03 0.33± 0.04
Random 3.47± 0.14 0.56± 0.03 0.32± 0.05 7.18± 0.30 0.55± 0.04 0.30± 0.05
TPE 10.21± 6.68 0.55± 0.04 0.29± 0.06 76.67± 36.39 0.54± 0.03 0.34± 0.06
VF-iDCA 0.28± 0.04 0.48± 0.03 0.23± 0.01 0.65± 0.03 0.43± 0.03 0.23± 0.02
LDMMA 0.22± 0.03 0.49± 0.02 0.19± 0.01 0.55± 0.10 0.39± 0.05 0.20± 0.02

breast-cancer-scale
p = 14
|Ω| = 336
|Ωtest| = 347

Grid 3.32± 0.09 0.08± 0.01 0.16± 0.08 6.32± 0.11 0.08± 0.01 0.15± 0.12
Random 3.69± 0.07 0.09± 0.01 0.08± 0.08 7.20± 0.12 0.09± 0.02 0.10± 0.11
TPE 17.88± 10.05 0.09± 0.01 0.10± 0.11 34.66± 20.57 0.09± 0.01 0.18± 0.13
VF-iDCA 0.24± 0.04 0.09± 0.01 0.04± 0.01 0.57± 0.12 0.08± 0.01 0.03± 0.01
LDMMA 0.12± 0.01 0.08± 0.01 0.03± 0.01 0.42± 0.17 0.08± 0.01 0.02± 0.01

sonar
p = 60
|Ω| = 102
|Ωtest| = 106

Grid 10.08± 0.33 0.59± 0.10 0.41± 0.14 20.88± 0.61 0.63± 0.06 0.49± 0.12
Random 10.30± 0.18 0.55± 0.07 0.31± 0.08 20.56± 0.31 0.58± 0.03 0.41± 0.10
TPE 42.80± 13.95 0.64± 0.13 0.45± 0.11 189.82± 19.80 0.70± 0.06 0.53± 0.07
VF-iDCA 1.32± 0.23 0.03± 0.02 0.25± 0.04 3.03± 0.09 0.00± 0.00 0.24± 0.04
LDMMA 0.82± 0.15 0.17± 0.02 0.25± 0.04 2.38± 0.19 0.00± 0.00 0.22± 0.02

a1a
p = 123
|Ω| = 801
|Ωtest| = 804

Grid 17.07± 0.36 0.41± 0.02 0.24± 0.02 36.77± 0.99 0.39± 0.02 0.24± 0.01
Random 17.81± 0.30 0.41± 0.02 0.21± 0.03 39.03± 0.65 0.39± 0.02 0.21± 0.02
TPE 187.91± 39.92 0.42± 0.02 0.23± 0.02 447.17± 85.49 0.40± 0.02 0.24± 0.01
VF-iDCA 2.40± 0.13 0.27± 0.02 0.17± 0.01 11.01± 1.26 0.19± 0.02 0.18± 0.01
LDMMA 1.24± 0.12 0.20± 0.02 0.15± 0.08 8.04± 0.71 0.15± 0.05 0.17± 0.01

w1a
p = 300
|Ω| = 1236
|Ωtest| = 1241

Grid 20.08± 0.33 0.59± 0.10 0.41± 0.14 104.47± 2.99 0.06± 0.01 0.03± 0.00
Random 20.30± 0.18 0.55± 0.07 0.31± 0.08 147.88± 8.64 0.05± 0.00 0.02± 0.00
TPE 85.80± 13.95 0.64± 0.13 0.45± 0.11 682.35± 17.52 0.06± 0.01 0.03± 0.00
VF-iDCA 4.32± 0.23 0.03± 0.02 0.03± 0.00 25.37± 3.10 0.01± 0.00 0.03± 0.00
LDMMA 2.19± 0.24 0.01± 0.00 0.01± 0.00 15.25± 2.90 0.01± 0.00 0.02± 0.00
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