
1

A Linearly Convergent Optimization Framework for
Learning Graphs from Smooth Signals

Xiaolu Wang, Chaorui Yao, and Anthony Man-Cho So

Abstract—Learning graph structures from a collection of
smooth graph signals is a fundamental problem in data analysis
and has attracted much interest in recent years. Although various
optimization formulations of the problem have been proposed
in the literature, existing methods for solving them either are
not practically efficient or lack strong convergence guarantees.
In this paper, we consider a unified graph learning formulation
that captures a wide range of static and time-varying graph
learning models and develop a first-order method for solving
it. By showing that the set of Karush-Kuhn-Tucker points
of the formulation possesses a so-called error bound property,
we establish the linear convergence of our proposed method.
Moreover, through extensive numerical experiments on both
synthetic and real data, we show that our method exhibits
sharp linear convergence and can be substantially faster than
a host of other existing methods. To the best of our knowledge,
our work is the first to develop a first-order method that not
only is practically efficient but also enjoys a linear convergence
guarantee when applied to a large class of graph learning models.

Index Terms—Graph learning, graph signal processing, prox-
imal ADMM, error bound, linear convergence

I. INTRODUCTION

GRAPH is a fundamental mathematical object that has
long been used to model structural relationships among

different entities. Motivated by various types of real-world
data from, e.g., social networks, brain signal analysis, and
urban traffic flows, there has been much interest in recent
years to take additional attributes of the entities into account
and model them as signals that reside on the graph [1], [2].
This gives birth to the field of graph signal processing [3],
which aims to develop signal processing techniques to better
understand the interplay between graph topology and graph
signals. Numerous methods in signal processing and machine
learning, such as sampling [4], filtering [5], and classification
[6], have been developed to deal with graph-structured data.
Nevertheless, the concrete graph topology is often not known
a priori, which hinders further analysis and processing of the
data. In some applications, such as brain networks [7], the
graph connectivity itself is exactly what we want to find.
Therefore, it is crucial to learn the topology of the underlying
graph from a given set of graph signals.

To formally describe the graph learning problem, let G =
(V, E) be a graph with V = [m] being the set of nodes and E ⊆

Xiaolu Wang and Anthony Man-Cho So are with the Depart-
ment of Systems Engineering and Engineering Management, The Chi-
nese University of Hong Kong, HKSAR, China (e-mails: {xlwang,
manchoso}@se.cuhk.edu.hk). Chaorui Yao is with the Department of
Electrical and Computer Engineering, University of California, Los Angeles,
USA (e-mail: chaorui@ucla.edu).

V×V being the set of edges.1 We assume that (i, i) /∈ E for all
i ∈ [m], which means that there is no self-loop in the graph.
The graph structure is characterized by a symmetric and non-
negative weight matrix W ∈ Rm×m, where Wij > 0 if and
only if (i, j) ∈ E . A graph signal x is usually represented by
a column vector in Rm, whose i-th coordinate xi is the signal
value on node i. In many applications, the weight matrix W
is not known. Thus, our goal is to learn the underlying graph
structureW from a collection of n̄ graph signals x1, . . . ,xn̄ ∈
Rm.

Obviously, some prior knowledge about the relationship
between the graph structure and the graph signal is required to
achieve the goal of graph learning. One common assumption is
that the graph signal varies smoothly across the graph [8]–[10].
Intuitively, a signal is smooth on the graph if any two nodes
that are connected by an edge with a large weight have similar
signal values on them. A standard measure of the smoothness
of a signal x on the graph G is the Laplacian quadratic form,
which employs the Laplacian matrix L := Diag(W1) −W
of G and is defined as

x>Lx =
1

2

m∑
i=1

m∑
j=1

Wij(xi − xj)2.

In particular, for the graph signals x1, . . . ,xn̄ ∈ Rm that
reside on the same underlying graph G with Laplacian matrix
L, the following quantity, also known as the Dirichlet energy,
is used to measure their overall smoothness:
n̄∑
k=1

x>k Lxk =
1

2

m∑
i=1

m∑
j=1

Wij ‖x̃i − x̃j‖22 =
1

2
‖W �D‖1,1.

(1)
Here, x̃i := [(x1)i, . . . , (xn̄)i]

> is the data vector associated
with the i-th node and Dij := ‖x̃i − x̃j‖22 is the squared
pairwise distance between the node vectors x̃i, x̃j .

A. Models for Learning Graphs from Smooth Signals

Based on the signal smoothness prior, we consider a
general setting for graph learning, where the underlying
graph structure may vary over time. Suppose that the graph
signals x1, . . . ,xn ∈ Rm are sequentially collected from
T non-overlapping time slots. Within the t-th time slot,
where t = 1, . . . , T , the weight matrix W (t) ∈ Rm×m of
the underlying graph remains static. The n graph signals
are partitioned into T disjoint groups and the t-th group
{x(t)

1 , . . . ,x
(t)
nt } consists of signals collected in the t-th time

1A summary of the notation used in this paper can be found in Section I-D.

2

slot. It follows that
∑T
t=1 nt = n. For t = 1, . . . , T , let

D(t) ∈ Rm×m be given by (D(t))ij := ‖x̃(t)
i − x̃

(t)
j ‖22 with

x̃
(t)
i := [(x

(t)
1)i, . . . , (x

(t)
nt)i]

> and D := [D(1), . . . ,D(T)].
The goal then is to infer the (possibly time-varying) graphs
represented by ΞT := [W (1), . . . ,W (T)]. In this paper, we
consider the following formulation for this task:

min
ΞT

FT (ΞT) +HT (ΞT) +RT (ΞT)

s.t. W (t) ≥ 0, W (t) = (W (t))>, diag(W (t)) = 0,

for t = 1, . . . , T.

(2)

Here,

FT (ΞT) :=

T∑
t=1

‖W (t) �D(t)‖1,1,

HT (ΞT) :=

T∑
t=1

−α1> log(W (t)1) +
β

2
‖W (t)‖2F ,

and α, β > 0 are given parameters. The first term FT
promotes the overall signal smoothness on the learned graphs
W (1), . . . ,W (T). If we take T = 1, then F1 reduces to the
Dirichlet energy in (1). The second term HT induces extra
structural properties in each time slot. Specifically, it combines
the logarithmic barrier with the squared Frobenius norm to
control both connectivity and density of the learned graphs
[9], [11]. The logarithmic barrier term, albeit not having a
Lipschitz continuous gradient, is crucial to the formulation, as
it rules out both the trivial all-zero solution to (2) and isolated
nodes in the learned graphs [9]. The third term RT is used
to impose certain temporal variation prior on the time-varying
graphs for T ≥ 2. There are several common choices of RT .
Given a parameter γ > 0, we can consider the Tikhonov
regularization [12], [13]

RT (ΞT) =
γ

2

T−1∑
t=1

‖W (t+1) −W (t)‖2F , (3)

which aims to promote graphs whose edges change smoothly
over time; the L1,1-norm [11], [13]

RT (ΞT) =
γ

2

T−1∑
t=1

‖W (t+1) −W (t)‖1,1, (4)

which aims to induce sparsity in the temporal variation of the
graphs (i.e., most edges remain unchanged between successive
time slots); and the structured temporal variation regularizer
[14]

RT (ΞT) =
γ

2

∑
(u,v)∈M

‖W (u) −W (v)‖1,1 (5)

with M⊆ [T]× [T] being the edge set of the so-called tem-
poral graph, which generalizes the L1,1-norm (by taking the
temporal graph to be the chain M = {(1, 2), (2, 3), . . . , (T −
1, T)}) and provides a way to capture other sparsity patterns
in the temporal variation.

The formulation (2) is very general and subsumes many
effective graph learning formulations in the literature. In

particular, by taking T = 1 and RT ≡ 0, we obtain the classic
static graph learning model [9], [15]

min
W∈Rm×m

‖W �D‖1,1 − α1> log(W1) +
β

2
‖W ‖2F

s.t. W ≥ 0, W = W>, diag(W) = 0.

(6)

For T ≥ 2 and different choices of the temporal regularization
function RT , we obtain different time-varying graph learning
models [11]–[14], [16].

B. Existing Optimization Methods

A commonly adopted strategy for solving graph learning
formulations of the form (2) is to use primal–dual methods
(see [17] for an overview of these methods). Indeed, such
a strategy has been pursued in the cases where (i) T = 1
and RT ≡ 0 [9], (ii) T ≥ 2 and RT is given by (3) [12],
and (iii) T ≥ 2 and RT is given by (4) [11], [16]. However,
none of the mentioned works provides a rigorous convergence
analysis of the primal–dual method used. More critically, none
of those primal–dual methods are well defined, as the iterates
generated by them are not guaranteed to lie in the domain of
the logarithmic barrier in HT . In practice, we observe that the
primal–dual methods for solving static and time-varying graph
learning models tend to converge rather slowly.

Recently, several alternative approaches that are more effi-
cient than the primal–dual one have been proposed for solving
the static graph learning model (6). One approach, which is
first developed in [18], is based on the alternating direction
method of multipliers (ADMM). The method is shown to be
globally convergent and achieves a better performance than
the primal–dual method proposed in [9]. Another approach
is to apply the proximal gradient method to the dual of (6)
[19]. By adapting the convergence result of FISTA [20], the
method, which is termed fast dual proximal gradient (FDPG)
in [19], is shown to converge at a sublinear rate when solving
the dual of (6). Lastly, an approach based on the majorization-
minimization (MM) method is developed in [21], which solves
a majorizing surrogate problem in each step. The MM method
is shown to converge to the optimal solution to Problem (6) but
its convergence rate is not known. All these three algorithms
have the same per-iteration computational complexity.

From the above discussion, we see that existing optimization
methods for graph learning under the smoothness prior are
designed only for particular graph learning models. Moreover,
they lack either computational efficiency in practice or strong
convergence guarantees in theory. Although Problem (2) is
a convex program when RT is a convex function, it does
not possess properties such as strong convexity or Lipschitz
continuity of the gradient. Thus, it is difficult to prove that
existing methods enjoy fast (e.g., linear) convergence rates,
even though some of them (e.g., the ADMM in [18]) do exhibit
fast convergence empirically.

C. Our Contributions

In this paper, we develop a unified convex optimization
framework for learning both static and time-varying graphs

3

from smooth signals that can overcome the aforementioned
limitations. We summarize our main contributions as follows:

• We show that Problem (2) can be reformulated as a non-
smooth convex program with linear equality constraints,
whose structure can be effectively exploited by the proximal
ADMM (pADMM) [22]. Based on this, we develop a
pADMM-based optimization framework, which we refer
to as pADMM-GL, and show that it can be applied to
efficiently solve different instantiations of (2).

• We show that our pADMM-GL globally converges to an
optimal solution to Problem (2). Moreover, we establish
the linear convergence rate of pADMM-GL. Note that our
linear convergence result does not follow from standard
convergence analyses of the ADMM in the literature (such
as [23]), as they require the objective function to have a
term that is strongly convex and has Lipschitz continuous
gradient—a requirement that is not satisfied by Problem
(2). Instead, we need to show that the set of Karush-Kuhn-
Tucker (KKT) points of the aforementioned reformulation
of Problem (2) possesses a so-called error bound property,
which is non-trivial and can be of independent interest. To
the best of our knowledge, our proposed pADMM-GL is
the first provably linearly convergent first-order method for
graph learning from smooth signals.

• We show via extensive numerical experiments that our
proposed pADMM-GL exhibits sharp linear convergence
on both synthetic and real data. Moreover, its convergence
performance and computation time are superior to those of
other state-of-the-art algorithms.

We also remark that this paper extends its earlier conference
version [18] in four major aspects. First, our conference
paper [18] only considers the static graph learning model (6),
while this paper considers both static and time-varying graph
learning models (with different temporal regularizers for the
latter) and casts them into the unified framework (2). Second,
this paper explains in detail the theoretical and computational
considerations behind the choices of the proximal terms (see
(18a) and (18b)) in our proposed pADMM-GL; see Section
II-B. This fills a missing piece in our conference paper [18].
Third, our conference paper [18] only shows that the ADMM
proposed therein converges to an optimal solution to the static
graph learning model (6). By contrast, this paper establishes
not only the convergence but also the rate of convergence of
the proposed pADMM-GL to an optimal solution to the unified
graph learning formulation (2). This is achieved by a much
more involved analysis of the optimization problem at hand
than that in [18]; see Section III-B. Fourth, this paper presents
a much richer set of numerical results than our conference
paper [18]. In particular, it includes numerical comparisons of
our proposed pADMM-GL with the recently proposed FDPG
[19] and MM [21] methods for static graph learning and with
the primal–dual methods in [11], [12], [16] for time-varying
graph learning.

Before we leave this subsection, let us briefly comment on
the work [24]. Although our work may seem similar to [24]
in that both propose ADMM-type methods for graph learning,
they actually focus on rather different settings. Indeed, the

work [24] considers the setting where the graph topology
is known and the graph signal is assumed to be generated
from a Gaussian Markov random field model, and the goal is
to perform statistical estimation of the weight matrix under
the given graph topology constraints. By contrast, our work
considers the setting where the graph topology is not known
and the graph signal is assumed to vary smoothly across the
graph, and the goal is to find a weight matrix that minimizes
certain regularized form of the Dirichlet energy. In particular,
the graph signal is not assumed to follow any generative
model. Even from an algorithmic point of view, the results
obtained in our work are different from and go substantially
beyond those in [24]. Specifically, our work establishes the
convergence rate of the proposed pADMM-GL, which requires
the development of new techniques. By contrast, the work [24]
simply invokes existing results in the literature to conclude the
convergence of the proposed ADMM-type methods.

D. Notation

Given a positive integer m, we define [m] := {1, 2, . . . ,m}.
We use 1 (resp. 0) to denote the all-one (resp. all-zero) matrix
whose dimension will be clear from the context.

Given vectors a and b, we use ai, ‖a‖2, log(a), a2,
and
√
a to denote the i-th coordinate, `2-norm, element-wise

logarithm, element-wise square, and element-wise square root
of a, respectively; Diag(a) to denote the diagonal matrix with
a on its diagonal; a/b to denote the element-wise division of
a and b.

Given matrices A and B, we use Aij , ‖A‖F , ‖A‖1,1, and
‖A‖2 to denote the (i, j)-th element, Frobenius norm, L1,1-
norm, and spectral norm of A, respectively; diag(A) to denote
the vector formed using the diagonal entries of A; A�B and
A⊗B to denote the Hadamard product and Kronecker product

of A and B, respectively; [A;B] :=

[
A
B

]
to denote the block

column matrix generated by A and B.
Given a vector a, a set A in the same space, and a positive

semidefinite matrix A, we use

a 7→ 1A(a) :=

{
0, a ∈ A
+∞, a /∈ A

to denote the indicator function associated with A,

CA(a) :=
{
v | v>(b− a) ≤ 0 for all b ∈ A

}
to denote the normal cone of A at a, ‖a‖A := (a>Aa)1/2

to denote the A-norm of a, and

dist(a,A) := inf {‖a− b‖2 | b ∈ A} ,
distA(a,A) := inf {‖a− b‖A | b ∈ A}

to denote the distance between a and A under the Euclidean
norm and A-norm, respectively.

Given a proper extended real-valued function f , we use
dom(f) := {a | f(a) < +∞} to denote its domain,

proxf (a) := arg min
b

{
f(b) +

1

2
‖b− a‖22

}

4

to denote the proximal mapping of f evaluated at a ∈ dom(f),
and

∂f(a) :=
{
c | f(b) ≥ f(a) + c>(b− a) for all b

}
to denote the subdifferential of f at a ∈ dom(f).

Given a set-valued mapping Ψ : Rn1 ⇒ Rn2 , which assigns
a subset of Rn2 to a point in Rn1 , we use

gph(Ψ) := {(a, b) ∈ Rn1 × Rn2 | b ∈ Ψ(a)}

to denote its graph and Ψ−1 : Rn2 ⇒ Rn1 given by

Ψ−1(b) := {a ∈ Rn1 | b ∈ Φ(a)}

to denote its inverse mapping. If Ψ : Rn1 ⇒ Rn2 assigns a
singleton of Rn2 to a point in Rn1 , then Ψ is called a single-
valued mapping.

E. Paper Organization

The rest of this paper is organized as follows. In Section II,
we give a reformulation of the unified graph learning model
(2) and develop a pADMM-based framework to tackle it.
We then establish in Section III the global convergence and
local linear convergence of our proposed method. Section IV
presents a comparison of the numerical performance of our
proposed method with that of existing ones. Lastly, we give
some concluding remarks in Section V.

II. PROPOSED OPTIMIZATION FRAMEWORK

A. Problem Reformulation

Let us begin with a reformulation of Problem (2), which
exposes the underlying structure of the problem and facilitates
the design of an optimization framework for solving it. To fix
ideas, let us take RT to be the L1,1-norm regularizer (4) and
consider, for any T ≥ 1, α, β > 0, and γ ≥ 0, the following
instance of Problem (2):

min
ΞT

FT (ΞT) +HT (ΞT) +
γ

2

T−1∑
t=1

‖W (t+1) −W (t)‖1,1

s.t. W (t) ≥ 0, W (t) = (W (t))>, diag(W (t)) = 0,

for t = 1, . . . , T.

(7)

Let w(t) (resp. d(t)) be the vector formed by stacking the
entries above the main diagonal of W (t) (resp. D(t)) in a
column and set w :=

[
w(1);w(2); . . . ;w(T)

]
∈ RTp and d :=[

d(1);d(2); . . . ;d(T)
]
∈ RTp with p := m(m− 1)/2. We can

then rewrite (7) as

min
w∈RTp

2d>w − α1> log(Bw) + β‖w‖22 + γ‖B′w‖1

s.t. w ≥ 0,
(8)

where B ∈ {0, 1}Tm×Tp and B′ ∈ {0,±1}Tp×Tp satisfy

Bw = [W (1)1; . . . ;W (T)1], (9)
B′w = w −w′ (10)

with w′ :=
[
w(1);w(1); . . . ;w(T−1)

]
∈ RTp. From the

defining equations (9) and (10), it is not hard to deduce that
B is given by

B = IT ⊗ S, (11)

where S ∈ {0, 1}m×p is a matrix that has exactly m− 1 ones
in each row and satisfies Sw(t) = W (t)1 for t = 1, . . . , T ,
and B′ is given by

B′ =

0p×Tp

−Ip Ip
−Ip Ip

.
−Ip Ip

 . (12)

By introducing the new variables v := [v1;v2] with v1 ∈
RTm, v2 ∈ RTp and setting Bw = v1, B′w = v2, we obtain
the following reformulation of Problem (8):

min
w∈RTp,v∈RT (m+p)

fT (w) + gT (v)

s.t. Cw − v = 0.
(13)

Here,

C := [B;B′], (14)

fT (w) := 2d>w + β‖w‖22 + 1RTp
+

(w), (15)

gT (v) := g1
T (v1) + g2

T (v2) (16)

with g1
T (v1) := −α1> log(v1) and g2

T (v2) := γ‖v2‖1.
Note that Problem (13) always has an optimal solution (this
follows from a simple coercivity argument). Also, note that
when T = 1, the function g2

1 is vacuous. In this case, we
may simply write f1(w) = 2d>w + β‖w‖22 + 1Rp

+
(w) and

g1(v) = −α1> log(v).
As will be elaborated in the next subsection, the structure

of Problem (13) can be effectively exploited by ADMM-
type methods. Before we proceed, let us remark that the
reformulation techniques used above can be applied to handle
other regularizers as well. For instance, if we consider the
Tikhonov regularizer (3), then we can simply replace the `1-
norm in g2

T with the squared `2-norm. If we consider the
structured temporal variation regularizer (5), then we can
replace the matrix B′ in (12) with one whose identity blocks
reflect the edge structure in the temporal graph M. We also
note that when T = 1 and γ = 0, we have C = S and
Problem (13) becomes

min
w∈Rp,v∈Rm

2d>w + β‖w‖22 + 1Rp
+

(w)− α1> log(v)

s.t. Sw = v,
(17)

which is equivalent to the static graph learning model (6); cf.
[18]. In a nutshell, Problem (13) provides a unified formulation
of various static and time-varying graph learning models.

B. Algorithmic Development

In this subsection, we present our optimization framework
pADMM-GL for solving the unified graph learning formula-
tion (13). To begin, let λ ∈ RT (m+p) be the dual variable
associated with the constraint Cw − v = 0 in Problem (13).
The augmented Lagrangian function with penalty parameter
ρ > 0 associated with Problem (13) is given by

Lρ(w,v;λ)

:= fT (w) + gT (v)− λ>(Cw − v) +
ρ

2
‖Cw − v‖22.

5

In the k-th iteration (where k ≥ 0), our pADMM-GL proceeds
with the updates

wk+1 = arg min
w∈RTp

Lρ
(
w,vk,λk

)
+

1

2
‖w −wk‖2G, (18a)

vk+1 = arg min
v∈RT (m+p)

Lρ
(
wk+1,v,λk

)
+

1

2
‖v − vk‖2H , (18b)

λk+1 = λk − ρ
(
Cwk+1 − vk+1

)
, (18c)

where G ∈ RTp×Tp and H ∈ RT (m+p)×T (m+p) can be cho-
sen as any positive semidefinite matrices. Such choices ensure
that the proximal terms ‖w−wk‖2G/2 and ‖v−vk‖2H/2 are
non-negative.

Note that when G = 0 and H = 0, the proximal terms
become vacuous and the updates (18a)–(18c) reduce to those
of the classic ADMM (cADMM) (see, e.g., [25, Section 3.1]).
However, the sub-problems of the cADMM do not always have
simple closed-form solutions. Specifically, when G = 0, the
w-update (18a) becomes

wk+1 = arg min
w∈RTp

+

2d>w+ β‖w‖22 −λ>Cw+
ρ

2
‖Cw− v‖22,

which is a non-negative least squares problem and is usually
solved by iterative methods [26]. As we shall see, by adding
the proximal terms with properly chosen G and H , both sub-
problems (18a) and (18b) admit closed-form solutions that are
easy to compute.

Another important motivation for introducing non-vacuous
proximal terms is to weaken the conditions for fast conver-
gence. For cADMM, either fT or gT needs to be strongly con-
vex and have Lipschitz continuous gradient in order to guaran-
tee the linear convergence of the sequence {[wk;vk;λk]}k≥0

(see [23] for a summary). However, neither fT nor gT in our
formulation (13) satisfies such a requirement: The function
fT does not have a Lipschitz continuous gradient due to the
presence of the indicator, while the function gT does not
have a Lipschitz continuous gradient due to the logarithmic
term. Nevertheless, we note that our updates (18a)–(18c) fit
into the pADMM framework in [22], [27], where the linear
convergence rate of the sequence {[wk;vk;λk]}k≥0 can be
established with properly chosen G and H and under certain
regularity conditions (these will be elaborated in Section III).
This indicates that pADMM can better exploit the structure
of (13) than cADMM in the presence of suitable regularity
conditions.

To proceed, let G = I/τ1 − ρC>C with 0 < τ1 <
1/ρ‖C‖22 so that G is positive definite. Then, we can write
the update (18a) as

wk+1 = arg min
w∈RTp

{
2d>w + β‖w‖22 + 1RTp

+
(w)− λ>Cw

+
ρ

2
‖Cw − v‖22 +

1

2
‖w −wk‖2G

}
= arg min

w∈RTp

{
2d>w + β‖w‖22 + 1RTp

+
(w)

+ ρ(w −wk)>C>
(
Cwk − vk − λ

k

ρ

)

+
1

2τ1
‖w −wk‖22

}
= proxτ1fT

[
wk − τ1C>

(
Cwk − vk − λ

k

ρ

)]
. (19)

It is worth noting that the update (19) coincides with
that obtained by applying one proximal gradient step to
Lρ(w,vk;λk) at wk with step size τ1. Similarly, by letting
H = (1/τ2 − ρ) I with 0 < τ2 < 1/ρ so that H is positive
definite, the update (18b) can be written as

vk+1 = proxτ2gT

[
vk + τ2ρ

(
Cwk+1 − vk − λ

k

ρ

)]
, (20)

which coincides with that obtained by applying one proximal
gradient step to Lρ(wk+1,v;λk) at vk with step size τ2. The
update formulas (19) and (20) involve the proximal mappings
of fT and gT . As the following propositions show, both of
them admit simple closed forms:

Proposition 1. If fT (w) = 2d>w + β‖w‖22 + 1RTp
+

(w) for
w ∈ RTp, then given any τ > 0, we have

proxτfT (w) = max

{
w − 2τd

2τβ + 1
,0

}
.

Proposition 2. If gT (v) = −α1> log(v1) + γ‖v2‖1 for v =
[v1;v2] with v1 ∈ RTm and v2 ∈ RTp, then given any τ > 0,
we have

proxτgT (v) =

[
1
2

(
v1 +

√
v2

1 + 4ατ1
)

Sτ,γ(v2)

]
,

where Sτ,γ is the soft thresholding operator [28] given by

(Sτ,γ(v2))i =

{
0, |(v2)i| ≤ τγ,
sgn((v2)i) (|(v2)i| − τγ) , |(v2)i| > τγ

for i = 1, . . . , Tp.

Proposition 1 is proved in Appendix A and Proposition
2 is adapted from [28, Sections 6.5.2 and 6.7.5]. Applying
Propositions 1 and 2 to (19) and (20), respectively, we can
rewrite the pADMM-GL updates (18a)–(18c) as

wk+1 = max
{
w̃k+1,0

}
, (21a)

vk+1 =

 1
2

(
ṽk+1

1 +

√(
ṽk+1

1

)2
+ 4ατ21

)
Sτ2,γ(ṽk+1

2)

 , (21b)

λk+1 = λk − ρ
(
Cwk+1 − vk+1

)
, (21c)

where

w̃k+1 :=
wk − τ1C>

(
Cwk − vk − λk

ρ

)
− 2τ1d

2τ1β + 1
,

ṽk+1 := (1− τ2ρ)vk + τ2ρCw
k+1 − τ2λk.

In particular, by substituting C = S, the pADMM-GL updates
(21a)–(21c) can be used to solve the static graph learning
model (17).

The overall description of our pADMM-GL is given in
Algorithm 1. The stopping criterion is that the primal resid-
ual rp :=

∥∥Cwk − vk
∥∥

2
and the dual residual rd =

6

Algorithm 1 pADMM-GL for Problem (13)

1: Input: model parameters α, β > 0, T ≥ 1, and γ ≥ 0;
penalty parameter ρ > 0; step sizes τ1, τ2 > 0; tolerances
εp, εd > 0;

2: Initialize: k = 0, randomly pick w0 ∈ RTp, v0 ∈
RT (m+p) and λ0 ∈ RT (m+p), and pick sufficiently large
rp, rd;

3: while rp ≥ εp or rd ≥ εd do
4: update w according to (21a);
5: update v according to (21b);
6: update λ according to (21c);
7: set primal residual rp ←

∥∥Cwk − vk
∥∥

2
;

8: set dual residual rd ← ρ
∥∥C> (vk+1 − vk

)∥∥
2
;

9: k ← k + 1;
10: end while

ρ
∥∥C> (vk+1 − vk

)∥∥
2

are less than the prescribed tolerances
εp and εd, respectively. The per-iteration computational cost
of our pADMM-GL is O(Tp), which is comparable to the
state-of-the-art methods [9], [11], [19].

III. CONVERGENCE ANALYSIS OF pADMM-GL

Observe that (13) is a linearly constrained convex optimiza-
tion problem with at least one optimal solution. Thus, its KKT
conditions, which are given by

0 ∈ ∂fT (w)−C>λ,
0 ∈ ∂gT (v) + λ,

0 = Cw − v,
(22)

are both necessary and sufficient for optimality. Let O∗ denote
the set of KKT points of Problem (13), i.e., [w;v;λ] ∈ O∗
if and only if (w,v,λ) satisfies (22). Since pADMM-GL
performs both primal and dual updates to generate the iterates
{[wk;vk;λk]}k≥0, it is natural to ask whether these iterates
will converge to a KKT point of Problem (13), and if so, at
what rate. We shall address these questions in this section.

A. Global Convergence

As mentioned in Section II-B, our proposed pADMM-GL
fits into the pADMM framework in [22], [27]. Using our
choice of G, H and adapting, e.g., the proof of [22, Theorem
B.1], we immediately obtain the following global convergence
result for pADMM-GL:

Theorem 1. Suppose that the step sizes in Algorithm 1
satisfy τ1 < 1/ρ‖C‖22 and τ2 < 1/ρ. Then, the sequence
{[wk;vk;λk]}k≥0 generated by Algorithm 1 converges to
some point [w∗;v∗;λ∗] ∈ O∗.

As Theorem 1 indicates, the largest singular value of C
determines the maximum τ1 that guarantees the global con-
vergence of Algorithm 1. To guide the choice of step sizes,
we have the following proposition, whose proof is deferred to
Appendix B.

Proposition 3. The largest singular values of S and C satisfy
(1) ‖S‖2 =

√
2(m− 1); (2) ‖C‖2 ≤

√
2(m− 1) + 2.

Remark 1. Theorem 1 guarantees the global convergence
of Algorithm 1 with an arbitrary initial point given proper
step sizes. In view of Proposition 3(1), we should let τ1 <
1/(2ρ(m− 1)) and τ2 < 1/ρ when solving the static graph
learning model (17). Moreover, Proposition 3(2) suggests that
we should choose τ1 < 1/ρ(

√
2(m− 1) + 2)2 and τ2 < 1/ρ

when solving the time-varying graph learning model (13) with
T ≥ 2 and γ > 0.

B. Local Linear Convergence

To determine the convergence rate of pADMM-GL when
solving the graph learning formulation (13), one natural idea is
to estimate how the distance between the iterate [wk;vk;λk]
generated by the method and the set O∗ of KKT points of
Problem (13) changes as the iteration counter k increases.
To implement this idea, we first use the definition of the
proximal mapping given in Section I-D to rewrite the KKT
conditions (22) as

w − proxfT (w +C>λ) = 0, (23a)

v − proxgT (v − λ) = 0, (23b)

Cw − v = 0. (23c)

Next, we define the (single-valued) proximal KKT mapping
Πp

KKT : R` → R`, where ` := T (2m + 3p), associated with
Problem (13) as

Πp
KKT(w,v,λ) :=

w − proxfT (w +C>λ)
v − proxgT (v − λ)

Cw − v

 , (24)

where w ∈ RTp and v,λ ∈ RT (m+p).
The motivation for considering the proximal KKT mapping

Πp
KKT is twofold. First, using (23) and (24), the set of KKT

points of Problem (13) can be expressed as

O∗ = (Πp
KKT)−1(0) =

{
[w;v;λ] ∈ R` | Πp

KKT(w,v,λ) = 0
}

=

w
v1

v2

λ1

λ2

 ∈ R`

∣∣∣∣∣∣∣∣∣∣
w − proxfT (w +C>λ) = 0,

v1 − proxg1T (v1 − λ1) = 0,

v2 − proxg2T (v2 − λ2) = 0,

Cw − [v1;v2] = 0

 , (25)

where v = [v1;v2] and λ = [λ1;λ2] with v1,λ1 ∈ RTm and
v2,λ2 ∈ RTp. Second, as it turns out, for any [w;v;λ] ∈ R`
that is sufficiently close to O∗, the norm ‖Πp

KKT(w,v,λ)‖2
can be used as a surrogate of the distance dist([w;v;λ],O∗).
Specifically, we have the following result, which is the main
technical contribution of this section:

Theorem 2. The mapping Πp
KKT is metrically subregular at

any KKT point of Problem (13). Specifically, there exist a
constant ζ > 0 and a neighborhood U ⊆ R` with O∗ ⊆ U
such that whenever [w;v;λ] ∈ U , we have

dist([w;v;λ],O∗) = dist
(
[w;v;λ], (Πp

KKT)−1(0)
)

≤ ζ · dist
(
0,Πp

KKT(w,v,λ)
)

= ζ‖Πp
KKT(w,v,λ)‖2.

(26)

The inequality (26) is commonly known in the optimization lit-
erature as an error bound for the set O∗ with residual function

7

(w,v,λ) 7→ ‖Πp
KKT(w,v,λ)‖2. It is well known that error

bounds furnish a powerful tool for establishing convergence
rates of various iterative methods; see, e.g., [27], [29]–[34] and
the references therein. In particular, the following result, which
shows that pADMM-GL enjoys a local linear convergence
rate when applied to Problem (13), is a direct consequence
of Theorem 1, Theorem 2, and [27, Theorem 2]:

Theorem 3. Suppose that the step sizes in Algorithm 1
satisfy τ1 < 1/ρ‖C‖22 and τ2 < 1/ρ. Let M :=

Diag
(

1
τ1
ITp − 3ρ

4 C
>C,

(
1
τ2

+ ρ
4

)
IT (m+p),

1
ρIT (m+p)

)
.

Then, there exist K > 0 and µ ∈ (0, 1) such that for all
k > K, we have

dist2
M ([wk+1;vk+1;λk+1],O∗) + (1/τ2 − ρ)‖vk+1 − vk‖22

≤ µ
(
dist2

M ([wk;vk;λk],O∗) + (1/τ2 − ρ)‖vk − vk−1‖22
)
.

Theorem 3 shows that the iterate sequence generated by
pADMM-GL converges to some point in O∗ at the linear
rate of O(µk). It is worth noting that when compared with
the corresponding result in the recent work [19], which shows
that the function value sequence generated by FDPG converges
at the sublinear rate of O(1/k2), Theorem 3 guarantees a
faster convergence rate (i.e., linear vs. sublinear) for a stronger
mode of convergence (i.e., iterate sequence convergence vs.
function value sequence convergence). In fact, to the best of
our knowledge, Theorems 1 and 3 yield the best convergence
guarantee known to date for solving the unified graph learning
formulation (13).

To prove Theorem 2, we first recall that g1
T (v1) =

−α1> log(v1), which implies that g1
T is strictly convex on

RTm++ . This suggests that every point [w;v1;v2;λ1;λ2] ∈ O∗
has the same v1-component. Using this and (23b), we can
obtain the following alternative characterization of O∗:

Lemma 1. There exists a vector v∗1 ∈ RTm++ such that the set
of KKT points of Problem (13) can be written as

O∗ =

w
v1

v2

λ1

λ2

 ∈ R`

∣∣∣∣∣∣∣∣∣∣∣∣

0 ∈ ∂fT (w)−C>λ,
0 = λ1 − α1/v∗1

0 = v1 − v∗1 ,
0 ∈ ∂g2

T (v2) + λ2,

0 = Cw − [v1;v2]

. (27)

The proof of Lemma 1 can be found in Appendix C.
Now, we define the set-valued mapping ΓKKT : R` ⇒

R`+Tm as

ΓKKT(w,v1,v2,λ1,λ2) :=

∂fT (w)−C>λ
λ1 − α1/v∗1
v1 − v∗1

∂g2
T (v2) + λ2

Cw − [v1;v2]

 , (28)

where w ∈ RTp; v1,λ1 ∈ RTm; and v2,λ2 ∈ RTp. In view
of (27), we have

O∗ = (ΓKKT)−1(0).

The advantage of considering the mapping ΓKKT is made
evident in the following result:

Lemma 2. The set-valued mapping ΓKKT is piecewise poly-
hedral.2 Consequently, it is metrically subregular at any
KKT point of Problem (13). Specifically, there exist con-
stants ε, η > 0 such that whenever [w;v;λ] ∈ R` satisfies
dist(0,ΓKKT(w,v,λ)) ≤ ε, we have

dist([w;v;λ],O∗) = dist
(
[w;v;λ], (ΓKKT)−1(0)

)
≤ η · dist (0,ΓKKT(w,v,λ)) .

(29)

The proof of Lemma 2 can be found in Appendix D.
In view of Lemma 2, we can complete the proof of

Theorem 2 by establishing the following link between the
metric subregularity properties of Πp

KKT and ΓKKT:

Proposition 4. If ΓKKT is metrically subregular at any KKT
point of Problem (13) (i.e., the error bound (29) holds for some
constants ε, η > 0), then so is Πp

KKT (i.e., the error bound (26)
holds for some constant ζ > 0 and neighborhood U ⊆ R` with
O∗ ⊆ U).

The proof of Proposition 4 can be found in Appendix E.
To summarize, we have shown that when applied to the

graph learning formulation (13), the iterates generated by
our proposed pADMM-GL will converge to a KKT point of
the formulation at a local linear rate. It is worth pointing
out that our convergence results remain valid if we replace
the L1,1-norm regularizer (4) in Problem (13) by either the
Tikhonov regularizer (3) or the structured temporal variation
regularizer (5). Indeed, the former results in a convex quadratic
g2
T , while the latter yields a piecewise linear g2

T (see (16)). As
such, the arguments used to prove Theorems 1 and 2 still apply.
To the best of our knowledge, our work is the first to develop
a first-order method that applies to the large class of static and
time-varying graph learning formulations encapsulated in (2)
and comes with a linear convergence guarantee.

IV. NUMERICAL EXPERIMENTS

A. Static Graph Learning

In this subsection, we present the numerical results of
our pADMM-GL, the primal–dual method [9], the FDPG
method [19], and the MM method [21] when solving the static
graph learning model (6). All algorithms are implemented in
MATLAB.3 To test the primal–dual method, we use the code
provided in the Graph Signal Processing toolbox4 [36] and
incorporate the scaling trick given in [15, Proposition 1] to
accelerate the convergence. To test FDPG, we use the code
provided by [19].5 To test the MM method, we use the code
provided by [21]6 but remove the data normalization step to
ensure that the implementation is consistent with the other
algorithms. The parameters α and β in Problem (6) are best-
tuned so that the learned graphs have the highest quality in
terms of the F-measure [8], [37]. Moreover, the parameters

2A set-valued mapping Φ is called piecewise polyhedral if gph(Φ) can
be expressed as the union of finitely many polyhedral sets; see [35, Example
9.57].

3Our code is available at https://github.com/xwangcu/padmm-gl.
4https://epfl-lts2.github.io/gspbox-html/doc/demos/gsp demo learn

graph large.html
5http://www.ece.rochester.edu/∼gmateosb/code/FDPG.zip
6https://github.com/ghaniafatima/GLMM

https://github.com/xwangcu/padmm-gl
https://epfl-lts2.github.io/gspbox-html/doc/demos/gsp_demo_learn_graph_large.html
https://epfl-lts2.github.io/gspbox-html/doc/demos/gsp_demo_learn_graph_large.html
http://www.ece.rochester.edu/~gmateosb/code/FDPG.zip
https://github.com/ghaniafatima/GLMM

8

0 20 40 60 80 100 120 140
10-15

10-10

10-5

100

pADMM-GL

Primal-Dual

FDPG

MM

(a) Gaussian graph (m = 20, n = 100)

0 50 100 150 200 250 300
10-12

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

FDPG

MM

(b) ER graph (m = 20, n = 100)

0 50 100 150
10-15

10-10

10-5

100

pADMM-GL

Primal-Dual

FDPG

MM

(c) PA graph (m = 20, n = 100)

0 50 100 150 200 250 300 350

10-10

10-5

100

pADMM-GL

Primal-Dual

FDPG

MM

(d) Gaussian graph (m = 50, n = 400)

0 200 400 600 800 1000 1200

10-10

10-5

100

pADMM-GL

Primal-Dual

FDPG

MM

(e) ER graph (m = 50, n = 400)

0 100 200 300 400 500 600 700 800 900 1000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

FDPG

MM

(f) PA graph (m = 50, n = 400)

Fig. 1: Convergence performance of algorithms for static graph learning on synthetic graphs

0 50 100 150 200 250 300

10-10

10-8

10-6

10-4

10-2

100

pADMM-GL

Primal-Dual

FDPG

MM

(a) mesh1e1 graph (m = 48, n = 100)

10 20 30 40 50 60 70 80 90 100 110

10-8

10-6

10-4

10-2

100

pADMM-GL

Primal-Dual

FDPG

MM

(b) bcspwr graph (m = 118, n = 100)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

10-8

10-6

10-4

10-2

100

pADMM-GL

Primal-Dual

FDPG

MM

(c) lshp graph (m = 1561, n = 2000)

Fig. 2: Convergence performance of algorithms for static graph learning on real-world graphs

ρ, τ1, τ2 in pADMM-GL and the step sizes in the primal–dual
method are also best-tuned to achieve sharp convergence rates.
We generate the graph signals according to the factor analysis
model proposed in [8]. Specifically, suppose that the Laplacian
matrix of the ground-truth graph is L = Diag(W1) −W
and admits the eigen-decomposition L = χΛχ>. Then, the
smooth graph signal is generated as x = χh + δ, where
h ∼ N

(
0,Λ†

)
is the latent variable that follows the Gaussian

distribution with mean equal to 0 and covariance equal to the
Moore-Penrose inverse Λ† of Λ and δ ∼ N (0, εI) is the
Gaussian noise with noise level ε.

1) Synthetic Graphs: We first carry out experiments on
three types of synthetic graphs, namely, the Gaussian graph,
the Erdős-Rényi (ER) graph, and the preferential attachment
(PA) graph. The Gaussian graph is generated as follows: First,
the nodes are placed uniformly at random in a unit square.
Then, an edge is placed between nodes i and j if the weight
determined by the radial basis function exp(−d(i, j)2/2ξ2),
where d(i, j) is the Euclidean distance between nodes i and j

and ξ = 0.5 is the kernel width parameter, is at least 0.75. The
ER graph is generated by placing an edge between each pair
of nodes independently with probability 0.2. The PA graph
is generated by having 2 connected nodes initially and then
adding new nodes one at a time, where each new node is
connected to exactly 1 previous node that is randomly chosen
with a probability that is proportional to its degree at the time.
The edges in the Gaussian graph have weights given by the
radial basis function, while those in the ER and PA graphs are
set to 1. We generate different sets of graph signals with the
same noise level ε = 0.5.

Since the algorithms we consider have the same O(m2)
per-iteration computational cost with m being the dimension
of graph signals, we evaluate their performance through the
suboptimality gap ‖wk − w∗‖2 for different values of m
and n (number of graph signals). The results are shown in
Fig. 1, from which we observe that pADMM-GL always
exhibits substantially sharper convergence rates than the other
three algorithms. In some cases, e.g., Fig. 1c, the primal–dual

9

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(a) m = 20, n = 1000, T = 10

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(b) m = 20, n = 2000, T = 50

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-5

100

pADMM-GL

Primal-Dual

(c) m = 20, n = 1000, T = 100

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(d) m = 20, n = 1000, T = 10

0 1 2 3 4 5 6 7 8 9 10

104

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(e) m = 20, n = 2000, T = 50

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(f) m = 20, n = 1000, T = 100

Fig. 3: Convergence performance of algorithms for time-varying graph learning on synthetic graphs

method and FDPG converge rather slowly, while pADMM-
GL still performs quite well. It is reported in [21] that the
MM method is faster than other algorithms (including the
preliminary version of our pADMM-GL [18]) in the very
initial stage. Our experiments show that the suboptimality gap
of the MM method decreases fast in the first few iterations,
which confirms the empirical observation in [21]. However, the
MM method appears to converge only at a sublinear rate and
does not attain high-precision solutions in all the experiments.

2) Real-World Graphs: We also test the numerical perfor-
mance of the algorithms on several real-world graphs from the
SuiteSparse Matrix Collection7 [38]. In particular, we select
the mesh1e1 network with m = 48, the bcspwr power network
with m = 118, and the lshp thermal network with m = 1561.
The numerical results are shown in Fig. 2. For the mesh1e1
network, pADMM-GL is comparable with FDPG, while they
are both faster than the primal–dual method. For the bcspwr
and lshp graphs, pADMM-GL converges much faster than the
primal–dual method and FDPG. Even for the relatively large
lshp graph, pADMM-GL can still achieve 10−5 precision,
while the primal–dual method and FDPG can hardly obtain
a desirable suboptimal solution. The MM method even fails
to converge to an acceptable solution for this large graph.

B. Runtime Comparison

Next, we compare the CPU runtime of pADMM-GL, FDPG,
and the primal–dual method by stopping them when the
suboptimality gap ‖wk −w∗‖2 is less than 10−8. We do not
report the CPU runtime of the MM method, since it converges

7https://sparse.tamu.edu/

m CVX primal–dual FDPG pADMM-GL

Gaussian
20 1.9 0.026 0.0023 0.0017
50 13.0 0.038 0.0084 0.0072

ER
20 3.6 0.077 0.0031 0.0026
50 12.4 0.278 0.0215 0.0209

PA
20 2.0 0.056 0.0026 0.0012
50 12.0 0.634 0.0483 0.0239

(a) Runtime (in seconds) on synthetic graphs

m CVX primal–dual FDPG pADMM-GL

mesh1e1 48 10.76 0.20 0.005 0.006

bcspwr 118 635.9 0.37 0.07 0.03

(b) Runtime (in seconds) on real-world graphs

TABLE I: Runtime of algorithms for static graph learning

rather slowly and takes considerably more time than other
algorithms to achieve the required precision. Since Problem (6)
is convex, we solve it using the convex optimization package
CVX [39] with SDPT3 as the solver and the precision set
to highest. The runtime of CVX is provided as a baseline.
Table I(a) reports the average runtime over 10 independent
runs under the same experiment settings as those for Fig. 1. It
can be seen that our pADMM-GL consumes moderately less
runtime than FDPG for Gaussian and ER graphs and requires
less than half the runtime of FDPG for PA graphs. In all
cases, pADMM-GL consumes substantially less time than the

https://sparse.tamu.edu/

10

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(a) m = 16, n = 500, T = 10

0 0.5 1 1.5 2 2.5 3 3.5

105

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(b) m = 32, n = 500, T = 10

0 1 2 3 4 5 6 7 8 9 10

104

10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(c) m = 256, n = 200, T = 5

0 2000 4000 6000 8000 10000 12000 14000
10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(d) m = 16, n = 500, T = 10

0 500 1000 1500 2000 2500 3000
10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(e) m = 32, n = 500, T = 50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10-10

10-8

10-6

10-4

10-2

100

102

pADMM-GL

Primal-Dual

(f) m = 256, n = 500, T = 5

Fig. 4: Convergence performance of algorithms for time-varying graph learning on point cloud data

0 1 2 3 4 5 6 7 8 9 10

104

10-8

10-6

10-4

10-2

100

102

104

pADMM-GL

Primal-Dual

Fig. 5: Convergence performance of algorithms for time-
varying graph learning on Ireland temperature data (m = 25,
n = 38712, T = 1613)

primal–dual method. Table I(b) reports the average runtime
over 10 independent runs under the same experiment settings
as those for Fig. 2. For the medium-sized mesh1e1 and bcspwr
graphs, pADMM-GL and MM exhibit comparable runtime,
and they both consume significantly less runtime than the
primal–dual method and CVX. We do not provide the runtime
comparison for the largest lshp graph, as all the compared
methods except our pADMM-GL converge exceedingly slowly
(as shown in Fig. 2(c)).

C. Time-Varying Graph Learning

In this subsection, we present the numerical results of our
pADMM-GL and the primal–dual methods when solving the
time-varying graph learning model (2) with T ≥ 2 and the

temporal regularizer being either the Tikhonov regularizer (3)
or the L1,1-norm regularizer (4). When RT is given by (3),
the vectorized reformulation of (2) is the same as (13) except
that g2

T (v2) = γ‖v2‖22. Observe that for any v2 ∈ RTp and
τ2 > 0, we have

proxτ2g2T (v2) = arg min
u∈RTp

{
τ2γ‖u‖22 +

1

2
‖u− v2‖22

}
= v2/(1 + 2τ2γ).

Thus, in order to apply Algorithm 1 to solve Problem (2)
with the Tikhonov regularizer, it suffices to modify the update
formula (21b) as

vk+1 =

 1
2

(
ṽk+1

1 +

√(
ṽk+1

1

)2
+ 4ατ21

)
ṽk+1

2 /(1 + 2τ2γ)

 .
We use the primal–dual methods in [12] and [11] to solve
the Tikhonov and L1,1-norm regularized time-varying graph
learning models, respectively. In each experiment, we fix a set
of α, β, and γ in Problem (2) and best-tune the algorithmic
parameters ρ, τ1, τ2 in pADMM-GL and the step sizes in the
primal–dual methods for fast convergence. The algorithms are
also implemented in MATLAB.

1) Synthetic Graphs: We follow the approach in [16] to
generate synthetic time-varying graphs and the associated
synthetic graph signals. Suppose that there are T time slots.
We generate T static graphs as follows: First, we construct
an initial static ER graph in W (1) with m nodes, where the
connecting probability of each edge is fixed to be p = 0.05.
The edge weights in W (1) are uniformly distributed within
the interval [0, 1]. Then, for t = 2, . . . , T , we construct the

11

graph in the t-th time slot W (t) by randomly resampling 5%
of the edges of the previous graph W (t−1). Due to this rule,
most edges and their corresponding weights remain unchanged
within a short period. In each experiment, we generate n graph
signals in total. In the t-th time slot, we independently generate
n/T graph signals that reside on the t-th graph W (t) in the
same way as in Section IV-A.

Since both pADMM-GL and the primal–dual methods
have the same O(Tm2) per-iteration computational cost, we
evaluate their performance through the suboptimality gap
‖wk − w∗‖2 for different values of m, n, and T . The
results are shown in Fig. 3. It can be observed that pADMM-
GL always exhibits substantially sharper convergence rates
than the primal–dual methods. In contrast to the efficient
pADMM-GL, the primal–dual methods can hardly converge
to a satisfactory precision in the considered cases.

2) Point Cloud Data: Analogous to [12] and [16], we
apply the time-varying graph learning model (2) to tackle
the time-varying point cloud denoising problem. A key step
in the problem is to learn the time-varying Laplacian matri-
ces L(1), . . . ,L(T) from a noisy point cloud dataset X =
[X(1), . . . ,X(T)]. In our experiments, we use the motion-
capture point cloud data8 [40] as the noiseless graph signals.
In particular, we evolve the “dancer” point cloud data over n
frames. For each frame, we down-sample the point cloud to m
points, which form an m-dimensional graph signal. We then
add Gaussian noise to the noiseless data with a signal-to-noise
ratio of 2dB to generate the noisy data X = [x1, . . . ,xn] ∈
Rm×n. To enhance the numerical performance, we normalize
the data matrix X by

xi ←
xi −mink∈[m]{(xi)k}

maxk∈[m]{(xi)k} −mink∈[m]{(xi)k}

for all i ∈ [n]. We divide the n frames into T time slots, so that
each time slot contains n/T graph signals. We use both our
pADMM-GL and the primal–dual methods to solve Problem
(2) to learn a sequence of graphs from X .

The convergence performance in terms of the suboptimality
gap ‖wk − w∗‖2 for different choices of m, n, and T are
presented in Fig. 4. The numerical results on the real point
cloud data indicate that pADMM-GL still exhibits sharp linear
convergence and is always much faster than the primal–dual
methods.

3) Temperature Data: Analogous to [41], we consider the
realistic weather data provided by the Irish Meteorological
Service. The dataset contains n = 38712 hourly temperature
measurements (in Celsius) from January 2016 to May 2020,
which are acquired by 25 stations across Ireland. Each temper-
ature measurement can be regarded as a 25-dimensional graph
signal, and each time slot consists of 24 graph signals. Then,
we apply pADMM-GL and the primal–dual method in [11] to
solve the L1,1-norm regularized time-varying graph learning
model (7) with T = 1613. The convergence performance is
presented in Fig. 5, which again shows the superiority of our
proposed method.

8http://pages.iai.uni-bonn.de/gall juergen/projects/skelsurf/skelsurf.html

V. CONCLUSION

In this paper, we have developed an efficient and flexible
optimization method for solving a unified formulation of
various static and time-varying graph learning tasks. We have
shown that the iterates generated by our method will converge
linearly to an optimal solution to the formulation. This was
achieved by showing that the set of KKT points of the
formulation possesses an error bound property, which can
be of independent interest. Furthermore, we have shown via
extensive numerical experiments on both synthetic and real
data that the convergence performance and computation time
of our proposed method outperform those of other state-of-
the-art methods. A natural future direction is to extend our
algorithmic framework to tackle other emerging graph learning
models.

APPENDIX

A. Proof of Proposition 1

Note that fT (w) =
∑Tp
i=1 f

(i)(wi), where f (i)(wi) :=
2diwi + βw2

i + 1R+
(wi), and

proxτf(i)(wi) = arg min
ui∈R

{
f (i)(ui) +

1

2τ
(ui − wi)2

}
= arg min

ui∈R

{
2diui + βu2

i + 1R+
(ui) +

1

2τ
(ui − wi)2

}
= max

{
wi − 2τdi
2τβ + 1

, 0

}
for i = 1, . . . , Tp. The desired result follows immediately.

B. Proof of Proposition 3

It is shown in [42, Lemma 1] that ‖S‖2 =
√

2(m− 1).
Using (11), we have

‖B‖2 = ‖IT ⊗ S‖2 =
√

2(m− 1). (30)

To bound ‖B′‖2, we use (12) to write

B′B′
>

=

0p
2Ip −Ip
−Ip 2Ip −Ip

.
−Ip 2Ip −Ip

−Ip 2Ip

.

By the Gershgorin circle theorem (see, e.g., [43, Theorem
7.2.1]), the region

G := {λ ∈ R | λ = 0 or |λ− 2| ≤ 1 or |λ− 2| ≤ 2}

contains all the eigenvalues of B′B′>. It follows that

‖B′‖2 ≤
√

max
λ∈G

λ = 2. (31)

Combining (14), (30), and (31) gives

‖C‖2 ≤ ‖B‖2 + ‖B′‖2 ≤
√

2(m− 1) + 2.

http://pages.iai.uni-bonn.de/gall_juergen/projects/skelsurf/skelsurf.html

12

C. Proof of Lemma 1

Let [w′;v′1;v′2;λ′1,λ
′
2], [w′′;v′′1 ;v′′2 ;λ′′1 ;λ′′2] ∈ O∗ be two

KKT points of Problem (13). Then, both (w′, [v′1;v′2]) and
(w′′, [v′′1 ;v′′2]) are optimal solutions to Problem (13) with
optimal value, say, θ. We claim that v′1 = v′′1 . Suppose that this
is not the case. Since ∇2g1

T (v1) = Diag(α1/v2
1) is positive

definite for any v1 ∈ RTm++ , we see that g1
T is strictly convex

on RTm++ . Now, set

w̄ =
w′ +w′′

2
, v̄1 =

v′1 + v′′1
2

, v̄2 =
v′2 + v′′2

2
.

Note that (w̄, [v̄1; v̄2]) is feasible for Problem (13). Moreover,
since v′1 6= v′′1 and g1

T is strictly convex, we have g1
T (v̄1) <

(g1
T (v′1) + g1

T (v′′1))/2. It follows that

θ ≤ fT (w̄) + g1
T (v̄1) + g2

T (v̄2)

<
1

2

(
fT (w′) + fT (w′′) + g1

T (v′1) + g1
T (v′′1)

+g2
T (v′2) + g2

T (v′′2)
)

= θ,

which is a contradiction. Thus, there exists a vector v∗1 ∈ RTm++

such that for any [w;v1;v2;λ1,λ2] ∈ O∗, we have v1 = v∗1 .
Using Proposition 2, we deduce that the equation v1 −

proxg1T (v1 − λ1) = 0 in (25) is equivalent to

v1 −
1

2
(v1 − λ1 +

√
(v1 − λ1)2 + 4α1) = 0.

Further simplifying gives λ1 − α1/v1 = 0. This, together
with the equation v1 − v∗1 = 0 we obtained in the preceding
paragraph, yields the desired characterization of O∗.

D. Proof of Lemma 2

In view of the definition of ΓKKT in (28), we define the
mappings Ωi : R` ⇒ R`+Tm for i = 1, . . . , 5 as follows:

Ω1(w,v1,v2,λ1,λ2) := ∂fT (w)−C>λ,
Ω2(w,v1,v2,λ1,λ2) := λ1 − α1/v∗1 ,

Ω3(w,v1,v2,λ1,λ2) := v1 − v∗1 ,
Ω4(w,v1,v2,λ1,λ2) := ∂g2

T (v2) + λ2,

Ω5(w,v1,v2,λ1,λ2) := Cw − [v1;v2].

Then, we can express the graph of ΓKKT as

gph(ΓKKT) = {(u,p) | p ∈ ΓKKT(u)}
= {(u,p) | pi ∈ Ωi(u) for i = 1, . . . , 5}
= {(u,p) | (u,pi) ∈ gph(Ωi) for i = 1, . . . , 5}, (32)

where u = [w;v1;v2;λ1;λ2] ∈ R` and p =
[p1;p2;p3;p4;p5] ∈ R`+Tm.

Now, observe that since both fT and g2
T are piecewise

linear-quadratic functions,9 the mappings ∂fT and ∂g2
T are

piecewise polyhedral [35, Proposition 12.30]. Consequently,

9A proper extended real-valued function f is called piecewise linear-
quadratic if dom(f) can be represented as the union of finitely many
polyhedral sets, relative to each of which f(x) is given by an expression
of the form 1

2
x>Ax+ b>x+ c for some scalar c, vector b, and symmetric

matrix A; see [35, Definition 10.20].

the graphs gph(Ω1) and gph(Ω4) can be expressed as unions
of finitely many polyhedral sets. It is obvious that the graphs
gph(Ω2), gph(Ω3), and gph(Ω5) are polyhedral. It follows
from (32) that gph(ΓKKT) can be expressed as the union
of finitely many polyhedral sets, which implies that ΓKKT is
piecewise polyhedral.

To complete the proof, we note that the piecewise polyhe-
drality of ΓKKT implies that gph((ΓKKT)−1) can be expressed
as the union of finitely many polyhedral sets [35, page 489].
It then follows from [44, Theorem 3D.1 and Exercise 3D.7]
that ΓKKT is metrically subregular at any KKT point of
Problem (13).

E. Proof of Proposition 4

The proof consists of two steps. First, we consider the set-
valued mapping ΠKKT : R` ⇒ R`, which is defined as

ΠKKT(w,v,λ) :=

∂fT (w)−C>λ
∂gT (v) + λ
Cw − v

 (33)

for w ∈ RTp and v,λ ∈ RT (m+p), and establish a link
between the metric subregularity properties of ΓKKT and ΠKKT.
Then, based on this link, we establish the metric subregularity
of Πp

KKT.
1) Step 1: Suppose that ΓKKT is metrically subregular at

any KKT point of Problem (13), i.e., the error bound (29)
holds for some constants ε, η > 0. Consider the neighborhood

U =
{

[w′;v′;λ′] ∈ R` | dist (0,ΓKKT(w′,v′,λ′)) ≤ ε
}
.

It is clear that O∗ ⊆ U , as 0 ∈ ΓKKT(w′,v′,λ′) for any
[w′;v′;λ′] ∈ O∗. Let [w;v;λ] ∈ U be arbitrary. To prepare
for our subsequent development, let us collect some basic
facts.

Let

[a; b;φ] ∈ ΠKKT(w,v,λ), (34)

where a ∈ RTp and b,φ ∈ RT (m+p). We write v = [v1;v2],
λ = [λ1;λ2], and b = [b1; b2] with v1,λ1, b1 ∈ RTm and
v2,λ2, b2 ∈ RTp. From the definition of ΠKKT in (33), we
have

a ∈ ∂fT (w)−C>λ, (35a)

b1 = ∇g1
T (v1) + λ1, (35b)

b2 ∈ ∂g2
T (v2) + λ2 (35c)

φ = Cw − [v1;v2]. (35d)

This, together with the definition of ΓKKT in (28), yields[
a;λ1 − α1/v∗1 ;v1 − v∗1 ; b2;φ

]
∈ ΓKKT(w,v1,v2,λ1,λ2).

(36)

Since dist (0,ΓKKT(w,v,λ)) ≤ ε, we see from (28) that v1 ∈
B(v∗1 , ε) := {π ∈ RTm | ‖π − v∗1‖2 ≤ ε}. In view of the fact
that v∗1 ∈ RTm++ , by shrinking ε > 0 if necessary, we may
assume that B(v∗1 , ε) ⊆ RTm++ . Using the fact that ∇g1

T (v1) =
−α1/v1 and ∇2g1

T (v1) = Diag(α1/v2
1), we deduce that g1

T

is ν-strongly convex and ∇g1
T is ~-Lipschitz continuous on

B(v∗1 , ε) for some constants ν, ~ > 0.

13

Since

dist (0,ΠKKT(w,v,λ)) = inf
[a;b;φ]

∈ΠKKT(w,v,λ)

‖[a; b;φ]‖2 , (37)

we have

dist([w;v;λ],O∗) ≤ η · dist (0,ΓKKT(w,v,λ))

≤ η

(
‖a‖2 +

∥∥∥∥λ1 −
α1

v∗1

∥∥∥∥
2

+ ‖v1 − v∗1‖2 + ‖b2‖2 + ‖φ‖2
)

≤ η

(
‖a‖2 + ‖b1‖2 + ‖∇g1

T (v1)−∇g1
T (v∗1)‖2

+ ‖v1 − v∗1‖2 + ‖b2‖2 + ‖φ‖2
)

≤ η

(
‖a‖2 + ‖b1‖2 + ~ ‖v1 − v∗1‖2

+ ‖v1 − v∗1‖2 + ‖b2‖2 + ‖φ‖2
)

≤ η (2 ‖[a; b1; b2;φ]‖2 + (1 + ~) ‖v1 − v∗1‖2) , (38)

where the first inequality follows from (29) and the assumption
that dist (0,ΓKKT(w,v,λ)) ≤ ε, the second inequality follows
from (36), the third inequality follows from (35b) and the fact
that −α1/v∗1 = ∇g2

T (v∗), and the fourth inequality is due to
the ~-Lipschitz continuity of ∇g1

T on B(v∗1 , ε).
Next, we bound ‖v1 − v∗1‖2. Let (w̄, v̄, λ̄) be the projection

of (w,v,λ) on O∗. Such a projection is well defined, as it
can be easily verified that O∗ is a closed convex set. Let v̄ =
[v̄1; v̄2] and λ̄ = [λ̄1; λ̄2] with v̄1, λ̄1 ∈ RTm and v̄2, λ̄2 ∈
RTp. Note that we have v̄1 = v∗1 by (27) and

0 ∈ ∂fT (w̄)−C>λ̄, (39a)

0 = ∇g1
T (v̄1) + λ̄1, (39b)

0 ∈ ∂g2
T (v̄2) + λ̄2, (39c)

0 = Cw̄ − [v̄1; v̄2] (39d)

by the KKT conditions of Problem (13). Using (35a), (39a),
and the property of ∂fT , we have(

C>λ+ a−C>λ̄
)>

(w − w̄) ≥ 0.

This, together with (35d) and (39d), gives

a>(w−w̄) ≥ −(λ−λ̄)>C(w−w̄) = −(λ−λ̄)>(φ+v−v̄),

or equivalently,

a>(w − w̄) + φ>(λ− λ̄) ≥ −(λ− λ̄)>(v − v̄). (40)

Since g1
T is ν-strongly convex on B(v∗1 , ε), by using (35b) and

(39b), we have

ν‖v1 − v̄1‖22 ≤ (∇g1
T (v1)−∇g1

T (v̄1))>(v1 − v̄1)

=
(
b1 − λ1 + λ̄1

)>
(v1 − v̄1),

which is equivalent to

b>1 (v1 − v̄1) ≥ (λ1 − λ̄1)>(v1 − v̄1) + ν‖v1 − v̄1‖22. (41)

Furthermore, using (35c), (39c), and the property of ∂g2
T , we

have (
b2 − λ2 + λ̄2

)>
(v2 − v̄2) ≥ 0,

or equivalently,

b>2 (v2 − v̄2) ≥ (λ2 − λ̄2)>(v2 − v̄2). (42)

Now, summing (40)–(42) and noting that

(λ−λ̄)>(v−v̄) = (λ1−λ̄1)>(v1−v̄1)+(λ2−λ̄2)>(v2−v̄2),

we obtain

a>(w − w̄) + b>1 (v1 − v̄1) + b>2 (v2 − v̄2) + φ>(λ− λ̄)

≥ ν‖v1 − v̄1‖22.

It follows that

ν‖v1 − v∗1‖22 = ν‖v1 − v̄1‖22
≤ a>(w − w̄) + b>1 (v1 − v̄1) + b>2 (v2 − v̄2) + φ>(λ− λ̄)

≤ ‖a‖2‖w − w̄‖2 + ‖b1‖2‖v1 − v̄1‖2 + ‖b2‖2‖v2 − v̄2‖2
+ ‖φ‖2‖λ− λ̄‖2

≤
√
‖a‖22 + ‖b1‖22 + ‖b2‖22 + ‖φ‖22

×
√
‖w − w̄‖22 + ‖v1 − v̄1‖22 + ‖v2 − v̄2‖22 + ‖λ− λ̄‖22

= ‖[a; b1; b2;φ]‖2 · dist([w;v;λ],O∗), (43)

where the last line follows from (34) and the definition of
(w̄, v̄, λ̄). Plugging (43) into (38) yields

dist([w;v;λ],O∗) ≤ η

(
2 ‖[a; b1; b2;φ]‖2

+
1 + ~√
ν

√
‖[a; b1; b2;φ]‖2 · dist([w;v;λ],O∗)

)
.

Upon solving the above inequality, we obtain

dist([w;v;λ],O∗) ≤ κ1 +
√
κ2

1 + 4κ2

2
‖[a; b;φ]‖2 ,

where κ1 := 1+~√
ν
η and κ2 := 2η. Since the above inequality

holds for all [a; b;φ] ∈ ΠKKT(w,v,λ), it follows from (37)
that

dist([w;v;λ],O∗) ≤ ς · dist (0,ΠKKT(w,v,λ)) , (44)

where ς :=
κ1+
√
κ2
1+4κ2

2 . This shows that ΠKKT is metrically
subregular at any KKT point of Problem (13), which completes
Step 1.

2) Step 2: Given any proper extended real-valued function
f , we have the equivalence b = proxf (a) ⇔ a − b ∈ ∂f(b)
for any vectors a, b. It follows that

w − w̃ ∈ ∂fT (w̃)−C>λ, (45a)
v − ṽ ∈ ∂gT (ṽ)− λ, (45b)

where w̃ := proxfT (w+C>λ) and ṽ := proxgT (v+λ). Let
[w;v;λ] be such that [w̃; ṽ;λ] ∈ U . We compute

dist2(0,ΠKKT(w̃, ṽ,λ))

= dist2

0,

∂fT (w̃)−C>λ
∂gT (ṽ)− λ
C>w̃ − ṽ

 ≤ dist2

0,

 w − w̃
v − ṽ

C>w̃ − ṽ

=‖w − w̃‖22 + ‖v − ṽ‖22 + ‖C>w̃ − ṽ‖22

14

≤‖w − w̃‖22 + ‖v − ṽ‖22
+ 3‖C>(w − w̃)‖22 + 3‖v − ṽ‖22 + 3‖C>w − v‖22

≤(1 + 3‖C‖22)‖w − w̃‖22 + 4‖v − ṽ‖22 + 3‖C>w − v‖22
≤max

{
1+3‖C‖22, 4

} (
‖w−w̃‖22 +‖v−ṽ‖22 +‖C>w−v‖22

)
= max

{
1 + 3‖C‖22, 4

}
· ‖Πp

KKT(w,v,λ)‖22, (46)

where the first inequality is due to (45a) and (45b), and the
last equality follows from the definition of Πp

KKT in (24).
Consequently, we have

dist([w;v;λ],O∗) = dist([w − w̃ + w̃;v − ṽ + ṽ;λ],O∗)
≤ ‖[w − w̃;v − ṽ; 0]‖2 + dist([w̃; ṽ;λ],O∗)
≤ ‖Πp

KKT(w,v,λ)‖2 + dist([w̃; ṽ;λ],O∗)
≤ ‖Πp

KKT(w,v,λ)‖2 + ς · dist(0,ΠKKT(w̃; ṽ;λ))

≤
(

1 + ς
√

max {1 + 3‖C‖22, 4}
)
‖Πp

KKT(w,v,λ)‖2,

where the first inequality is due to the triangle inequality, the
second inequality follows from the definition of Πp

KKT in (24),
the third inequality follows from (44) and the assumption that
[w̃; ṽ;λ] ∈ U , and the last inequality follows from (46). This
shows that the error bound (26) holds in the neighborhood U
with constant ζ = 1 + ς

√
max {1 + 3‖C‖22, 4}. In particular,

the mapping Πp
KKT is metrically subregular at any KKT point

of Problem (13). This completes Step 2.

REFERENCES

[1] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Process.
Mag., vol. 36, no. 3, pp. 44–63, 2019.

[2] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, 2019.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[4] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, 2015.

[5] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, 2021.

[7] C. Hu, L. Cheng, J. Sepulcre, G. El Fakhri, Y. M. Lu, and Q. Li, “A
graph theoretical regression model for brain connectivity learning of
Alzheimer’s disease,” in Proc. 10th IEEE ISBI, 2013, pp. 616–619.

[8] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, 2016.

[9] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc.
19th AISTATS, 2016, pp. 920–929.

[10] X. Wang, Y.-M. Pun, and A. M.-C. So, “Distributionally robust graph
learning from smooth signals under moment uncertainty,” IEEE Trans.
Signal Process., vol. 70, pp. 6216–6231, 2022.

[11] K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learning
based on sparseness of temporal variation,” in Proc. 2019 IEEE ICASSP,
2019, pp. 5411–5415.

[12] V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time
varying graphs,” in Proc. 2017 IEEE ICASSP, 2017, pp. 2826–2830.

[13] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the
time-varying graphical lasso,” in Proc. the 23rd ACM SIGKDD, 2017,
pp. 205–213.

[14] X. Zhang and Q. Wang, “Time-varying graph learning under structured
temporal priors,” arXiv preprint arXiv:2110.05018, 2021.

[15] V. Kalofolias and N. Perraudin, “Large scale graph learning from smooth
signals,” in Proc. 2019 ICLR, 2019.

[16] K. Yamada and Y. Tanaka, “Time-varying graph learning with con-
straints on graph temporal variation,” arXiv:2001.03346, 2020.

[17] N. Komodakis and J.-C. Pesquet, “Playing with duality: An overview
of recent primal-dual approaches for solving large-scale optimization
problems,” IEEE Signal Process. Mag., vol. 32, no. 6, pp. 31–54, 2015.

[18] X. Wang, C. Yao, H. Lei, and A. M.-C. So, “An efficient alternating
direction method for graph learning from smooth signals,” in Proc. 2021
IEEE ICASSP, 2021, pp. 5380–5384.

[19] S. S. Saboksayr and G. Mateos, “Accelerated graph learning from
smooth signals,” IEEE Signal Process. Lett., vol. 28, pp. 2192–2196,
2021.

[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[21] G. Fatima, A. Arora, P. Babu, and P. Stoica, “Learning sparse graphs
via majorization-minimization for smooth node signals,” IEEE Signal
Process. Lett., vol. 29, pp. 1022–1026, 2022.

[22] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, “Hankel matrix rank
minimization with applications to system identification and realization,”
SIAM J. Matrix Anal. Appl., vol. 34, no. 3, pp. 946–977, 2013.

[23] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” J. Sci. Comput.,
vol. 66, no. 3, pp. 889–916, 2016.

[24] L. Zhao, Y. Wang, S. Kumar, and D. P. Palomar, “Optimization al-
gorithms for graph Laplacian estimation via ADMM and MM,” IEEE
Trans. Signal Process., vol. 67, no. 16, pp. 4231–4244, 2019.

[25] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[26] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems.
SIAM, 1995.

[27] D. Han, D. Sun, and L. Zhang, “Linear rate convergence of the alternat-
ing direction method of multipliers for convex composite programming,”
Math. Oper. Res., vol. 43, no. 2, pp. 622–637, 2018.

[28] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[29] J.-S. Pang, “Error bounds in mathematical programming,” Math. Pro-
gram., vol. 79, no. 1–3, pp. 299–332, 1997.

[30] H. Liu, M.-C. Yue, and A. M.-C. So, “On the estimation performance
and convergence rate of the generalized power method for phase
synchronization,” SIAM J. Optim., vol. 27, no. 4, pp. 2426–2446, 2017.

[31] Z. Zhou and A. M.-C. So, “A unified approach to error bounds for
structured convex optimization problems,” Math. Program., vol. 165,
no. 2, pp. 689–728, 2017.

[32] H. Liu, A. M.-C. So, and W. Wu, “Quadratic optimization with orthogo-
nality constraint: Explicit Łojasiewicz exponent and linear convergence
of retraction-based line-search and stochastic variance-reduced gradient
methods,” Math. Program., vol. 178, no. 1–2, pp. 215–262, 2019.

[33] M.-C. Yue, Z. Zhou, and A. M.-C. So, “A family of inexact SQA
methods for non-smooth convex minimization with provable conver-
gence guarantees based on the Luo–Tseng error bound property,” Math.
Program., vol. 174, no. 1, pp. 327–358, 2019.

[34] P. Wang, H. Liu, and A. M.-C. So, “Linear convergence of a proximal al-
ternating minimization method with extrapolation for `1-norm principal
component analysis,” SIAM J. Optim., 2022.

[35] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Springer
Science & Business Media, 2009, vol. 317.

[36] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs,” arXiv preprint arXiv:1408.5781, 2014.

[37] C. D. Manning, H. Schütze, and P. Raghavan, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[38] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

[39] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” 2009.

[40] J. Gall, C. Stoll, E. De Aguiar, C. Theobalt, B. Rosenhahn, and H.-
P. Seidel, “Motion capture using joint skeleton tracking and surface
estimation,” in 2009 IEEE CVPR, 2009, pp. 1746–1753.

[41] A. Natali, E. Isufi, M. Coutino, and G. Leus, “Learning time-varying
graphs from online data,” IEEE Open Journal of Signal Processing,
vol. 3, pp. 212–228, 2022.

15

[42] S. S. Saboksayr, G. Mateos, and M. Cetin, “Online discriminative graph
learning from multi-class smooth signals,” Signal Process., vol. 186, p.
108101, 2021.

[43] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU Press,
2013.

[44] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution
Mappings. Springer, 2009, vol. 543.

