
Noname manuscript No.
(will be inserted by the editor)

No Dimension-Free Deterministic Algorithm Computes
Approximate Stationarities of Lipschitzians

Lai Tian · Anthony Man-Cho So

Received: date / Accepted: date

Abstract We consider the oracle complexity of computing an approximate
stationary point of a Lipschitz function. When the function is smooth, it is
well known that the simple deterministic gradient method has finite dimension-
free oracle complexity. However, when the function can be nonsmooth, it is
only recently that a randomized algorithm with finite dimension-free oracle
complexity has been developed. In this paper, we show that no deterministic
algorithm can do the same. Moreover, even without the dimension-free require-
ment, we show that any finite-time deterministic method cannot be general
zero-respecting. In particular, this implies that a natural derandomization of
the aforementioned randomized algorithm cannot have finite-time complex-
ity. Our results reveal a fundamental hurdle in modern large-scale nonconvex
nonsmooth optimization.

Keywords Stationary points · Black-box optimization · Information-based
complexity · Dimension-free rates · Lower bounds

Mathematics Subject Classification (2020) 68Q25 · 90C60 · 90C56

This work is supported in part by the Hong Kong Research Grants Council (RGC) General
Research Fund (GRF) project CUHK 14216122.

Lai Tian
Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong
E-mail: tianlai@se.cuhk.edu.hk

Anthony Man-Cho So
Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,
Shatin, N. T., Hong Kong
E-mail: manchoso@se.cuhk.edu.hk

2 L. Tian, A. M.-C. So

1 Introduction

Convexity and differentiability have long been considered desirable properties
for an optimization model to possess, as they can be exploited in the de-
sign of iterative methods with strong convergence guarantees. Nevertheless,
many contemporary applications in machine learning, operations research,
and statistics — such as ReLU neural networks, generative adversarial net-
work, piecewise affine regression [14] — give rise to nonconvex and nonsmooth
models. Such models are challenging from both theoretical and computational
perspectives, as automatic differentiation with PyTorch/TensorFlow may not
be correct [28], subgradient flow is not necessarily convergent [15], and even
stationarity concepts for them are not trivial at all [34].

Consider the optimization problem

min
x∈Rd

f(x),

where f : Rd → R is L-Lipschitz for some L > 0 and could be both nons-
mooth and nonconvex. In such a general setting, one of the arguably most
fundamental questions is whether a stationary point of f is computable, and
if so, how. When f is smooth, it is folkloric that an ε-approximate stationary
point x of f (i.e., ∥∇f(x)∥ ≤ ε) can be computed by gradient descent using
only O(ε−2) calls to the gradient oracle [39], independent of the dimension d.
Extensive efforts have been devoted to the fast computation of approximate
stationary points of smooth functions in various settings [22, 8, 26]. Moreover,
lower bounds on the complexity of computing approximate stationary points
of smooth functions with different methods/oracles are rather well-understood
[9, 10, 11].

When f is nonsmooth, there is a variety of stationarity concepts (see,
e.g., [34]), and the complexity of computing/approximating these concepts
is relatively less explored. As shown in [49, Theorem 5] and [33, Proposi-
tion 1], computing an ε-approximate stationary point x of f in the sense that
dist(0, ∂f(x)) ≤ ε 1 is impossible for any finite-time randomized/deterministic
algorithm interacting with a local oracle. For well-behaved problems with
ρ-weakly convex2 objective functions, Davis and Drusvyatskiy [16], Davis
and Grimmer [19] introduced a concept called near-approximate stationarity
(NAS), which is closely related to the gradient norm of the Moreau enve-
lope of the objective. Informally, a point is (ε, δ)-NAS for f if it is within a
distance of δ from an ε-approximate stationary point of f ; see Definition 4.
They showed that a subgradient-type method computes an (ε, δ)-NAS point
with O(poly(ρ, ε−1, δ−1)) calls to the subgradient oracle, independent of the di-
mension. For general Lipschitz objective functions, Kornowski and Shamir [33]
proved that the oracle complexity of any randomized/deterministic algorithm
for computing an (ε, δ)-NAS point cannot avoid an exponential dependence on
the dimension. This implies that the computation of NAS points is in general

1 Here ∂f(x) is the Clarke subdifferential of f at x; see Definition 1 for details.
2 Recall that f is ρ-weakly convex if x 7→ f(x) + ρ

2
∥x∥2 is convex.

Hardness of Deterministic Optimization of Lipschitz Functions 3

intractable. Nevertheless, another concept that dates back to the seminal work
of Goldstein [23], termed Goldstein approximate stationarity (GAS), exhibits
favorable algorithmic consequences. Roughly speaking, a point x is (ε, δ)-GAS
for f if there exists a vector of norm at most ε in a δ-approximation of the
Clarke subdifferential at x (denoted by ∂δf(x)); see Definitions 2 and 3. The
conceptual scheme in [23] computes the iterates via the update

x(t+1) ← x(t) − δ · g(t)/∥g(t)∥,

where g(t) := argming∈∂δf(x(t)) ∥g∥ is the minimal norm element in ∂δf(x
(t)).

It is shown in [23] that an (ε, δ)-GAS point of f can be computed by such
a scheme in O(ε−1δ−1) steps. However, obtaining g(t) for a general Lipschitz
function equipped with an implementable oracle can be intractable, as there
is no known approach to evaluate ∂δf(x). Therefore, a series of works, e.g., [6,
7, 29], proposes to build a polyhedral approximation of ∂δf(x

(t)) via random
sampling and compute an approximate g(t) by solving a quadratic program
in every iteration. However, the number of samples needed for a meaningful
approximation of ∂δf(x

(t)) ⊆ Rd is lower bounded by the dimension d. Thus,
a dimension-free finite-time complexity cannot be achieved with the existing
gradient sampling schemes.

Recently, Zhang et al. [49] have introduced a novel randomized algorithm
that, when equipped with a sufficiently powerful oracle, computes (ε, δ)-GAS
points of L-Lipschitz directionally differentiable functions with probability at
least 1− γ and has a dimension-free oracle complexity of

O

(
∆L2

ε3δ
log

(
∆

γεδ

))
,

where f(0) − infx f(x) ≤ ∆.3 A natural question, which is also posed in
[49], is whether the algorithm in [49] can be derandomized. An answer to this
question could have both theoretical and practical impact on the black-box
optimization of Lipschitz functions and potentially deepen our understanding
of the computability of various approximate stationarity concepts.

1.1 Our Results and Techniques

Our first main result shows that the answer to the above question is negative.
Specifically, we show in Theorem 1 that for any sufficiently small ε ≥ 0, δ ≥ 0:

No deterministic algorithm for computing (ε, δ)-GAS points of
Lipschitz functions has dimension-free finite-time complexity.

3 In this paper, we assume that an algorithm will always start from x(1) = 0. This is
without loss of generality due to the lack of information about f before querying x(1) and
the translational invariance of all considered function classes.

4 L. Tian, A. M.-C. So

This puts the dimension-free complexity of computing a GAS point of a Lip-
schitz function in a situation similar to that of computing the volume of a
convex body [20, 21], for which randomization yields strict improvement. It
also reveals a fundamental hurdle in modern large-scale nonconvex nonsmooth
optimization.

Now, suppose that we drop the dimension-free requirement and allow any
deterministic algorithm with finite complexity (potentially with exponential
dependence on the dimension). As our second main result, we show in Theo-
rem 2 that for any sufficiently small ε ≥ 0, δ ≥ 0:

Any deterministic finite-time algorithm for computing (ε, δ)-GAS
points of Lipschitz functions cannot be general zero-respecting.

The notion of a general zero-respecting algorithm (see Section 2.3) generalizes
that of a zero-respecting algorithm in the smooth setting [9, Section 2.2] to
the nonsmooth setting. Informally, a (general) zero-respecting algorithm never
explores the coordinates along which the function is in some sense locally
“flat.” Moreover, it captures the classic notion of linear span algorithm [42,
Assumption 2.1.4] as a special case. The above result rules out any natural
derandomization of the algorithm by Zhang et al. [49].

The major obstacle in lower bounding the oracle complexity of GAS is the
lack of hardness source. In the smooth setting, almost all the hard construc-
tions [9, 10, 22] are built upon what Nesterov called “the worst-function in the
world” [42, Chapter 2.1.2]. However, these constructions fail to rule out (ε, δ)-
GAS points when the number of oracle calls is ω

(
log(1/δ)

)
. In the nonsmooth

case, simple resisting oracle-type constructions [47, 49] would not rule out
(ε, δ)-GAS points if there exist i ∈ [T], j ∈ [T] such that 0 < ∥x(i)−x(j)∥ < δ.
Another source of hardness called “string guessing” [4, 5] is popular in the on-
line and nonsmooth convex settings. With a modified “string guessing” func-
tion, Kornowski and Shamir [33] proved that the oracle complexity of any
randomized/deterministic algorithm for computing (ε, δ)-NAS points cannot
avoid an exponential dependence on the dimension. However, these construc-
tions would also be inapplicable to the computation of (ε, δ)-GAS points when
the number of oracle calls is ω

(
log(1/δ)

)
.

Our main technical contribution is a new resisting oracle-type, wedge-
shaped hard construction that is tailored for deterministic computation of
GAS points. On a high level, given only the local information about a func-
tion at the queried points, none of the algorithms we consider can distinguish
between a single-coordinate resisting construction similar to [47, 49] or our
“wedge” construction. While there may be many GAS points of the former
among the queried points, with careful design and analysis, we can eliminate
all GAS points below certain precision of the latter near the queried points. As
a result, no algorithm can identify a GAS point of all Lipschitz functions. We
remark that our hardness results hold even under the very strong assumption
that the local oracle returns (generalized) derivatives of all orders (if exist).

Hardness of Deterministic Optimization of Lipschitz Functions 5

1.2 Related Work.

Asymptotic Analysis. Clarke stationary points x of quite general functions f
(i.e., x satisfies 0 ∈ ∂f(x)) are computable in the asymptotic regime. Benäım
et al. [2], Majewski et al. [36], Davis et al. [17] studied the asymptotic conver-
gence of subgradient-type methods from a differential inclusion perspective.
In particular, Davis et al. [17] established the asymptotic convergence of the
subgradient method to a Clarke stationary point when applied to a Whitney
stratifiable objective function. Daniilidis and Drusvyatskiy [15] constructed a
pathological Lipschitz function for which the vanilla subgradient method may
not converge even in continuous time. A discussion of the relationship between
our hardness results and these asymptotic convergence results can be found in
Remark 4.

Nonasymptotic Analysis. The nonasymptotic analysis of iterative methods for
general nonconvex nonsmooth optimization problems is still in its infancy
stage. For the concept of NAS, on the positive side, it is shown in [19, 16] that
in the case of ρ-weakly convex functions, an (ε, δ)-NAS point is computable
with O(poly(ρ, ε−1, δ−1)) oracle calls. On the negative side, Kornowski and
Shamir [33] showed that neither deterministic nor randomized algorithms can
compute NAS points of Lipschitz functions without having an oracle com-
plexity that is exponential in the dimension, thus establishing the intractabil-
ity of NAS. Tian and So [45] extended the hardness results in [33] to cover
ρ-weakly convex functions by proving an Ω(log(ρ)) lower bound on the ora-
cle complexity. For the concept of GAS, the conventional gradient sampling
scheme [7, 29, 30, 6] cannot promise dimension-free finite-time computation.
Metel and Takeda [37] introduced a perturbed SGD method and established its
nonasymptotic convergence under mild assumptions. However, the complexity
is not dimension-free. Recently, Zhang et al. [49] have presented a randomized
algorithm with dimension-free oracle complexity for computing a GAS point.
However, the algorithm in [49] requires a non-standard, impractical subgradi-
ent oracle. Such an oracle can be replaced by a standard one by introducing
extra randomized procedures; see Tian et al. [46] and Davis et al. [18].

Derandomization of [49]. Several recent concurrent works, including Kornowski
and Shamir [32], Jordan et al. [27], and Kong and Lewis [31], investigate the
deterministic computation of GAS points in various settings.4 On the nega-
tive side, both [32, 27] present hardness results for the deterministic computa-
tion of GAS points. While their constructions are different from that we will
present in Section 4, their hardness results cannot achieve the same level of
generality as our Theorems 1 and 2. On the positive side, both [32, 27] show
that derandomization is possible when f is a β-smooth function. In particular,
they introduced algorithms with Õ(log(β)δ−1ε−3) complexity for computing

4 We became aware of these concurrent, independent developments when a preliminary
version of our manuscript was being reviewed for possible publication in the proceedings of
a conference.

6 L. Tian, A. M.-C. So

an (ε, δ)-GAS point of such an f . The work [27] then further develops a “white-
box” deterministic smoothing technique. By contrast, the work [31] presents a
deterministic algorithm that is applicable to more general difference-of-convex,
piecewise linear, and weakly convex functions. Furthermore, it establishes a
dimension-free finite-time complexity of the algorithm up to a natural noncon-
vexity modulus. A detailed discussion of these concurrent, independent results
appears in Section 3.2.

Notation. Throughout this paper, scalars, vectors, and matrices are denoted
by lowercase letters, boldface lower case letters, and boldface uppercase letters,
respectively. The notation used in this paper is mostly standard: xi denotes
the i-th coordinate of x; A⊗B := {(a, b) : a ∈ A, b ∈ B} denotes the Cartesian
product of two sets A and B with A⊗k := A ⊗ · · · ⊗ A (k times); Bε(x) :=
{v : ∥v − x∥ ≤ ε} with B := B1(0) (we may write Bd

ε(x) to emphasize the
dimension); [x,y] := {γx+ (1− γ)y : γ ∈ [0, 1]}; dist(x, S) := infv∈S ∥v − x∥
for a non-empty closed set S; conv(S), int(S), bd(S), and Sc denote the convex
hull, interior, boundary, and complement of the set S, respectively; supp(x) :=
{i : xi ̸= 0};

{
xA[f],(t)

}
t
denotes the sequence of iterates generated by the

algorithm A when applied to the function f (we may write {x(t)}t when A
and f are clear from the context); ei denotes the i-th column of the identity
matrix; a ∨ b := max{a, b}; a ∧ b := min{a, b}; N+ := N\{0}; [a] := {1, . . . , a}
for any integer a ≥ 1; ∥f∥Lip denotes the Lipschitz constant of the function f .

Organization. We introduce the necessary background on variational analysis,
definitions of approximate stationarity concepts, and the formal setting of our
results in Section 2. Then, in Section 3, we present our main hardness results.
The hard constructions and proofs are collected in Section 4. We conclude the
paper in Section 5.

2 Preliminaries

2.1 Generalized Differentiation Theory

We begin with the following classic construction of generalized subdifferential
for a Lipschitz function [44, Theorem 9.61]:

Definition 1 (Clarke subdifferential) The Clarke subdifferential of a Lip-
schitz function f : Rd → R at the point x ∈ Rd is defined by

∂f(x) := conv
({

s : ∃xn → x,∇f(xn) exists,∇f(xn)→ s
})

.

Perturbation and approximation are powerful principles underlying the theory
of and many algorithms for optimization. The following δ-approximation of
the Clarke subdifferential introduced by Goldstein [23, Definition 2.2] has nice
limiting behavior (see Fact 1) and is convenient for algorithmic developments.

Hardness of Deterministic Optimization of Lipschitz Functions 7

Definition 2 (Goldstein δ-subdifferential) Given a constant δ ≥ 0, the
Goldstein δ-subdifferential of a Lipschitz function f : Rd → R at the point
x ∈ Rd is defined by

∂δf(x) := conv
(⋃

y∈Bδ(x)
∂f(y)

)
.

Some useful properties of the Clarke subdifferential and its Goldstein approx-
imation are collected below:

Fact 1 (cf. Clarke [12], Goldstein [23]) For a Lipschitz function f ,

– ∂f(x), ∂δf(x) are nonempty, convex, compact for any δ > 0;
– ∂f(x) = ∩δ>0∂δf(x);
– if f is continuously differentiable at x, then ∂f(x) = {∇f(x)};
– if f is convex, then ∂f is equal to the convex subdifferential.

2.2 Approximate Stationarity Concepts

We are now ready to provide the definitions of two important approximate
stationarity concepts; i.e., GAS [23, 49, 46] and NAS [16, 19].

Definition 3 (Goldstein approximate stationarity, GAS) Given a Lip-
schitz function f : Rd → R, we say that x ∈ Rd is an (ε, δ)-GAS point of f
if

dist
(
0, ∂δf(x)

)
≤ ε.

Definition 4 (Near-approximate stationarity, NAS) Given a Lipschitz
function f : Rd → R, we say that x ∈ Rd is an (ε, δ)-NAS point of f if

dist
(
0,

⋃
y∈Bδ(x)

∂f(y)
)
≤ ε.

It is easy to see that if x is an NAS point, then it is also a GAS point since
∂δf(x) ⊇ ∪y∈Bδ(x)∂f(y). However, the converse does not hold in general, even
for convex [46, Proposition 2.7] and continuously differentiable functions [33,
Proposition 2]. Besides, Kornowski and Shamir [33] proved that the oracle
complexity of any randomized/deterministic algorithm for computing NAS
points of Lipschitz functions cannot avoid an exponential dependence on the
dimension, which implies the intractability of NAS.

Now, let us record the following simple result, which concerns the existence
of an NAS point (thus, also a GAS point) for a Lipschitz function.

Proposition 1 (Existence) Let f : Rd → R be Lipschitz with f(0)−infz f(z) ≤
∆ < +∞. Then, for any ε > 0, there exists an x ∈ Rd such that

dist
(
0, ∂f(x)

)
≤ ε and ∥x∥ ≤ ∆

ε
.

Proof This follows from the variational principle for subgradient [44, Proposi-
tion 10.44] and [44, Theorem 8.49]. ⊓⊔

8 L. Tian, A. M.-C. So

2.3 Settings

We formally define the oracle, algorithm class, and function class used in our
technical development.

Local Oracle. Given a function f : Rd → R, a local oracle Of is a map that,
when queried at a point x ∈ Rd, returns a function g : Rd → R satisfying

f(y) = g(y), ∀y ∈ Bd
ν(x)

for some ν > 0.

Remark 1 A subtle but crucial point here is that the local oracle Of only
returns the function g but not the radius ν. Otherwise, the resisting ora-
cle argument in Section 4.1 would fail when an algorithm queries x(t+1) ∈
Bν(x(t))

(
x(t)

)
. Nevertheless, the local oracle is still a very powerful notion. If

f is smooth at x, then Of (x) is capable of providing information about (if
exist) f(x) and ∇pf(x), for all p ∈ N+. If f is nonsmooth at x, then Of (x) is
capable of providing information about (if exist) the Clarke subdifferential [44,
Theorem 9.61], Fréchet subdifferential [44, Exercise 8.4], limiting subdifferen-
tial [44, Theorem 8.3(b)], and even the impractical subgradient selection oracle
in [49, Assumption 1(a)] and [31, Oracle 2.5]. We note here that assuming
such a (unreasonably) strong oracle would only strengthen our hardness results,
as the algorithms are allowed to use more information.

Algorithm Class. We consider algorithms from the classes Adet and Adet-gzr,
which are defined as follows:

– Adet: Algorithms that use information from the local oracle Of at the
queried points deterministically. Formally, for any algorithm A ∈ Adet,
integer T ∈ N+, and Lipschitz functions f, h : Rd → R, if xA[f],(1) =
xA[h],(1) and there exists a constant ν > 0 such that Of

(
xA[f],(i)

)
(y) =

Oh

(
xA[f],(i)

)
(y), y ∈ Bν

(
xA[f],(i)

)
for all i ∈ [T], then xA[f],(j) = xA[h],(j)

for all j ∈ [T + 1].
– Adet-gzr: Algorithms that are deterministic and general zero-respecting ; i.e.,

coordinates along which the function is locally constant are never explored.
Formally, every algorithm A ∈ Adet-gzr, when applied to any Lipschitz
function f : Rd → R and initialized at the origin, satisfies

supp
(
x(t)

)
⊆

⋃
i<t

{
j ∈ [d] : ∀ν > 0,∃θ ∈ R,y ∈ Bν

(
x(i)

)
s.t.

y + θej ∈ Bν

(
x(i)

)
, f(y) ̸= f(y + θej)

}
for all t ≥ 2.

Hardness of Deterministic Optimization of Lipschitz Functions 9

Remark 2 The oracle complexity of any deterministic algorithm interacting
with a pth-order oracle

(
f(x),∇f(x), . . . ,∇pf(x)

)
in the smooth setting [9] is

lower bounded by that of any algorithm in Adet interacting with a local oracle.
The class of general zero-respecting algorithms is a nonsmooth generalization
of that of zero-respecting algorithms [9, Section 2.2], which we recall informally
as follows. An algorithm A is called pth-order zero-respecting, denoted by A ∈
A(p)

zr , if it, when applied to any function f with well-defined ∇pf and initialized
at the origin, satisfies

supp
(
xA[f],(t)

)
⊆

⋃
q∈[p]

⋃
i<t

supp
{
∇qf(xA[f],(i))

}
for all t ≥ 2 (we refer the reader to [9, Section 2.2] for the definition of supp
when applied to a high-order tensor and for further details). With a slight abuse
of notation, let us denote the class of deterministic pth-order zero-respecting

algorithms by Adet ∩A(p)
zr . We note that even for infinitely differentiable func-

tions, the algorithm class Adet-gzr is strictly more general than Adet ∩ A(∞)
zr .

Indeed, consider the function

f(x) =

{
e−1/x2

if x ̸= 0,
0 if x = 0.

It is easy to check that f(0) = 0 and ∇pf(0) = 0 for all p ∈ N+. Then, for

any algorithm A ∈ Adet ∩A(∞)
zr , we must have xA[f],(t) = 0 for all t ∈ N+. On

the contrary, as f(x) ̸= 0 = f(0) when x ̸= 0, for any A′ ∈ Adet-gzr, the query

point xA′[f],(t) can be arbitrary for t ≥ 2. Formally, for any T ≥ 2, we have{{
xA[f],(t)

}
t∈[T]

: A ∈ Adet ∩ A(∞)
zr

}
⊊

{{
xA′[f],(t)

}
t∈[T]

: A′ ∈ Adet-gzr

}
.

The class of zero-respecting algorithms contains most of the oracle-based meth-
ods in smooth optimization [9], such as gradient descent, Nesterov’s accelerated
gradient descent [40], conjugate gradient [24], BFGS and L-BFGS [35], New-
ton, cubic-regularized Newton [43], and trust-region [13] methods. It also con-
tains the widely used class of linear span algorithms [42, Assumption 2.1.4] as
a special case. Besides, the algorithms developed in the recent works [32, 27, 31]
are all general zero-respecting.

Function Class. For any given constant C > 0 and dimension d ∈ N+, we
consider the function class

FLip
C,d :=

{
f : Rd′ → R : d′ ∈ [d], ∥f∥Lip ≤ C, f(0)− inf

x
f(x) ≤ C

}
.

As an immediate illustration of the above definitions, let us record the fol-
lowing result, which shows that there is no deterministic finite-time algorithm
for testing whether a point is GAS for a Lipschitz function.

10 L. Tian, A. M.-C. So

Proposition 2 (Testing) Suppose that 0 ≤ ε, δ < 1. For any A ∈ Adet and
T ∈ N+, there exists a 4-Lipschitz function f : R → R and a point y ∈ R
such that the algorithm A cannot decide whether y is an (ε, δ)-GAS point of f
within T oracle calls.

Proof Consider the function R ∋ x 7→ f1(x) = x ∈ R and the point y = 0.
Suppose that A makes the queries {x(t)}Tt=1 to the local oracle and returns the
correct answer; i.e., dist(0, ∂δf1(0)) > ε. Then, we only need to establish the
existence of a function f2 that is equal to f1 in a neighborhood of x(t) for any
t ∈ [T] but satisfies dist(0, ∂δf2(0)) ≤ ε. The construction of f2 is easy and
similar to [41, Section 5] but not identical. It is clear that there exists a line
segment [a, b] ⊆ Bδ(0) satisfying x(t) /∈ [a, b],∀t ∈ [T]. Let f2 : R→ R be given
by

f2(x) = min

{
x, a+ 4

∣∣∣∣x− a+ b

2

∣∣∣∣} .

Then, it can be verified that ∥f2∥Lip ≤ 4 and 0 ∈ ∂δf2(0), as required. ⊓⊔

3 Deterministic Inapproximability of Stationarity Concepts

We report the main results of this paper in Section 3.1. Then, we discuss some
recent works on deterministic computation of GAS points for various function
classes in Section 3.2.

3.1 Main Results

For the general deterministic setting, we have the following hardness result:

Theorem 1 (Deterministic) Suppose that 0 ≤ ε < 1
2
√
17
, 0 ≤ δ < 1

2 , and

C ≥ 6. For any T ∈ N+ and d ≥ T + 1, we have

inf
A∈Adet

sup
f∈FLip

C,d

min
t∈[T]

dist
(
0, ∂δf

(
xA[f],(t)

))
> ε.

Theorem 1 shows that any deterministic algorithm for computing GAS points
of Lipschitz functions must have an oracle complexity that is at least linear in
the dimension. In particular, no such algorithm has dimension-free finite-time
complexity. Contrasting this with the results in [46, 18], we see that random-
ization provably helps in the dimension-free computation of GAS points.

Without the dimension-free requirement, we have the following finite-time
hardness result:

Theorem 2 (Deterministic general zero-respecting) Suppose that 0 ≤
ε < 1

2
√
17
, 0 ≤ δ < 1

2 , and C ≥ 6. For any T ∈ N+ and d ≥ 2, we have

inf
A∈Adet-gzr

sup
f∈FLip

C,d

min
t∈[T]

dist
(
0, ∂δf

(
xA[f],(t)

))
> ε.

Hardness of Deterministic Optimization of Lipschitz Functions 11

As far as computing GAS points of Lipschitz functions is concerned, while The-
orem 1 does not rule out the existence of a deterministic algorithm with finite-
time complexity (in fact, we shall see one such algorithm shortly), Theorem 2
shows that no deterministic general zero-respecting algorithm has finite-time
complexity. Thus, Theorem 2 suggests that any deterministic finite-time algo-
rithm for computing GAS points of Lipschitz functions must be quite different
from most of the commonly used algorithmic schemes in smooth optimization.

Remark 3 Our hard constructions for establishing both Theorems 1 and 2 are
Lipschitz continuous piecewise linear functions. Therefore, the results in Sec-
tion 3 still hold even if we restrict the functions in FLip

C,d to be also piecewise
linear. We note that such functions form a subclass of difference-of-convex
functions [14, Proposition 4.4.3], semi-algebraic functions, and functions ex-
actly representable by ReLU neural networks [1, Theorem 2.1].

Remark 4 As noted in Remark 3, the hard construction in the proof of Theo-
rem 2 is semi-algebraic. In the recent work [17], Davis et al. showed that when
applied to a semi-algebraic function f , every limit point of the vanilla subgra-
dient method is a Clarke stationary point of f ; i.e., lim supt→+∞{x(t)} ⊆ {x :
0 ∈ ∂f(x)}, where the limit supremum is defined in the set-theoretic sense
(see [44, Definition 4.1]). By passing to a convergent subsequence of {x(t)}t
if necessary, it is evident that for any δ > 0, there exists a T ∈ N+ such that
x(T) ∈ Bδ

(
x(∞)

)
. Then, by definition, the point x(T) is (0, δ)-GAS for f . This

seems to contradict Theorem 2, as the vanilla subgradient method is clearly de-
terministic and general zero-respecting. The subtlety here is that Theorem 2
rules out any A ∈ Adet-gzr with a priori finite-time complexity; i.e., a finite T

that works uniformly for all f ∈ FLip
C,d. While the result in [17] implies that for

any semi-algebraic function f , there exists a T ∈ N+ such that the point x(T)

generated by the vanilla subgradient method is (0, δ)-GAS for f , Theorem 2
shows that any a priori bound on T is impossible.

As mentioned above, there exists a finite-time algorithm in the class Adet

for computing GAS points of Lipschitz functions. Of course, in view of Theo-
rem 1, the oracle complexity of any such algorithm will necessarily depend on
the dimension. To demonstrate the existence, recall from Proposition 1 that
given a function f : Rd → R with f ∈ FLip

C,d, there exists an (ε, 0)-GAS point
of f in the ball BC/ε(0). Thus, by querying the oracle at the points on a δ-net

N of the ball BC/ε(0) and noting that |N | ≤
⌈(
1 + 2C

εδ

)d⌉
, we immediately

obtain the following result:

Proposition 3 (Finite-time algorithm) Suppose that ε > 0, δ > 0, C > 0,

and d ∈ N+. There exists an A ∈ Adet such that for T =
⌈(
1 + 2C

εδ

)d⌉
, we

have
sup

f∈FLip
C,d

min
t∈[T]

dist
(
0,

⋃
y∈Bδ(xA[f],(t))∂f(y)

)
≤ ε.

Proposition 3 indicates that for any fixed dimension d, we can compute an
(ε, δ)-GAS point of a function in FLip

C,d using only poly(ε−1, δ−1, C) oracle calls.

12 L. Tian, A. M.-C. So

3.2 Discussion

On Lower Bounds. By considering the more restrictive first-order oracle (i.e.,
Of maps the query point x to the pair (f(x), ∂f(x))), the works [32, 27]
establish a similar Ω(d) lower bound on the oracle complexity of algorithms in
the class Adet as our Theorem 1. However, their constructions do not apply to
algorithms that use higher-order information. Specifically, if we consider a pth-
order oracle with p ≥ 3, then these constructions cannot be used to establish
dimension-free hardness for deterministic algorithms and finite-time hardness

for algorithms in Adet ∩A(p)
zr . Indeed, when localized within the ball Br

(
x(t)

)
,

both constructions in [32, 27] reduce to

gx(t)(x) =
∥x− x(t)∥2

r2
· v⊤x+

(
1− ∥x− x(t)∥2

r2

)
· e⊤1

(
x− x(t)

)
,

where r > 0 is a sufficiently small constant and v ∈ Rd is a “hidden direc-
tion” that should not be recognized by the algorithm. However, it is easy to
see that with the information of ∇3gx(t)

(
x(t)

)
, the hidden v can be computed

deterministically using one single oracle query. Thus, a simple third-order algo-
rithm would invalidate these constructions. By contrast, our hardness results
in Theorems 1 and 2 hold for the more general local oracle. It seems non-trivial
to attain the same level of generality without using a construction similar in
spirit to ours in Section 4.1.

On Upper Bounds. The works [32, 27, 31] introduce deterministic algorithms
that compute GAS points for different function classes. It is worth pointing
out that all these algorithms are general zero-respecting. Therefore, by The-
orem 2, they cannot compute GAS points of Lipschitz functions using only a
finite number of oracle queries. Nevertheless, these developments deepen our
understanding of the computability and complexity of GAS for various func-
tion classes. While the works [32, 27] mainly study β-smooth functions, the
work [31] focuses on C-Lipschitz functions with a finite nonconvexity mod-
ulus Λ(δ); see [31, Section 6] for the definition of Λ(δ). It is shown in [31,
Theorem 6.6] that an (ε, δ)-GAS point of such a function can be computed
deterministically with a dimension-free oracle complexity of

O

(
C3Λ(δ)

ε4δ

)
.

This is an interesting result, as any piecewise linear function has a finite non-
convexity modulus Λ(δ). An easy corollary of our construction implies that
the O(Λ(δ)) dependence in the complexity is actually optimal. Indeed, for any
fixed T ∈ N+, the hard function in the proof of Theorem 1 (and also of Theo-
rem 2) is piecewise linear and has 5T + 2 affine pieces. By [31, Corollary 5.8],
we know that Λ(δ) = O(T) for our hard function. Combining Theorem 1 or
Theorem 2 with [31, Theorem 6.6], we have the following conclusion:

Hardness of Deterministic Optimization of Lipschitz Functions 13

Proposition 4 The dependence of the complexity of any dimension-free finite-
time algorithm in Adet or that of any finite-time algorithm in Adet-gzr on the
nonconvexity modulus Λ(δ) is Θ(Λ(δ)); i.e., the dependence is optimal.

4 Proofs

We now collect the proofs of the main results in Section 3. In what follows, we
assume that 0 ≤ ε < 1

2
√
17
, 0 ≤ δ < 1

2 , C ≥ 6, and d ≥ 2. Besides, we assume

that every algorithm starts from 0; i.e., for any A ∈ Adet and f ∈ FLip
C,d, we

have xA[f],(1) = 0. Such an assumption is common in the literature [9, 33]

and can be made without loss of generality as f((·) − x(1)) ∈ FLip
C,d whenever

f : Rd → R satisfies ∥f∥Lip ≤ C and f(x(1))− infx f(x) ≤ C.

4.1 The Construction

4.1.1 Single-Coordinate Resisting Function

We first construct a resisting function using the classic resisting oracle argu-
ment [42, Chapter 1.1.3]. The construction is similar to those in [49, 47] and
we repeat the argument here for completeness’ sake. Let T ∈ N+ and d ≥ 2
be fixed. Consider the resisting oracle O, which is a local oracle in the sense
defined in Section 2.3 and, when queried at the point x̄ ∈ Rd, returns the
function O(x̄) : Rd → R given by

O (x̄) (x) = x1 − x̄1.

Given an algorithm A ∈ Adet, let
{
xA,(t)

}T

t=1
be the sequence of iterates gen-

erated by A after T calls to O. Now, we establish the existence of a resisting
function fs ∈ FLip

1,d that is compatible with the resisting oracle O. Upon elim-

inating the duplicated values in the collection
{
x
A,(t)
1

}T

t=1
and arranging the

rest in increasing order, we obtain a sequence
{
x
(i)
1

}T ′

i=1
with T ′ ≤ T and

x
(1)
1 < x

(2)
1 < · · · < x

(T ′)
1 . Let

σ := min

{
min

1≤i<j≤T ′

∣∣∣x(i)
1 − x

(j)
1

∣∣∣ , 1} > 0

14 L. Tian, A. M.-C. So

<latexit sha1_base64="oumgwb6jAd8qGrblvMISOD7UInY=">AAAB8XicbVDLTsMwENyUVymvAEcuFhWiXKoE8TpWcOFYpL5EGyrHdVqrjhPZDqKK+hdcOIAQV/6GG3+D2+YALSOtNJrZ1e6OH3OmtON8W7ml5ZXVtfx6YWNza3vH3t1rqCiRhNZJxCPZ8rGinAla10xz2oolxaHPadMf3kz85iOVikWipkcx9ULcFyxgBGsj3T913Ye0VDs+GXftolN2pkCLxM1IETJUu/ZXpxeRJKRCE46VartOrL0US80Ip+NCJ1E0xmSI+7RtqMAhVV46vXiMjozSQ0EkTQmNpurviRSHSo1C33SGWA/UvDcR//PaiQ6uvJSJONFUkNmiIOFIR2jyPuoxSYnmI0MwkczcisgAS0y0CalgQnDnX14kjdOye1E+vzsrVq6zOPJwAIdQAhcuoQK3UIU6EBDwDK/wZinrxXq3PmatOSub2Yc/sD5/AFsckBI=</latexit>

x
(T 0)
1

<latexit sha1_base64="D+LZJIOmC5YIKd7J+mKd1ZfZvb0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArvo5BLx4jmAckS5idzCZDZmeXmV4hLPkILx4U8er3ePNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWM7qZ+64lrI2L1iOOE+xEdKBEKRtFKrbOuUCGOe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn83OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieONnQiUpcsXmi8JUEozJ9HfSF5ozlGNLKNPC3krYkGrK0CZUsiF4iy8vk+Z51buqXj5cVGq3eRxFOIJjOAUPrqEG91CHBjAYwTO8wpuTOC/Ou/Mxby04+cwh/IHz+QMvro99</latexit>�1 <latexit sha1_base64="NnheaOSZn26Yw2193kDmkX09Oo4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u1xGOO6VK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1Yv7s8rtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AcVvj0Y=</latexit>1
<latexit sha1_base64="VdynNPPw4HtfaU5LniDTWhDNMfo=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIjHBC9k1vo5ELx4xkYeBlcwOszBhZnYzM2skG77CiweN8ernePNvHGAPClbSSaWqO91dQcyZNq777eSWlldW1/LrhY3Nre2d4u5eQ0eJIrROIh6pVoA15UzSumGG01asKBYBp81geD3xm49UaRbJOzOKqS9wX7KQEWysdP/U9R7Ssnc87hZLbsWdAi0SLyMlyFDrFr86vYgkgkpDONa67bmx8VOsDCOcjgudRNMYkyHu07alEguq/XR68BgdWaWHwkjZkgZN1d8TKRZaj0RgOwU2Az3vTcT/vHZiwks/ZTJODJVktihMODIRmnyPekxRYvjIEkwUs7ciMsAKE2MzKtgQvPmXF0njpOKdV85uT0vVqyyOPBzAIZTBgwuowg3UoA4EBDzDK7w5ynlx3p2PWWvOyWb24Q+czx/DAI++</latexit>

x
(1)
1

<latexit sha1_base64="p7GrhVUyaTcri57+TA3Ib81RPGc=">AAAB8HicbVDLTgJBEOz1ifhCPXqZSEzwQnaJryPRi0dM5GFgJbPDLEyYmd3MzBrJhq/w4kFjvPo53vwbB9iDgpV0UqnqTndXEHOmjet+O0vLK6tr67mN/ObW9s5uYW+/oaNEEVonEY9UK8CaciZp3TDDaStWFIuA02YwvJ74zUeqNIvknRnF1Be4L1nICDZWun/qeg9pqXIy7haKbtmdAi0SLyNFyFDrFr46vYgkgkpDONa67bmx8VOsDCOcjvOdRNMYkyHu07alEguq/XR68BgdW6WHwkjZkgZN1d8TKRZaj0RgOwU2Az3vTcT/vHZiwks/ZTJODJVktihMODIRmnyPekxRYvjIEkwUs7ciMsAKE2MzytsQvPmXF0mjUvbOy2e3p8XqVRZHDg7hCErgwQVU4QZqUAcCAp7hFd4c5bw4787HrHXJyWYO4A+czx/Eho+/</latexit>

x
(2)
1

<latexit sha1_base64="OxNWMMW8gio5nPun+01zUjW0INo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmZnJ8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgeZ9TglZqdmmk0PTKFa/qzeAuEz8nFchR75W/upGiacwkUkGM6fhegkFGNHIq2KTUTQ1LCB2RAetYKknMTJDNrp24J1aJ3L7StiS6M/X3REZiY8ZxaDtjgkOz6E3F/7xOiv3rIOMySZFJOl/UT4WLyp2+7kZcM4pibAmhmttbXTokmlC0AZVsCP7iy8ukeVb1L6sX9+eV2k0eRxGO4BhOwYcrqMEd1KEBFB7hGV7hzVHOi/PufMxbC04+cwh/4Hz+ALGXjzk=</latexit>· · ·

{

<latexit sha1_base64="LNlbBHXMpGTidBLEeEAyYs8o34I=">AAAB73icbVDLSgNBEOyNrxhfqx69DAbBU9yV+DgGvXiMYB6QLGF2MpsMmZldZ2aFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7woQzbTzv2ymsrK6tbxQ3S1vbO7t77v5BU8epIrRBYh6rdog15UzShmGG03aiKBYhp61wdDv1W09UaRbLBzNOaCDwQLKIEWys1O5qNhD4rNpzy17FmwEtEz8nZchR77lf3X5MUkGlIRxr3fG9xAQZVoYRTielbqppgskID2jHUokF1UE2u3eCTqzSR1GsbEmDZurviQwLrccitJ0Cm6Fe9Kbif14nNdF1kDGZpIZKMl8UpRyZGE2fR32mKDF8bAkmitlbERlihYmxEZVsCP7iy8ukeV7xLysX99Vy7SaPowhHcAyn4MMV1OAO6tAAAhye4RXenEfnxXl3PuatBSefOYQ/cD5/AIShj6Q=</latexit>

�/4
<latexit sha1_base64="cT3z+/LKf/DKKyfnnlxX1lOJRwc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYMSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfa8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559ez2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcO8I2q</latexit>x1

<latexit sha1_base64="Y44BnyYm6jWE1CuXr4wI/e2+TAs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQQUoivpZFNy4r2Ae0IUymk3bo5MHMjTSE+ituXCji1g9x5984bbPQ1gMXDufcy733eLHgCizr2yisrK6tbxQ3S1vbO7t75v5BS0WJpKxJIxHJjkcUEzxkTeAgWCeWjASeYG1vdDv1249MKh6FD5DGzAnIIOQ+pwS05Jpl31XVsWuf9oCNwfMza3LimhWrZs2Al4mdkwrK0XDNr14/oknAQqCCKNW1rRicjEjgVLBJqZcoFhM6IgPW1TQkAVNONjt+go+10sd+JHWFgGfq74mMBEqlgac7AwJDtehNxf+8bgL+tZPxME6AhXS+yE8EhghPk8B9LhkFkWpCqOT6VkyHRBIKOq+SDsFefHmZtM5q9mXt4v68Ur/J4yiiQ3SEqshGV6iO7lADNRFFKXpGr+jNeDJejHfjY95aMPKZMvoD4/MH0zmUQQ==</latexit>

fs(x1,0)

Fig. 1 The single-coordinate resisting function in (SC).

and define fs : Rd → R by

fs(x) := (SC)

−x1 + x
(1)
1 − σ

2 for x1 ∈
(
−∞, x

(1)
1 − σ

4

)
,

x1 − x
(t)
1 for x1 ∈

⋃
t∈[T ′−1]

[
x
(t)
1 − σ

4 ,
1
2

(
x
(t)
1 + x

(t+1)
1

)
− σ

4

)
,

−x1 + x
(t+1)
1 − σ

2 for x1 ∈
⋃

t∈[T ′−1]

[
1
2

(
x
(t)
1 + x

(t+1)
1

)
− σ

4 , x
(t+1)
1 − σ

4

)
,

x1 − x
(T ′)
1 for x1 ∈

[
x
(T ′)
1 − σ

4 ,+∞
)
;

see Figure 1. It is easy to see that fs is 1-Lipschitz and fs(0)−infx fs(x) ≤ 1 ≤
C. Moreover, we have the following result, which, together with the definition

of
{
x
(i)
1

}T ′

i=1
, shows that fs is compatible with the resisting oracle.

Lemma 1 For any t ∈ [T ′] and x ∈ B1
σ
8

(
x
(t)
1

)
⊗ Rd−1, we have fs(x) =

x1 − x
(t)
1 .

Proof For any such x, we have x
(t)
1 − σ

4 < x
(t)
1 − σ

8 ≤ x1 ≤ x
(t)
1 + σ

8 < x
(t)
1 + σ

4 ≤
1
2

(
x
(t)
1 + x

(t+1)
1

)
− σ

4 . ⊓⊔

The single-coordinate resisting function fs defined in (SC) is not sufficient
for establishing a lower bound on the oracle complexity of GAS. Indeed, sup-
pose that for any δ > 0 and T ≥ 2, we query x(t) = (t−1)δ ·e1 for any t ∈ [T].
Then, both x(1) and x(2) are (0, δ)-GAS points of the generated fs. The main
difficulty here is that fs zigzags too much, which results in many GAS points.
We need a construction that is compatible with the resisting oracle without
any GAS point near the queried points.

4.1.2 A “Wedge” Replacement

In this section, we build a resisting function with a wedge-like shape. Our main
building block is the “wedge” function h : R2 → R defined by

h(x, y) := max

y − η

2︸ ︷︷ ︸
①

, h̃(x, y)

 ,

Hardness of Deterministic Optimization of Lipschitz Functions 15

- 2 0 2 4

- 4

- 2

0

2

4

Fig. 2 The wedge-shaped resisting function in (PL).

where η satisfies 0 < η ≤ σ
32 (recall that σ is defined above (SC) and pertains

to the minimum gap between the first coordinates of different queried points)
and the function h̃ : R2 → R is defined by

h̃(x, y) := min

x+
η

2︸ ︷︷ ︸
②

, 2y + η︸ ︷︷ ︸
③

,
y

2
+ η︸ ︷︷ ︸
④

+min

−x+
5η

2︸ ︷︷ ︸
⑤

, −η

2︸︷︷︸
⑥

 . (W)

The following piecewise linear representation of h is more convenient for anal-
ysis:

h(x, y)=

y − η
2 for (x, y) ∈ S1 := {(x, y) : h(x, y) = ①},
3η for (x, y) ∈ S2 := {(x, y) : h(x, y) = ② + ⑤},
x for (x, y) ∈ S3 := {(x, y) : h(x, y) = ② + ⑥},

−x+ 2y + 7
2η for (x, y) ∈ S4 := {(x, y) : h(x, y) = ③ + ⑤},

2y + 1
2η for (x, y) ∈ S5 := {(x, y) : h(x, y) = ③ + ⑥},

−x+ y
2 + 7η

2 for (x, y) ∈ S6 := {(x, y) : h(x, y) = ④ + ⑤},
y
2 + η

2 for (x, y) ∈ S7 := {(x, y) : h(x, y) = ④ + ⑥}.

(PL)

Here are some elementary properties of the sets {Si}7i=1.

Lemma 2 S2 = ∅.
Proof Let us first examine

S2 = {(x, y) : ① ≤ (② ∧③ ∧④) + (⑤ ∧⑥),② ≤ ③ ∧④,⑤ ≤ ⑥}.
Suppose that (x, y) ∈ S2. By ⑤ ≤ ⑥, we know that x ≥ 3η. Due to ② ≤ ③∧④,
we get x ≤ min{y2 , 2y}+

η
2 . Thus, we have 0 < 3η ≤ x ≤ y

2+
η
2 , or equivalently,

y
2 ≥

5η
2 . Now, we compute

①− (② ∧③ ∧④)− (⑤ ∧⑥) ≥ ①−④−⑥ =
y

2
− η ≥ 3η

2
> 0,

which gives a contradiction. ⊓⊔

16 L. Tian, A. M.-C. So

Lemma 3 S3 =
{
(x, y) : y − η

2 ≤ x ≤ min
{

y
2 , 2y

}
+ η

2

}
⊆ [− 3

2η,
3
2η]×[−η, 2η].

Proof Note that

S3 = {(x, y) : ① ≤ ② + ⑥,② ≤ ③ ∧④,⑤ ≥ ⑥} .

By ② ≤ ③∧④, we have x ≤ min{y2 , 2y}+
η
2 . From ① ≤ ②+⑥, we get y− η

2 ≤ x.
Then, we have −η ≤ y ≤ 2η and − 3

2η ≤ x ≤ 3
2η. Thus, the constraint x ≤ 3η

in ⑤ ≥ ⑥ is always satisfied. ⊓⊔

Lemma 4 If (x, y) ∈ Sc
3, then ∂h(x, y) ⊆

[
[−1, 0]
[12 , 2]

]
.

Proof By Lemma 2 and the piecewise linear representation of h in (PL), we
know that

∇h(x, y) ⊆
[
[−1, 0]
[12 , 2]

]
, ∀(x, y) ∈

⋃
i̸=3

int(Si).

It is easy but tedious to verify that Si ∩Sj has zero Lebesgue measure for any
i ̸= j (see Figure 2), as they are the solution sets of systems of linear equations.
Taking the convex hull of {∇h(x, y) : (x, y) ∈ ∪i̸=3 int(Si)}, invoking [44,
Theorem 9.61], and using conv(A × B) = conv(A) × conv(B), we obtain the
desired result. ⊓⊔

Now, we proceed to the final construction. Let h̃w : R2 → R be defined by

h̃w(x1, x2) := max

{
x2 −

η

2
, max
t∈[T ′]

h̃
(
x1 − x

(t)
1 , x2

)}
,

where h̃ is the function defined in (W) and
{
x
(i)
1

}T ′

i=1
is the sorted sequence

of first coordinates of the queried points after removing duplicates (see the
paragraph above (SC)). Then, the final “wedge” hard construction hw : Rd →
R for d ≥ 2 is defined by

hw(x) := max
{
−5, h̃w(x1, x2)

}
.

Lemma 5 For any t ∈ [T ′] and (x1, x2)− (x
(t)
1 , 0) ∈ int(S3), we have

x1 − x
(t)
1 = h̃

(
x1 − x

(t)
1 , x2

)
> x2 −

η

2
> max

t′∈[T ′]\{t}
h̃
(
x1 − x

(t′)
1 , x2

)
.

Besides, we have B2
η
8
⊆ int(S3).

Proof The first two relations follow directly from the piecewise linear repre-
sentation of h in (PL) and Lemma 3. For the last strict inequality, suppose

there exists a t′ ∈ [T ′], x
(t′)
1 ̸= x

(t)
1 such that the opposite holds. Then, we have

① ≤ (②∧③∧④)+(⑤∧⑥). From ① ≤ (③∧④)+⑥, we see that −η ≤ x2 ≤ 2η.

Hardness of Deterministic Optimization of Lipschitz Functions 17

Since ① ≤ (③ ∧ ④) + ⑤, we get x1 − x
(t′)
1 ≤ min{x2,−x2

2 } + 4η ≤ 4η. More-

over, since ① ≤ ② + ⑥, we get x1 − x
(t′)
1 ≥ x2 − η

2 ≥ − 3
2η. It follows that∣∣∣x1 − x

(t′)
1

∣∣∣ ≤ 4η. However, by Lemma 3 and noting that σ ≥ 32η, we have∣∣∣x1 − x
(t′)
1

∣∣∣ ≥ ∣∣∣x(t)
1 − x

(t′)
1

∣∣∣− ∣∣∣x1 − x
(t)
1

∣∣∣ ≥ σ − 3η > 30η,

which gives a contradiction. To establish B2
η
8
⊆ int(S3), we note that for any

x ∈ B2
η
8
,

x2 −
η

2
≤ −3η

8
< −η

8
≤ x1 ≤

η

8
<

η

2
− η

4
≤ min

{x2

2
, 2x2

}
+

η

2
.

This, together with Lemma 3, gives the desired result. ⊓⊔

We are now ready to prove the main lemma of this subsection.

Lemma 6 The following hold:

– The function hw is 3-Lipschitz and satisfies hw(0)− infx hw(x) ≤ 6 ≤ C.
– There exists a ν ∈ (0, σ/256] such that

fs(y) = hw(y), ∀y ∈ V :=
⋃

t∈[T ′]

B2
ν

([
x
(t)
1

0

])
⊗ Rd−2.

Proof From the piecewise linear representation of h in (PL), it is easy to see
that hw is 3-Lipschitz. Note that h(x, 0) ≤ max{−η

2 , η −
η
2} =

η
2 ≤ 1 for any

x ∈ R. It follows that hw(0)− infx hw(x) = max{−5, h̃w(0, 0)}+5 ≤ 1+5 = 6.

Let ν = η
8 ∈ (0, σ

256]. Then, Lemma 5 implies that h̃w(y1, y2) > y2− η
2 ≥ −

5η
8 >

−5 for all y ∈ V . This, together with Lemma 1 and the fact that ν < σ
8 , shows

that fs(y) = h̃w(y1, y2) = hw(y) for all y ∈ V . ⊓⊔

4.1.3 Resolution of Approximate Stationarity

In this subsection, we prove that the function hw has no GAS point below
certain precision at which the function value is lower bounded by −1.
Lemma 7 Let x ∈ Rd be such that hw(x) ≥ −1 and 0 ≤ δ < 1/2. Then, for

any y ∈ Bd
2δ(x), we have hw(y) = h̃w(y1, y2).

Proof By Lemma 6 and the assumption that 0 ≤ δ < 1
2 , we know that for any

y ∈ Bd
2δ(x),

hw(y) ≥ hw(x)− |hw(y)− hw(x)| ≥ −1− 6δ ≥ −4 > −5,

as required. ⊓⊔

The main result of this subsection is the following:

18 L. Tian, A. M.-C. So

Lemma 8 Let x ∈ Rd be such that hw(x) ≥ −1 and 0 ≤ δ < 1/2. Then, we

have dist
(
0, ∂δhw(x)

)
≥ 1√

17
.

Proof Observe that

∂δhw(x) = conv
(⋃

y∈Bd
δ(x)

∂hw(y)
)

(Definition 2)

= conv

(⋃
(y1,y2)∈B2

δ

(
(x1,x2)

) ∂h̃w(y1, y2)⊗ {0}⊗d−2

)
(Lemma 7)

= conv

((⋃
(y1,y2)∈B2

δ

(
(x1,x2)

)∂h̃w(y1, y2)

)
⊗ {0}⊗d−2

)
([3, §3, Exercise 3(4)])

= conv

(⋃
(y1,y2)∈B2

δ

(
(x1,x2)

)∂h̃w(y1, y2)

)
⊗ {0}⊗d−2

= ∂δh̃w(x1, x2)⊗ {0}⊗d−2.

Therefore, it suffices to show that dist
(
0, ∂δh̃w(x1, x2)

)
≥ 1√

17
. Let g :=

argmin
z∈∂δh̃w(x1,x2)

∥z∥. By Carathéodory’s theorem [44, Theorem 2.29], we

can write g as a finite convex combination

g =

3∑
i=1

λig
i,

where gi ∈ ∂h̃w(y
i), yi ∈ B2

δ

(
(x1, x2)

)
, λi ≥ 0 for i ∈ {1, 2, 3} and ∑3

j=1 λj =
1. Let

P1 :=
{
i ∈ {1, 2, 3} : ∃t ∈ [T ′],yi − (x

(t)
1 , 0) ∈ int(S3)

}
,

P2 :=
{
i ∈ {1, 2, 3} : ∀t ∈ [T ′],yi − (x

(t)
1 , 0) ∈ Sc

3

}
,

P3 :=
{
i ∈ {1, 2, 3} : ∃t ∈ [T ′],yi − (x

(t)
1 , 0) ∈ bd(S3)

}
.

We claim that P1, P2, P3 are mutually disjoint. By definition, P2 and P1 ∪ P3

are disjoint. Thus, it suffices to prove that P1 and P3 are disjoint. Suppose to
the contrary that there exists an i ∈ P1∩P3. Then, there exist t, t

′ ∈ [T ′] such
that

yi − (x
(t)
1 , 0) ∈ int(S3), yi − (x

(t′)
1 , 0) ∈ bd(S3).

As int(S3) and bd(S3) are disjoint, we must have t ̸= t′. We compute∣∣∣x(t)
1 − x

(t′)
1

∣∣∣ = ∥∥∥(x(t)
1 , 0)− (x

(t′)
1 , 0)

∥∥∥
1

≤
∥∥∥yi − (x

(t)
1 , 0)

∥∥∥
1
+

∥∥∥yi − (x
(t′)
1 , 0)

∥∥∥
1

≤ 2 · (3η + 3η) = 12η. (Lemma 3)

Hardness of Deterministic Optimization of Lipschitz Functions 19

However, noting that σ ≥ 32η, we get∣∣∣x(t)
1 − x

(t′)
1

∣∣∣ ≥ min
1≤i<j≤T ′

∣∣∣x(i)
1 − x

(j)
1

∣∣∣ ≥ σ ≥ 32η > 0,

which gives a contradiction.
Now, we rewrite g by averaging within Pi for i = 1, 2, 3; i.e.,

g =
∑
i∈P1

λig
i +

∑
j∈P2

λjg
j +

∑
k∈P3

λkg
k =

3∑
i=1

θig
Pi ,

where θi :=
∑

j∈Pi
λj and gPi :=

∑
j∈Pi

λj

θi
gj for i ∈ {1, 2, 3}. Consider the

following cases:

– Averaging within P1: g
P1 = e1. To see this, note that for any i ∈ P1, there

exists a ti ∈ [T ′] such that yi − (x
(ti)
1 , 0) ∈ int(S3). By Lemma 5, for any

i ∈ P1, we have

{ti} = argmax
t′∈[T ′]

h̃
(
yi1 − x

(t′)
1 , yi2

)
and h̃

(
yi1 − x

(ti)
1 , yi2

)
> yi2 − η

2 . Thus, by [12, Proposition 2.3.12] and

the piecewise linear representation of h in (PL), we get ∅ ̸= ∂h̃w(y
i) ⊆

∂h̃
(
yi1 − x

(ti)
1 , yi2

)
= {e1}, which implies that gi = e1 for any i ∈ P1.

– Averaging within P2: g
P2 ∈

[
[−1, 0]
[12 , 2]

]
by Lemma 4.

– Averaging within P3: g
P3 ∈ conv

(
e1,

[
[−1, 0]
[12 , 2]

])
by [44, Theorem 9.61].

From the above, we conclude that

g =

3∑
i=1

θig
Pi ∈ conv

(
e1,

[
[−1, 0]
[12 , 2]

])
.

To complete the proof, it remains to estimate dist(0, ∂hw(x)) = ∥g∥. The
following lemma will be useful for this purpose.

Lemma 9 We have

1

17
= min

t,v1,v2
(t+(1−t)v1)2+(1−t)2v22 s.t. t ∈ [0, 1], v1 ∈ [−1, 0], v2 ∈ [1/2, 2].

Proof Let q be the objective function of and (t∗, v∗1 , v
∗
2) be an optimal solution

to the above optimization problem. It is easy to see that v∗2 = 1
2 . Now, note

that

q(t, v1, v
∗
2) =

(
1

4
+ (v1 − 1)2

)
· t2 − 2

(
v1 −

1

2

)2

· t+ v21 +
1

4
.

20 L. Tian, A. M.-C. So

By the first-order optimality condition and the constraint v1 ∈ [−1, 0], we have

0 < t∗ =
(2v1 − 1)2

1 + 4(v1 − 1)2
= 1− 4(1− v1)

1 + 4(1− v1)2
< 1.

This implies that

q(t∗, v1, v
∗
2) =

1

1 + 4(v1 − 1)2
≥ 1

17
,

and equality holds when v1 = v∗1 = −1. ⊓⊔

Armed with Lemma 9, we compute

∥g∥ ≥ dist

(
0, conv

(
e1,

[
[−1, 0]
[12 , 2]

]))
= min

t∈[0,1]

∥∥∥∥[t+ (1− t) · [−1, 0]
(1− t) · [12 , 2]

]∥∥∥∥
= min

t:0≤t≤1,
v1:−1≤v1≤0,
v2:

1
2≤v2≤2

√
(t+ (1− t)v1)2 + (1− t)2v22

=
1√
17

. (by Lemma 9)

It follows that dist
(
0, ∂δhw(x)

)
= dist

(
0, ∂δh̃w(x1, x2)

)
= ∥g∥ ≥ 1√

17
, as

required. ⊓⊔

4.2 Hardness Results

In this subsection, we put everything together. We will first prove Theorem 2,
as its proof is conceptually easier and can be reused in that of Theorem 1.

4.2.1 Deterministic General Zero-Respecting Algorithms

Proof (of Theorem 2) Fix any T ∈ N+, d ≥ 2, and A ∈ Adet-gzr. By apply-
ing the resisting oracle argument in Section 4.1.1 to A, we obtain a resisting

function fs : Rd → R and a sequence
{
xA[fs],(t)

}T

t=1
with xA[fs],(1) = 0.

By Lemma 1 and the definition of Adet-gzr, with a simple induction on t,
we have 2 /∈ supp

(
xA[fs],(t)

)
for all t ∈ [T]. Furthermore, by Lemma 6, we

know that the algorithm A cannot distinguish between the resisting func-
tion fs and its associated “wedge” function hw by querying the local ora-

cle at the points
{
xA[fs],(t)

}T

t=1
. Formally, there exists a ν > 0 such that

Ofs

(
xA[fs],(t)

)
(y) = Ohw

(
xA[fs],(t)

)
(y) for all y ∈ Bd

ν

(
xA[fs],(t)

)
and t ∈ [T].

Since A is deterministic, we have xA[fs],(t) = xA[hw],(t) for all t ∈ [T], which

Hardness of Deterministic Optimization of Lipschitz Functions 21

implies that hw

(
xA[hw],(t)

)
= fs

(
xA[fs],(t)

)
= 0 > −1 for all t ∈ [T]. Thus, by

Lemma 8 and the assumption that 0 ≤ ε < 1
2
√
17
, we get

min
t∈[T]

dist
(
0, ∂δhw

(
xA[hw],(t)

))
≥ 1√

17
> ε+

1

2
√
17

.

Upon noting that hw ∈ FLip
C,d by Lemma 6, the proof is complete. ⊓⊔

4.2.2 Deterministic Algorithms

The case of general deterministic algorithms can be reduced to that of deter-
ministic general zero-respecting algorithms using a classic adversarial rotation
argument [39, 9, 48].

Proof (of Theorem 1) Fix any T ∈ N+, d ≥ T + 1, and A ∈ Adet. By
applying the resisting oracle argument in Section 4.1.1 to A, we obtain a re-

sisting function fs : Rd → R and a sequence
{
xA[fs],(t)

}T

t=1
with xA[fs],(1) = 0.

Let V :=
[
e1 xA[fs],(2) · · · xA[fs],(T)

]
∈ Rd×T . Furthermore, let u2 ∈ Rd be

such that V ⊤u2 = 0 and ∥u2∥ = 1. Note that such an u2 exists because

d > T . By choosing Ũ ∈ Rd×(d−2) to be an orthonormal basis of the or-
thogonal complement of span{e1,u2}, we can define an orthogonal matrix

U :=
[
e1 u2 Ũ

]
∈ Rd×d.

Now, let hw be the “wedge” function associated with the resisting function
fs and gw(x) := hw(U

⊤x). We claim that there exists a ν ∈ (0, σ/256] such
that Ofs

(
xA[fs],(t)

)
(y) = Ogw

(
xA[fs],(t)

)
(y) for all y ∈ Bd

ν

(
xA[fs],(t)

)
and

t ∈ [T]. To see this, let ν be the constant in Lemma 6. Fix t ∈ [T] and y ∈
Bd
ν

(
xA[fs],(t)

)
. By Lemma 1, we know that fs(y) = y1−xA[fs],(t)

1 . Observe that

U⊤y ∈ Bd
ν

(
U⊤xA[fs],(t)

)
, as

∥∥U⊤ (
y − xA[fs],(t)

)∥∥ ≤ ν. Moreover, we have

2 /∈ supp
(
U⊤xA[fs],(t)

)
for all t ∈ [T] by the construction of U . It follows from

Lemma 6 that hw

(
U⊤y

)
= fs

(
U⊤y

)
. Since U⊤y ∈ B1

ν

(
x
A[fs],(t)
1

)
⊗ Rd−1,

using Lemma 1 again yields

gw(y) = hw(U
⊤y) = fs(U

⊤y) = e⊤1 y − e⊤1 x
A[fs],(t) = y1 − x

A[fs],(t)
1 = fs(y).

Thus, we see that A cannot distinguish between fs and gw by querying the

local oracle at
{
xA[fs],(t)

}T

t=1
, thus establishing the claim. In particular, since

A is deterministic, we have xA[fs],(t) = xA[gw],(t) for all t ∈ [T].
Next, observe that

∂δgw (x) = conv
(⋃

y∈Bd
δ(x)

U∂hw

(
U⊤y

))
= U conv

(⋃
y∈Bd

δ(x)
∂hw

(
U⊤y

))
= U conv

(⋃
z∈Bd

δ(U
⊤x)∂hw (z)

)
= U∂δhw

(
U⊤x

)
,

22 L. Tian, A. M.-C. So

where the first equality follows from [44, Theorem 8.49, Exercise 10.7] (see also
[12, Theorem 2.3.10]); the second can be deduced from the bijectivity of U
[38, Chapter 1, §2, Exercise 2(b)] and [25, Chapter A, Proposition 1.3.4]; and
the third is due to

{
U⊤y : y ∈ Bd

ν(x)
}
= Bd

ν

(
U⊤x

)
. Besides, for any t ∈ [T],

we have hw

(
U⊤xA[gw],(t)

)
= fs

(
xA[fs],(t)

)
= 0 > −1. By Lemma 8 and the

assumption that 0 ≤ ε < 1
2
√
17
, we obtain

min
t∈[T]

dist
(
0, ∂δgw

(
xA[gw],(t)

))
= min

t∈[T]
dist

(
0, ∂δhw

(
U⊤xA[gw],(t)

))
≥ 1√

17
> ε+

1

2
√
17

.

Moreover, as a simple corollary of Lemma 6, we have gw ∈ FLip
C,d. This com-

pletes the proof. ⊓⊔

5 Concluding Remarks

In this paper, we showed that no deterministic algorithm for computing GAS
points of Lipschitz functions has dimension-free finite-time complexity. This
settles an open question posed by Zhang et al. in [49]. Furthermore, even
without the dimension-free requirement, we showed that any finite-time deter-
ministic method cannot be general zero-respecting. In particular, this implies
that any natural derandomization of the algorithms in [49, 46, 18] cannot
have finite-time complexity. Our results shed light on the hardness of noncon-
vex nonsmooth optimization problems in modern large-scale settings. As for
further research, it would be interesting to study the complexity of approx-
imate stationarity concepts based on other subdifferential constructions for
different classes of structured nonconvex nonsmooth optimization problems.

References

1. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neu-
ral networks with rectified linear units. In: International Conference on
Learning Representations (2018)

2. Benäım, M., Hofbauer, J., Sorin, S.: Stochastic approximations and dif-
ferential inclusions. SIAM Journal on Control and Optimization 44(1),
328–348 (2005)

3. Blyth, T.S.: Set Theory and Abstract Algebra. Longman Publishing
Group (1975)

4. Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock,
A.: The string guessing problem as a method to prove lower bounds on
the advice complexity. Theoretical Computer Science 554, 95–108 (2014)

5. Braun, G., Guzmán, C., Pokutta, S.: Lower bounds on the oracle com-
plexity of nonsmooth convex optimization via information theory. IEEE
Transactions on Information Theory 63(7), 4709–4724 (2017)

Hardness of Deterministic Optimization of Lipschitz Functions 23

6. Burke, J.V., Curtis, F.E., Lewis, A.S., Overton, M.L., Simões, L.E.: Gradi-
ent sampling methods for nonsmooth optimization. Numerical Nonsmooth
Optimization: State of the Art Algorithms pp. 201–225 (2020)

7. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling al-
gorithm for nonsmooth, nonconvex optimization. SIAM Journal on Opti-
mization 15(3), 751–779 (2005)

8. Carmon, Y., Duchi, J.C., Hinder, O., Sidford, A.: “Convex until proven
guilty”: Dimension-free acceleration of gradient descent on non-convex
functions. In: International Conference on Machine Learning, pp. 654–
663 (2017)

9. Carmon, Y., Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding
stationary points I. Mathematical Programming 184(1–2), 71–120 (2020)

10. Carmon, Y., Duchi, J.C., Hinder, O., Sidford, A.: Lower bounds for finding
stationary points II: First-order methods. Mathematical Programming
185(1), 315–355 (2021)

11. Cartis, C., Gould, N.I.M., Toint, Ph.L.: On the complexity of steepest
descent, Newton’s and regularized Newton’s methods for nonconvex un-
constrained optimization problems. SIAM Journal on Optimization 20(6),
2833–2852 (2010)

12. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM (1990)
13. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods. SIAM (2000)
14. Cui, Y., Pang, J.S.: Modern Nonconvex Nondifferentiable Optimization.

SIAM (2021)
15. Daniilidis, A., Drusvyatskiy, D.: Pathological subgradient dynamics. SIAM

Journal on Optimization 30(2), 1327–1338 (2020)
16. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of

weakly convex functions. SIAM Journal on Optimization 29(1), 207–239
(2019)

17. Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradi-
ent method converges on tame functions. Foundations of Computational
Mathematics 20(1), 119–154 (2020)

18. Davis, D., Drusvyatskiy, D., Lee, Y.T., Padmanabhan, S., Ye, G.: A gradi-
ent sampling method with complexity guarantees for Lipschitz functions in
high and low dimensions. In: Advances in Neural Information Processing
Systems, vol. 35, pp. 6692–6703 (2022)

19. Davis, D., Grimmer, B.: Proximally guided stochastic subgradient method
for nonsmooth, nonconvex problems. SIAM Journal on Optimization
29(3), 1908–1930 (2019)

20. Dyer, M., Frieze, A.: Computing the volume of convex bodies: A case
where randomness provably helps. Probabilistic Combinatorics and Its
Applications 44, 123–170 (1991)

21. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for
approximating the volume of convex bodies. Journal of the ACM 38(1),
1–17 (1991)

22. Ghadimi, S., Lan, G.: Stochastic first-and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Optimization 23(4),

24 L. Tian, A. M.-C. So

2341–2368 (2013)
23. Goldstein, A.: Optimization of Lipschitz continuous functions. Mathemat-

ical Programming 13(1), 14–22 (1977)
24. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient meth-

ods. Pacific Journal of Optimization 2(1), 35–58 (2006)
25. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis.

Springer Science & Business Media (2004)
26. Jin, C., Netrapalli, P., Ge, R., Kakade, S.M., Jordan, M.I.: On nonconvex

optimization for machine learning: Gradients, stochasticity, and saddle
points. Journal of the ACM 68(2) (2021)

27. Jordan, M., Kornowski, G., Lin, T., Shamir, O., Zampetakis, M.: Deter-
ministic nonsmooth nonconvex optimization. In: Conference on Learning
Theory, pp. 4570–4597 (2023)

28. Kakade, S.M., Lee, J.D.: Provably correct automatic subdifferentiation
for qualified programs. In: Advances in Neural Information Processing
Systems, p. 7125–7135 (2018)

29. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nons-
mooth nonconvex optimization. SIAM Journal on Optimization 18(2),
379–388 (2007)

30. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm
for nonsmooth nonconvex optimization. SIAM Journal on Optimization
20(4), 1983–1994 (2010)

31. Kong, S., Lewis, A.: The cost of nonconvexity in deterministic nonsmooth
optimization. arXiv preprint arXiv:2210.00652 (2022)

32. Kornowski, G., Shamir, O.: On the complexity of finding small subgradi-
ents in nonsmooth optimization. arXiv preprint arXiv:2209.10346 (2022)

33. Kornowski, G., Shamir, O.: Oracle complexity in nonsmooth nonconvex
optimization. Journal of Machine Learning Research 23(314), 1–44 (2022)

34. Li, J., So, A.M.C., Ma, W.K.: Understanding notions of stationarity in
nonsmooth optimization: A guided tour of various constructions of sub-
differential for nonsmooth functions. IEEE Signal Processing Magazine
37(5), 18–31 (2020)

35. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large
scale optimization. Mathematical Programming 45(1), 503–528 (1989)

36. Majewski, S., Miasojedow, B., Moulines, E.: Analysis of nonsmooth
stochastic approximation: The differential inclusion approach. arXiv
preprint arXiv:1805.01916 (2018)

37. Metel, M.R., Takeda, A.: Perturbed iterate SGD for Lipschitz continuous
loss functions. Journal of Optimization Theory and Applications pp. 1–44
(2022)

38. Munkres, J.R.: Topology: New International Edition. Pearson Prentice
Hall (2000)

39. Nemirovskij, A.S., Yudin, D.B.: Problem Complexity and Method Effi-
ciency in Optimization. Wiley-Interscience (1983)

40. Nesterov, Yu.: A method of solving a convex programming problem with
convergence rate O(1/k2). In: Doklady Akademii Nauk, vol. 269, pp. 543–

Hardness of Deterministic Optimization of Lipschitz Functions 25

547. Russian Academy of Sciences (1983)
41. Nesterov, Yu.: How to make the gradients small. Optima (88), 10–11

(2012)
42. Nesterov, Yu.: Lectures on Convex Optimization, vol. 137. Springer (2018)
43. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton method and

its global performance. Mathematical Programming 108(1), 177–205
(2006)

44. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer
Science & Business Media (2009)

45. Tian, L., So, A.M.C.: On the hardness of computing near-approximate
stationary points of Clarke regular nonsmooth nonconvex problems and
certain DC programs. ICML Workshop on Beyond First-Order Methods
in ML Systems (2021)

46. Tian, L., Zhou, K., So, A.M.C.: On the finite-time complexity and practical
computation of approximate stationarity concepts of Lipschitz functions.
In: International Conference on Machine Learning, vol. 162, pp. 21360–
21379. PMLR (2022)

47. Vavasis, S.A.: Black-box complexity of local minimization. SIAM Journal
on Optimization 3(1), 60–80 (1993)

48. Woodworth, B., Srebro, N.: Tight complexity bounds for optimizing com-
posite objectives. In: Advances in Neural Information Processing Systems,
vol. 29, pp. 3646–3654 (2016)

49. Zhang, J., Lin, H., Jegelka, S., Jadbabaie, A., Sra, S.: Complexity of finding
stationary points of nonsmooth nonconvex functions. In: International
Conference on Machine Learning, pp. 11173–11182 (2020)

	Introduction
	Preliminaries
	Deterministic Inapproximability of Stationarity Concepts
	Proofs
	Concluding Remarks

