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Abstract

This work presents ReSync, a Riemannian subgradient-based algorithm for solving
the robust rotation synchronization problem, which arises in various engineering
applications. ReSync solves a least-unsquared minimization formulation over
the rotation group, which is nonsmooth and nonconvex, and aims at recovering
the underlying rotations directly. We provide strong theoretical guarantees for
ReSync under the random corruption setting. Specifically, we first show that the
initialization procedure of ReSync yields a proper initial point that lies in a local
region around the ground-truth rotations. We next establish the weak sharpness
property of the aforementioned formulation and then utilize this property to derive
the local linear convergence of ReSync to the ground-truth rotations. By combining
these guarantees, we conclude that ReSync converges linearly to the ground-truth
rotations under appropriate conditions. Experiment results demonstrate the effec-
tiveness of ReSync.

1 Introduction

Rotation synchronization (RS) is a fundamental problem in many engineering applications. For
instance, RS (also known as “rotation averaging”) is an important subproblem of structure from
motion (SfM) and simultaneous localization and mapping (SLAM) in computer vision [20, 22, 17],
where the goal is to compute the absolute orientations of objects from relative rotations between pairs
of objects. RS has also been applied to sensor network localization [41, 12], signal recovery from
phaseless observations [2], digital communications [36], and cryo-EM imaging [35, 33].

Practical measurements of relative rotations are often incomplete and corrupted, leading to the
problem of robust rotation synchronization (RRS) [28, 21, 22, 39, 9, 31]. The goal of RRS is to
reconstruct a set of ground-truth rotations X?

1 , · · · ,X?
i , · · · ,X?

n ∈ SO(d) from measurements of
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relative rotations represented as

Yij =


X?
iX

?>
j , (i, j) ∈ A,

Oij , (i, j) ∈ E \ A,
0, (i, j) ∈ Ec,

with (i, j) ∈


A, with ratio pq,
E \ A, with ratio (1− p)q,
Ec, otherwise.

(1)

Here, SO(d) :=
{
R ∈ Rd×d : R>R = I,det(R) = 1

}
denotes the rotation group (also known

as the special orthogonal group), E represents the indices of all available observations, A denotes
the indices of true observations, Ac := E \ A is the indices of outliers, Oij ∈ SO(d) is an outlying
observation, and the missing observations are set to be 0 by convention; see, e.g., [23, section 2.1]. We
use q ∈ (0, 1) to denote the observation ratio and p ∈ (0, 1) to denote the ratio of true observations.

Related works. Due to the vast amount of research in this field, our overview will necessarily focus
on theoretical investigations of RS. In the case where no outliers exist in the measurement model (1),
i.e., p = 1, a natural formulation is to minimize a smooth least-squares function

∑
(j,j)∈E ‖XiX

>
j −

Yij‖2F over Xi ∈ SO(d), 1 ≤ i ≤ n. Spectral relaxation and semidefinite relaxation (SDR) are
typical approaches for addressing this problem [34, 3, 6, 5, 4, 30], where they provide strong recovery
guarantees. However, these results cannot be directly applied to the corrupted model (1) due to
the existence of outliers (i.e., p < 1) and the sensitivity of the least-squares solution to outlying
observations.

Theoretical understanding of RRS is still rather limited. One typical setting for theoretical analysis
of RRS is the random corruption model (RCM); see Section 2.2. The work [39] introduces a least-
unsquared formulation and applies the SDR method to tackle it. Under the RCM and in the full
observation case where q = 1, it is shown that the minimizer of the SDR reformulation exactly
recovers the underlying Gram matrix (hence the ground-truth rotations) under the conditions that
the true observation ratio p ≥ 0.46 for SO(2) (and p ≥ 0.49 for SO(3)) and n → ∞. In [23], the
authors established the relationship between cycle-consistency and exact recovery and introduced a
message-passing algorithm. Their method is tailored to find the corruption level in the graph, rather
than recovering the ground-truth rotations directly. They provided linear convergence guarantees for
their algorithm once the ratios satisfy p8q2 = Ω(log n/n) under the RCM. However, it is unclear how
this message-passing algorithm is related to other optimization procedures for solving the problem.
Let us mention that they also provided guarantees for other compact groups and corruption settings.
Following partly the framework established in [23], the work [32] presents an interesting nonconvex
quadratic programming formulation of RRS. It is shown that the global minimizer of the nonconvex
formulation recovers the true corruption level (still not the ground-true rotations directly) when
p2q2 = Ω(log n/n) under the RCM. Unfortunately, the work does not provide a concrete algorithm
that provably finds a global minimizer of the nonconvex formulation. In [29], the authors introduced
and analyzed a depth descent algorithm for recovering the underlying rotation matrices. In the context
of the RCM, they showed asymptotic convergence of their algorithm to the underlying rotations
without providing a specific rate. The result is achieved under the conditions that the algorithm
is initialized near X?, q ≥ O(log n/n), and p ≥ 1 − 1/(d(d − 1) + 2). The latter requirement
translates to p ≥ 3/4 for SO(2) and p ≥ 7/8 for SO(3). It is important to note, however, that the
primary focus of their research lies in the adversarial corruption setup rather than the RCM.

Main contributions. Towards tackling the RRS problem under the measurement model (1), we
consider the following least-unsquared formulation, which was introduced in [39] as the initial step
for applying the SDR method:

minimize
X∈Rnd×d

f(X) :=
∑

(i,j)∈E

‖XiX
>
j − Yij‖F

subject to Xi ∈ SO(d), 1 ≤ i ≤ n.
(2)

Note that this problem is nonsmooth and nonconvex due to the unsquared Frobenius-norm loss and
the rotation group constraint, respectively. We design a Riemannian Subgradient synchronization
algorithm (ReSync) for addressing problem (2); see Algorithm 1. ReSync will first call an initializa-
tion procedure named SpectrIn (see Algorithm 2), which is a spectral relaxation method. Then, it
implements an iterative Riemannian subgradient procedure. ReSync targets at directly recovering the
ground-truth rotations X? ∈ SO(d)n rather than the Gram matrix or the corruption level. Under the
RCM (see Section 2.2), we provide the following strong theoretical guarantees for ReSync:

2



(S.1) Initialization. The first step of ReSync is to call SpectrIn for computing the initial point X0.
Theoretically, we establish that X0 can be relatively close to X? depending on p and q; see
Theorem 2.

(S.2) Weak sharpness. We then establish a problem-intrinsic property of the formulation (2) called
weak sharpness; see Theorem 3. This property characterizes the geometry of problem (2)
and is of independent interest.

(S.3) Convergence analysis. Finally, we derive the local linear rate of convergence for ReSync
based on the established weak sharpness property; see Theorem 4.

The main idea is that the weak sharpness property in (S.2) helps to show linear convergence of
ReSync to X? in (S.3). However, this result only holds locally. Thus, we need the initialization
guarantee in (S.1) to initialize our algorithm in this local region and then argue that it will not leave
this region once initialized. We refer to Sections 3.1 to 3.3 for more technical challenges and our
proof ideas. Combining the above theoretical results yields our overall guarantee: ReSync converges
linearly to the ground-truth rotations X? when p7q2 = Ω(log n/n); see Theorem 1.

Notation. Our notation is mostly standard. We use Rnd×d 3 X = (X1; . . . ;Xn) ∈ SO(d)n to
represent the Cartesian product of all the variables Xi ∈ SO(d), 1 ≤ i ≤ n. The same applies to the
ground-truth rotations X? = (X?

1 ; · · · ;X?
n). Let Ei = {j | (i, j) ∈ E}, Ai = {j | (i, j) ∈ A}, and

Aci = Ei \ Ai. We also define Aij = Ai ∩ Aj for simplicity. For a set S, we use |S| to denote its
cardinality. For any matrix X,Y ∈ Rnd×d, we define the following distance up to a global rotation:

dist (X,Y ) = ‖X − Y R?‖F , where R? = arg min
R∈SO(d)

‖XR− Y ‖2F = PSO(d)(X
>Y ).

Besides, we introduce the following distances up to the global rotation R? defined above:

dist1 (X,Y ) =

n∑
i=1

‖Xi − YiR
?‖F , dist∞ (X,Y ) = max

1≤i≤n
‖Xi − YiR

?‖F .

2 Algorithm and Setup
2.1 ReSync: Algorithm Development

In this subsection, we present ReSync for tackling the nonsmooth nonconvex formulation (2); see
Algorithm 1. Our algorithm has two main parts, i.e., initialization and an iterative Riemannian
subgradient procedure.

Initialization. ReSync first calls a procedure SpectrIn (see Algorithm 2) for initialization.
SpectrIn is a spectral relaxation-based initialization technique. SpectrIn computes the first d
leading unit eigenvectors of the data matrix to form Φ ∈ Rnd×d. We multiply

√
n to those

eigenvectors to ensure that its norm matches that of SO(d)n. We also construct Ψ, which re-
verses the sign of the last column of Φ so that the determinants of Φ and Ψ differ by a sign.

400 600 800 1000
10

20

30

40

50

SpectrIn

Naive SpectrIn

Figure 1: The average under
100 simulations of the ini-
tial distance dist(X0,X?)
computed by Algorithm 2
versus naive spectral ini-
tialization (i.e., outputting
X0 = Φ̃ directly) with p =
0.2, q = 0.2 and d = 3.

Then, we compute the projection of Φ and Ψ onto SO(d)n. The
projection is computed in a block-wise manner, namely

Φ̃i = PSO(d)(Φi), 1 ≤ i ≤ n,

where Φi, Φ̃i ∈ Rd×d are the i-th block of Φ and Φ̃, respectively.
The projection can be explicitly evaluated as

Φ̃i =

{
PiQ

>
i , if det(Φi) > 0,

P̂iQ
>
i , otherwise,

1 ≤ i ≤ n.

Here, Pi,Qi ∈ Rd×d are the left and right singular vectors of Φi (with
descending order of singular values), respectively, and P̂i is obtained
by reversing the sign of the last column of Pi. The initial point X0

is chosen as Φ̃ or Ψ̃, depending on which is closer to SO(d)n.

Let us mention that the computation of Ψ̃ and Steps 5 - 9 in SpectrIn
can practically improve the approximation error dist(X0,X?). We
demonstrate such a phenomenon in Figure 1, in which “Naive SpectrIn”
refers to outputing X0 = Φ̃ directly in Algorithm 2.
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Riemannian subgradient update. ReSync then implements an iterative Riemannian subgradient
procedure after obtaining the initial point X0. The key is to compute the search direction (Riemannian
subgradient) ∇̃Rf(Xk

i ) and the retraction RetrXk
i
(·) onto SO(d) for 1 ≤ i ≤ n. Towards providing

concrete formulas for the Riemannian subgradient update, let us impose the Euclidean inner product
〈A,B〉 = trace(A>B) as the inherent Riemannian metric. Consequently, the tangent space to
SO(d) at R ∈ SO(d) is given by TR := {RS : S ∈ Rd×d,S + S> = 0}. The Riemannian
subgradient ∇̃Rf(Xi) can be computed as [40, Theorem 5.1]

∇̃Rf(Xi) = PTXi
(∇̃f(Xi)), 1 ≤ i ≤ n, (3)

where the projection can be computed as PTXi
(B) = Xi

(
X>i B −B>Xi

)
/2 for any B ∈ Rd×d

and ∇̃f(Xi) is the Euclidean subgradient of f with respect to the i-th block variable Xi. Let us
define fi,j(X) := ‖XiX

>
j − Yij‖F . The Euclidean subdifferential ∂f(Xi) with respect to the

block variable Xi is given by

∂f(Xi) = 2
∑

j:(i,j)∈E

∂fi,j(Xi), with ∂fi,j(Xi) =

{
Xi−YijXj

‖XiX>j −Yij‖F
, if ‖XiX

>
j − Yij‖F 6= 0,

V ∈ Rd×d, ‖V ‖F ≤ 1, otherwise.

Algorithm 1 ReSync: Riemannian Subgradient
Synchronization

Require: Initialize X0 = SpectrIn(Y ) (Algo-
rithm 2), where Y ∈ Rnd×nd and its (i, j)-
th block is Yi,j ∈ Rd×d;

1: Set iteration count k = 0;
2: while stopping criterion not met do
3: Update the step size µk;
4: Riemannian subgradient update:

Xk+1
i = RetrXk

i

(
−µk∇̃Rf(Xk

i )
)

for 1 ≤ i ≤ n;
5: Update iteration count k = k + 1;
6: end while

Algorithm 2 SpectrIn: Spectral Initialization

1: Input: Y ∈ Rnd×nd;
2: Compute the d leading unit eigenvectors of

Y : {u1, . . . ,ud};
3: Set Φ =

√
n[u1,u2, . . . ,ud] ∈ Rnd×d and

Ψ =
√
n[u1,u2, . . . ,ud−1,−ud];

4: Compute Φ̃ = PSO(d)n(Φ) and Ψ̃ =
PSO(d)n(Ψ);

5: if ‖Φ̃−Φ‖F ≤ ‖Ψ̃−Ψ‖F then
6: X0 = Φ̃;
7: else
8: X0 = Ψ̃;
9: end if

10: Output: Initial point X0.

Any element ∇̃f(Xi) ∈ ∂f(Xi) is called a Euclidean subgradient. In ReSync, one can choose an
arbitrary subgradient ∇̃f(Xi) ∈ ∂f(Xi) at Xi.

Mimicking the gradient method to update along the search direction ∇̃Rf(Xi) provides a point
X+
i = Xi−µ∇̃Rf(Xi) on the tangent space TXi

at Xi, which may violate the manifold constraint
“X+

i ∈ SO(d)”. One common approach in Riemannian optimization is to employ a retraction
operator to address the feasibility issue. For SO(d), we can use a QR decomposition-based retraction
and implement the Riemannian subgradient step as

X+
i = RetrXi

(
−µ∇̃Rf(Xi)

)
= Qr

(
Xi − µ∇̃Rf(Xi)

)
, 1 ≤ i ≤ n. (4)

Here, Qr(B) returns the Q-factor in the thin QR decomposition of B, while the diagonal entries of
the R-factor are restricted to be positive [7].

Finally, setting Xi = Xk
i , Xj = Xk

j for all j such that (i, j) ∈ E , µ = µk in (3) and (4) yields a
concrete implementation of Step 4 in ReSync and leads to SO(d) 3 Xk+1

i = X+
i for 1 ≤ i ≤ n.

This completes the description of one full iteration of ReSync. Note that the per-iteration complexity
of the Riemannian subgradient procedure is O(n2q), and Algorithm 2 has computational cost O(n3).

2.2 RCM Setup for Theoretical Analysis
We develop our theoretical analysis of ReSync by adopting the random corruption model (RCM).
The RCM was previously used in many works to analyze the performance of various synchronization
algorithms; see, e.g., [39, 19, 23, 32]. Specifically, we can represent our measurement model (1) on
a graph G(V, E), where V is a set of n nodes representing {X?

1 , · · · ,X?
n} and E is a set of edges
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containing all the available measurements {Yi,j , (i, j) ∈ E}. We assume that the graph G follows the
well-known Erdös-Rényi model G(n, q), which implies that each edge (i, j) ∈ E is observed with
probability q, independently from every other edge. Each edge (i, j) ∈ E is a true observation (i.e.,
(i, j) ∈ A) with probability p and an outlier (i.e., (i, j) ∈ Ac) with probability 1− p. Furthermore,
the outliers {Oi,j}(i,j)∈Ac are assumed to be independently and uniformly distributed on SO(d).

3 Main Results
In this section, we present our theoretical results for ReSync. Our main results are summarized in
the following theorem, which states that our proposed algorithm can converge at a linear rate to the
underlying rotations X?. Our standing assumption in this section is stated below.

All our theoretical results in this section are based on the RCM; see Section 2.2.

Theorem 1 (overall). Suppose that the ratios p and q satisfy

p7q2 = Ω

(
log n

n

)
.

With probability at least 1−O(1/n), ReSync with µk = µ0γ
k, where µ0 = Θ(p2/n) and γ = 1− pq

16 ,
converges linearly to the ground-truth rotations X? (up to a global rotation), i.e.,

dist
(
Xk,X?

)
≤ ξ0γk, dist∞

(
Xk,X?

)
≤ δ0γk, ∀k ≥ 0.

Here, ξ0 = Θ(
√
np5q) and δ0 = Θ(p2).

The basic idea of the proof is to establish the problem-intrinsic property of weak sharpness and then
use it to derive a linear convergence result. However, the result only holds locally. Thus, we develop
a procedure to initialize the algorithm in this local region and argue that ReSync will not leave this
region afterwards. In the remaining parts of this section, we implement the above ideas and highlight
the challenges and approaches to overcoming them.

3.1 Analysis of SpectrIn with Leave-One-Out Technique

Theorem 2 (initialization). Let X0 be generated by SpectrIn (see Algorithm 2). Suppose that the
ratios p and q satisfy

p2q = Ω

(
log n

n

)
.

Then, with probability at least 1−O(1/n), we have

dist(X0,X?) = O
(√

log n

p
√
q

)
and dist∞(X0,X?) = O

(√
log n

p
√
nq

)
. (5)

The works [34] and [11] show that exact reconstruction of X? is information-theoretically possible
if the condition p2q = Ω (log n/n) holds for the cases d = 2 and d = 3, respectively. Though
Theorem 2 does not provide exact recovery, it achieves an optimal sample complexity for recon-
structing an approximate solution in the infinity norm. Specifically, Theorem 2 shows that, as long
as p2q ≥ C log n/n for some constant C > 0 large enough, the `∞-distance dist∞(X0,X?) (i.e.,
max1≤i≤n dist(Xi,X

?
i )) can be made relatively small. However, the `2-distance dist(X0,X?) is

of the order Ω(
√
n) under such a sample complexity.

The work [26] considers orthogonal and permutation group synchronization and shows that spectral
relaxation-based methods achieve near-optimal performance bounds. Our result differs from that of
[26] in twofold: 1) Our approach follows the standard leave-one-out analysis based on the standard
“Dist” (up to O(d) invariance) defined above Lemma 3 in the Appendix. Nonetheless, we have to
transfer the results to “dist” due to the structure of SO(d) in Lemma 5, which is a nontrivial step due
to the specific structure of SO(d). 2) Our result can handle incomplete observations (i.e., q < 1). In
the case of incomplete observations, the construction in (17) in the Appendix becomes more intricate;
it has the additional third column, rendering the analysis of our Lemma 2 more involved.

We prove Theorem 2 with some matrix concentration bounds and the leave-one-out technique. We
provide the proof sketch below and refer to Appendix A for the full derivations.
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Proof outline of Theorem 2. According to (1) and the fact E(Oij) = 0 since outliers are assumed
to be independently and uniformly distributed on SO(d) in the RCM (see Appendix A), we know
that E(Yij) = pqX?

iX
?>
j for all (i, j) ∈ [n]× [n]. This motivates us to introduce the noise matrix

Wij = Yij − pqX?
iX

?>
j , i.e.,

Y = pqX?X?> + W . (6)

The condition p2q = Ω(log n/n) in Theorem 2 ensures that the expectation pqX?X?> will dominate
the noise matrix W in the decomposition (6).

We first discuss how to bound dist(X0,X?). Notice that X0 and X? are the d leading eigenvectors
of Y (after projection onto SO(d)n) and pqX?X?>, respectively. We can then use the matrix
perturbation theory (see Lemma 3) to bound dist(X0,X?). Towards this end, we need to estimate the
operator norm ‖W ‖2, which could be done by applying the standard matrix Bernstein concentration
inequality [38] since the blocks {Wij} are i.i.d. white noise with bounded operator norms and
variances; see Lemma 2.

We next turn to bound the initialization error in the infinity norm, i.e., dist∞(X0,X?). Let us
use (WX0)m ∈ Rd×d to denote the m-th block of WX0 ∈ Rnd×d for 1 ≤ m ≤ n. The main
technical challenge lies in deriving a sharp bound for the term max1≤m≤n ‖(WX0)m‖F , as it
involves two dependent random quantities, i.e., the noise matrix W and the initial X0 that is obtained
by projecting the first d leading eigenvectors of Y onto SO(d)n. To overcome such a statistical
dependence, we utilize the leave-one-out technique. This technique was utilized in [42] to analyze
the phase synchronization problem and was later applied to many other synchronization problems
[1, 10, 15, 18, 26]. Let us define

Y (m) = pqX?X?> + W (m) with W
(m)
kl = Wkl · 1{k 6=m} · 1{l 6=m}. (7)

That is, we construct W (m) ∈ Rnd×nd by setting the m-th block-wise row and column of W to
be 0. Then, it is easy to see that Y (m) is statistically independent of W>

m ∈ Rd×nd, where the
latter denotes the m-th block-wise row of W . Let X(m) be the d leading eigenvectors of Y (m).
Consequently, X(m) is also independent of W>

m . Based on the above discussions, we can bound
each ‖(WX0)m‖F in the following way:

‖(WX0)m‖F = ‖W>
mX0‖F ≤ ‖W>

mX(m)‖F + ‖W>
m (X0 −X(m))‖F . (8)

The first term ‖W>
mX(m)‖F can be bounded using an appropriate concentration inequality due to

the statistical independence between W>
m and X(m). The second term can be bounded as

‖W>
m (X0 −X(m))‖F ≤ ‖Wm‖2 · ‖X0 −X(m)‖F ,

in which ‖Wm‖2 can be further bounded by matrix concentration inequality (see Lemma 2) and
‖X0 −X(m)‖F can be bounded using standard matrix perturbation theory (see Lemma 4).

3.2 Weak Sharpness and Exact Recovery

We next present a property that is intrinsic to problem (2) in the following theorem.

Theorem 3 (weak sharpness). Suppose that the ratios p and q satisfy

p2q2 = Ω

(
log n

n

)
.

Then, with probability at least 1−O(1/n), for any X ∈ SO(d)n satisfying dist∞(X,X?) = O(p),
we have

f(X)− f(X?) ≥ npq

8
dist1(X,X?).

Some remarks on Theorem 3 are in order. This theorem shows that problem (2) possesses the weak
sharpness property [8], which is intrinsic to the problem and independent of the algorithm used to
solve it. It is known that with this property, various subgradient-type methods can achieve linear
convergence [14, 25]. We will establish a similar linear convergence result for ReSync in the next
subsection based on Theorem 3.

The weak sharpness property shown in Theorem 3 is of independent interest, as it could be helpful
when analyzing other optimization algorithms (not just ReSync) for solving problem (2). Currently,
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only a few applications are known to produce sharp optimization problems, such as robust low-rank
matrix recovery [25], robust phase retrieval [16], and robust subspace recovery [24]. Furthermore,
sharp instances of manifold optimization problems are especially scarce. Hence, Theorem 3 extends
the list of optimization problems that possess the weak sharpness property and contributes to the
growing literature on the geometry of structured nonsmooth nonconvex optimization problems.

It is worth noting that Theorem 3 also establishes the exact recovery property of the formulation
(2). Specifically, up to a global rotation, the ground-truth X? is guaranteed to be the unique global
minimizer of f over the region SO(d)n ∩ {X : dist∞(X,X?) = O(p)}. Consequently, recovering
the underlying X? reduces to finding the global minimizer of f over the aforementioned region. As
we will show in the next subsection, ReSync will converge linearly to the global minimizer X? when
initialized in this region. However, the initialization requirement is subject to the stronger condition
p4q = Ω (log n/n) on the ratios p and q, which is ensured by Theorem 2.

We list our main ideas for proving Theorem 3 below. The full proof can be found in Appendix B.

Proof outline of Theorem 3. Note that the objective function f can be decomposed into two parts:

f(X) =

g(X)∑
(i,j)∈A

‖X>i Xj −X?>
i X?

j ‖F +

h(X)∑
(i,j)∈Ac

‖X>i Xj −Oij‖F . (9)

It is easy to see that g(X?) = 0 and g(X) ≥ 0. Based on the fact that the true observation is
uniformly distributed in all the indices, we have E (g(X)) = pq

∑
1≤i,j≤n ‖X>i Xj−X?>

i X?
j ‖F ≥

npq
2 dist1(X,X?); see Appendix B.2 for the last inequality. A traditional way to lower bounding
g(X) using E(g(X)) for all X ∈ SO(d) is to apply concentration inequality and an epsilon-net
covering argument. Unfortunately, the sample complexity condition p2q2 = Ω(log n/n) does not
lead to a high probability result in this way. Instead, our approach is to apply the concentration theory
on the cardinalities of index sets rather than on X directly; see the following lemma.

Lemma 1 (concentration of cardinalities of index sets). Given any ε = Ω
(√

logn√
npq

)
, with probability

at least 1−O(1/n), we have

(1− ε)nq ≤ |Ei| ≤ (1 + ε)nq, (1− ε)npq ≤ |Ai| ≤ (1 + ε)npq,

(1− ε)npq2 ≤ |Ei ∩ Aj | ≤ (1 + ε)npq2, (1− ε)np2q2 ≤ |Aij | ≤ (1 + ε)np2q2

for any 1 ≤ i, j ≤ n. See Section 1 for the notation.

We then provide a sharp lower bound on g(X) based on Lemma 1.

Proposition 1. Under the conditions of Theorem 3, with probability at least 1−O(1/n), we have

g(X) ≥ 3npq

16
dist1 (X,X?) , ∀X ∈ SO(d)n. (10)

Next, to lower bound h(X)− h(X?) =
∑

(i,j)∈Ac

(
‖X>i Xj −Oij‖F − ‖X?>

i X?
j −Oij‖F

)
we

first bound

h(X)− h(X?) ≥
∑

(i,j)∈Ac

〈
X?>
i X?

j −Oij

‖X?>
i X?

j −Oij‖F
,X>i Xj −X?>

i X?
j

〉
,

where the inequality comes from the convexity of the norm function U 7→ ‖U‖F whenever
X?>
i X?

j −Oij 6= 0. Then, using the orthogonality of each block of X?, we further have

h(X)− h(X?) ≥
∑

(i,j)∈Ac

〈
I −X?

i OijX
?>
j

‖I −X?
i OijX?>

j ‖F
,X?

iX
>
i XjX

?>
j − I

〉
. (11)

Recall that since the outliers {Oi,j}(i,j)∈Ac are independently and uniformly dis-
tributed on SO(d), so are {X?

i OijX
?>
j }(i,j)∈Ac . This observation indicates that{

I −X?
i OijX

?>
j /‖I −X?

i OijX
?>
j ‖F

}
(i,j)∈Ac are i.i.d. random matrices. Hence, by in-

voking concentration results that utilize the randomness of the outliers {Oi,j}(i,j)∈Ac and the
cardinalities (i, j) ∈ Ac, we obtain the following result.

7



Proposition 2. Under the conditions of Theorem 3, with probability at least 1−O(1/n), we have

h(X)− h(X?) ≥ −npq
16

dist1 (X,X?) (12)

for all X ∈ SO(d)n satisfying dist∞(X,X?) = O(p).

Combining Proposition 1 and Proposition 2 gives Theorem 3.

3.3 Convergence Analysis and Proof of Theorem 1

Let us now turn to utilize the weak sharpness property shown in Theorem 3 to establish the local
linear convergence of ReSync. As a quick corollary of Theorem 3, we have the following result.
Corollary 1. Under the conditions of Theorem 3, with probability at least 1 − O(1/n), for any
X ∈ SO(d)n satisfying dist∞(X,X?) = O(p), we have〈

∇̃Rf(X),X? −X
〉
≤ −npq

16
dist1(X,X?), ∀ ∇̃Rf(X) ∈ ∂Rf(X). (13)

This condition indicates that any Riemannian subgradient ∇̃Rf(X) provides a descent direction
pointing towards X?. However, it only holds for X ∈ SO(d)n satisfying dist∞(X,X?) = O(p).
Our key idea for establishing local convergence is to show that the Riemannian subgradient update in
ReSync is a contraction operator in both the Euclidean and infinity norm-induced distances using
Corollary 1, i.e., if Xk lies in the local region, then Xk+1 also lies in the region. This idea motivates
us to define two sequences of neighborhoods as follows:

N k
F = {X | dist(X,X?) ≤ ξk} and N k

∞ = {X | dist∞(X,X?) ≤ δk} . (14)

Here, ξk = ξ0γ
k, δk = δ0γ

k, where ξ0, δ0, and γ ∈ (0, 1) will be specified later. Thus, these two
sequences of sets {N k

F } and {N k
∞} will linearly shrink to the ground-truth. It remains to show that if

Xk ∈ N k
F ∩N k

∞, then Xk+1 ∈ N k+1
F ∩N k+1

∞ , which is summarized in the following theorem.

Theorem 4 (convergence analysis). Suppose that δ0 = O(p2) and ξ0 = O(
√
npqδ0). Set γ = 1− pq

16

and µk = δk/n in ReSync. If Xk ∈ N k
F ∩ N k

∞ for any k ≥ 0, then with probability at least
1−O(1/n), we have

Xk+1 ∈ N k+1
F ∩N k+1

∞ .

Proof outline of Theorem 4. The proof consisted of two parts. On the one hand, we need to show
that Xk+1 ∈ N k+1

F , which can be achieved by applying Corollary 1. On the other hand, in order to
show that Xk+1 ∈ N k+1

∞ , we need a good estimate of each block of ∇̃Rf(X). See Appendix C.

Having developed the necessary tools, we are now ready to prove Theorem 1.

Proof of Theorem 1. Based on Theorem 2, we know that X0 ∈ N 0
F

⋂
N 0
∞ if ξ0 and δ0 satisfy

ξ0 = O
(√

log n

p
√
q

)
and δ0 = O

(√
log n

p
√
nq

)
. (15)

According to Theorem 4, by choosing δ0 = Θ(p2) and ξ0 = Θ(
√
np5q), condition (15) holds when

p7q2 = Ω (log n/n). This completes the proof of Theorem 1.

4 Experiments

In this section, we conduct experiments on ReSync for solving the RRS problem on both synthetic and
real data, providing empirical support for our theoretical findings. Our experiments are conducted on
a personal computer with a 2.90GHz 8-core CPU and 32GB memory. All our experiment results are
averaged over 20 independent trials. Our code is available at https://github.com/Huikang2019/
ReSync.

4.1 Synthetic Data

We consider the rotation group SO(3) in all our experiments. We generate X?
1 , . . . ,X

?
n by first

generating matrices of the same dimension with i.i.d. standard Gaussian entries and then projecting
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Figure 2: Convergence of ReSync with p = q = (log n/n)1/3.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

MPLS

CEMP_GCW

IRLS_L12

DESC

ReSync

LUD

(a) q = 0.2, σ = 0.0

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(b) q = 0.2, σ = 1.0

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

q

(c) p = 0.2, σ = 0.0

0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

q

(d) p = 0.2, σ = 1.0

Figure 3: Comparison with state-of-the-art synchronization algorithms.

each of them onto SO(3). The underlying graph, outliers, and relative rotations in the measurement
model (1) are generated according to the RCM as described in Section 2.2. In our experiments,
we also consider the case where the true observations are contaminated by additive noise, namely,
{Yi,j}(i,j)∈A in (1) is generated using the formula

Yi,j = PSO(3)

(
X?>
i X?

j + σGi,j

)
for (i, j) ∈ A, (16)

where Gi,j consists of i.i.d. entries following the standard Gaussian distribution and σ ≥ 0 controls
the variance level of the noise.

Convergence verification of ReSync. We evaluate the convergence performance of ReSync with
the noise level σ = 0 in (16). We set p = q = (log n/n)1/3 in the measurement model (1),
which satisfies p2q = log n/n. We use the initial step size µ0 = 1/npq and the decaying factor
γ ∈ {0.7, 0.8, 0.85, 0.90, 0.95, 0.98} in ReSync. We test the performance for various n selected from
{400, 600, 800, 1000}. Figure 2 displays the experiment results. It can be observed that (i) ReSync
converges linearly to ground-truth rotations for a wide range of γ and (ii) a smaller γ often leads to
faster convergence speed. These corroborate our theoretical findings. However, it is worth noting
that excessively small γ values may result in an early stopping phenomenon (e.g., γ ≤ 0.8 when
n = 400). In addition, ReSync performs better with a larger n, as it allows for a smaller γ (e.g.,
γ = 0.7 when n = 1000) and hence converges to the ground-truth rotations faster.

Comparison with the state-of-the-arts. We next compare ReSync with state-of-the-art syn-
chronization algorithms, including IRLS L12 [9], MPLS [31], CEMP GCW [23, 32], DESC
[32], and LUD [39]. We obtain the implementation of the first four algorithms from https:
//github.com/ColeWyeth/DESC, while LUD’s implementation is obtained through private com-
munication with its authors. In our comparisons, we use their default parameter settings. For ReSync,
we set the initial step size to µ0 = 1/npq and the decaying factor to γ = 0.95, as suggested by the
previous experiment. We fix n = 200 and vary the true observation ratio p (or the observation ratio
q) while keeping q = 0.2 (or p = 0.2) fixed. We display the experiment results for σ = 0 and σ = 1
in Figures 3a and 3b, respectively, where p is selected from {0.2, 0.3, 0.4, . . . , 1}. When σ = 0,
ReSync achieves competitive performance compared to other robust synchronization algorithms.
When the additive noise level is σ = 1, ReSync outperforms other algorithms. In Figures 3c and 3d,
we present the results with varying q chosen from {0.2, 0.3, 0.4, . . . , 1} for noise-free (σ = 0) and
noisy (σ = 1) cases, respectively. In the noise-free case, DESC performs best when q < 0.5, while
ReSync slightly outperforms others when q ≥ 0.5. In the noisy case, it is clear that ReSync achieves
the best performance for a large range of q.
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4.2 Real Data

We consider the global alignment problem of three-dimensional scans from the Lucy dataset, which
is a down-sampled version of the dataset containing 368 scans with a total number of 3.5 million
triangles. We refer to [39] for more details about the experiment setting. We apply three algorithms
LUD [39], DESC [32] and our ReSync on this dataset since they have the best performance on noisy
synthetic data. As Figure 4 shows, ReSync outperforms the other two methods.

Figure 4: Histogram of the unsquared residuals of LUD, DESC, and ReSync for the Lucy dataset.

5 Conclusion and Discussions on Limitations

In this work, we introduced ReSync, a Riemannian subgradient-based algorithm with spectral
initialization for solving RRS. We established strong theoretical results for ReSync under the
RCM. In particular, we first presented an initialization guarantee for SpectrIn, which is a procedure
embedded in ReSync for initialization. Then, we established a problem-intrinsic property called weak
sharpness for our nonsmooth nonconvex formulation, which is of independent interest. Based on
the established weak sharpness property, we derived linear convergence of ReSync to the underlying
rotations once it is initialized in a local region. Combining these theoretical results demonstrates that
ReSync converges linearly to the ground-truth rotations under the RCM.

Limitations. Our overall guarantee in Theorem 1 requires the sample complexity of p7q2 =
Ω(log n/n), which does not match the currently best known lower bound p2q = Ω(log n/n) for
exact recovery [34, 11]. We showed in Theorem 2 that approximate recovery with an optimal
sample complexity is possible. Moreover, we showed in Theorem 3 that exact recovery with
p2q2 = Ω(log n/n) is possible if we have a global minimizer of the objective function of problem
(2) within a certain local region. However, due to the nonconvexity of problem (2), it is non-trivial to
obtain the said minimizer. We circumvented this difficulty by establishing the linear convergence of
ReSync to a desired minimizer in Theorem 4. Nevertheless, a strong requirement on initialization is
needed, which translates to the weaker final complexity result of p7q2 = Ω(log n/n).

Although our theory allows for p→ 0 as n→∞, our argument relies heavily on the randomness of
the outliers {Oi,j} and the absence of additive noise. In practice, adversarial outliers that arbitrarily
corrupt a measurement and additive noise contamination are prevalent. It remains unknown how well
ReSync performs in such scenarios.

The above challenges are significant areas for future research and improvements.
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A Full Proof of Theorem 2

In this section, we present the full proof of Theorem 2. We will use the notation defined in the proof
outline of Theorem 2 in Section 3.1.

Firstly, we know that

Wij =


(1− pq)X?

iX
?>
j , with probablity pq,

Oij − pqX?
iX

?>
j , with probablity (1− p)q,

−pqX?
iX

?>
j , otherwise.

(17)

Since Oij is assumed to be uniformly distributed on SO(d) in the RCM, given any matrix Q ∈ SO(d),
it is easy to see that OijQ is also uniformly distributed on SO(d), so we have

E(Oij) = E(OijQ) = E(Oij) ·Q, ∀Q ∈ SO(d).

Let Ekl ∈ SO(d), k 6= l denote the diagonal matrix whose k-th and l-th diagonal entries are −1 and
others are 1, then we have E(Oij) = E(Oij) ·Ekl, which implies

dE(Oij) = E(Oij) · (E12 + E23 + · · ·+ Ed1) = (d− 4)E(Oij).

Thus, we have E(Oij) = 0. Then, it is easy to see that E(Wij) = 0 and

Var(Wij) = (1− pq)2I + (1− q)p2q2I + (1− p)q(1 + p2q2)I = q(1− p2q)I. (18)
Based on the above calculations, we can derive the following Lemma, which is a direct result of the
matrix Bernstein inequality [38]. Similar results can also be found in [42, Lemma 9], [27, Proposition
3], and [26, Eq. (5.12)].

Lemma 2. With probability at least 1−O(1/n), the following holds for any m ∈ [n]:

‖W ‖2 = O
(√

nq log n
)
, ‖W (m)‖2 = O

(√
nq log n

)
, ‖Wm‖2 = O

(√
nq log n

)
.

Proof. Note that W =
∑
i<jW

(ij), where W (ij) ∈ Rnd×nd denotes the matrix with the (i, j)

and (j, i)-th block equal to Wij and Wji and others equal to 0. So {W (ij)} are i.i.d. centered and
bounded random matrices. Besides, we have∥∥E(WW>)

∥∥
2

=

∥∥∥∥∥∥
∑
i<j

E(W (ij)(W (ij))>)

∥∥∥∥∥∥
2

= 2(n− 1)‖Var(Wij)‖2 = O(nq).

According to the matrix Bernstein inequality [38], we have that ‖W ‖2 = O
(√
nq log n

)
holds with

probability at least 1−O(1/n2). The above argument also holds for each W (m), then taking a union
bound over the choice of m ∈ [n] yields the second result. For Wm, we have

‖W ‖2 = max
‖u‖2=1

‖Wu‖2 ≥ max
‖u‖2=1

‖Wmu‖2 = ‖Wm‖2,

which gives the last result.

The following lemma follows from [13]; see also [26, Theorem A.2]. [42, Lemma 11] is a special
case where d = 1. Before that, we need to introduce the distance up to a global orthogonal matrix:

Dist (X,Y ) = ‖X − Y R?‖F , where R? = arg min
R∈O(d)

‖XR− Y ‖2F = PO(d)(X
>Y ).

Lemma 3 (Davis-Kahan sin Θ Theorem). Suppose that A,E ∈ Cn×n are Hermitian matrices and
Ã = A + E. Let δ = λd(A)− λd+1(A) > 0 be the gap between the d-th eigenvalue and d+ 1-th
eigenvalue of A for some 1 ≤ d ≤ n− 1. Furthermore, let U , Ũ be the d-leading eigenvectors of A
and Ã, respectively, which are normalized such that ‖U‖F = ‖Ũ‖F =

√
nd. Then, we have

Dist(U , Ũ) ≤
√

2‖EU‖F
δ − ‖E‖2

. (19)
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A.1 Initialization Error in Euclidean Norm

Based on Lemma 2 and Lemma 3, we have the following bound on Dist. Note that the notations
Φ,Ψ, Φ̃, Ψ̃ used in the following analysis are defined in SpectrIn (i.e., Algorithm 2).

Lemma 4. Let Φ and Φ(m) be the d-leading eigenvectors of Y and Y (m), respectively, which are
normalized such that ‖Φ‖F = ‖Φ(m)‖F =

√
nd. Then, we have

Dist(Φ,X?) = O
(√

log n

p
√
q

)
and Dist(Φ,Φ(m)) = O(1) (20)

hold with probability at least 1−O(1/n).

Proof. Let us Choose A = Y (m) and E = ∆W (m) = W −W (m) in Lemma 3, then Ã = Y ,
U = Φ(m) and Ũ = Φ. Since Φ(m) is independent of ∆W (m), similar to Lemma 2, we apply the
matrix Bernstein inequality [38] to obtain, with probability at least 1−O(1/n2), that

‖EU‖F = ‖∆W (m)Φ(m)‖F = O(
√
nq log n).

In addition, Y (m) = pqX?X?> + W (m) implies that

δ = λd(Y
(m))− λd+1(Y (m)) ≥ λd(pqX?X?>)− ‖W (m)‖2 ≥ npq −O(

√
nq log n).

where the second inequality holds due to λd(X
?X?>) = n and the last inequality is from

λd(X
?X?>) = n and Lemma 2. Based on the condition that p2q = Ω

(
logn
n

)
, as long as

p2q ≥ C logn
n for some large enough constant C, we have

δ − ‖E‖2 ≥ npq −O(
√
nq log n)− ‖E‖2 ≥ npq −O(

√
nq log n) ≥ 1

2
npq,

where the second inequality holds because of ‖E‖2 ≤ ‖W ‖2 + ‖W (m)‖2 = O(
√
nq log n). Hence,

by applying Lemma 3, we get

Dist(Φ,Φ(m)) ≤
√

2‖EU‖F
δ − ‖E‖2

≤ O(
√
nq log n)

npq
= O(1) (21)

where the last inequality is because of p
√
q = Ω(

√
log n/n). Similarly, by choosing A =

pqX?X?> and E = W , we can show that

Dist(Φ,X?) ≤
√

2‖WX?‖F
npq −O(

√
nq log n)

≤
√

2‖W ‖2‖X?‖F
1
2npq

= O
(√

log n

p
√
q

)
.

Here, the last inequality holds because ‖W ‖2 = O(
√
nq log n) (see Lemma 2) and the fact that

‖X?‖F =
√
nd.

Following the same analysis as in Lemma 4, we are also able to show that Dist(Ψ,X?) =

O
(√

logn
p
√
q

)
, where Ψ reverses the sign of the last column of Φ so that the determinants of Φ

and Ψ differ by a sign. However, Lemma 4 only provides the upper bound on “Dist”, i.e., the
distance up to an orthogonal matrix. The following lemma translates the result to that on “dist”.

Lemma 5. Suppose that ‖Φ̃−Φ‖F ≤ ‖Ψ̃−Ψ‖F , where Φ̃ = PSO(d)n(Φ) and Ψ̃ = PSO(d)n(Ψ),
then we have

dist(Φ,X?) = Dist(Φ,X?) = O
(√

log n

p
√
q

)
.

Proof. Based on the structure of O(d) and SO(d), it is easy to see that
Dist(Φ,X?) = min {dist(Φ,X?),dist(Ψ,X?)} .

Our remaining task is to prove Dist(Φ,X?) = dist(Φ,X?) based on the condition that ‖Φ̃−Φ‖F ≤
‖Ψ̃−Ψ‖F . If Dist(Φ,X?) = dist(Ψ,X?), then we have

O
(√

log n

p
√
q

)
= Dist(Φ,X?) = dist(Ψ,X?) ≥ ‖Ψ̃−Ψ‖F ≥ ‖Φ̃−Φ‖F
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where the first inequality holds because Ψ̃ is the projection of Ψ on SO(d)n. It is easy to see that

‖Φ̃−Φ‖F + ‖Ψ̃−Ψ‖F = ‖Φ− PSO(d)n(Φ)‖F + ‖Φ− P(O(d)\SO(d))n(Φ)‖F ≥ 2
√
n.

The equality holds because the mapping that reverses the sign of the last column of a matrix is a
bijection between SO(d) and O(d) \ SO(d), and the inequality holds since the minimum distance
between SO(d) and O(d) \ SO(d) is 2. Under the condition that p2q = Ω

(
logn
n

)
, as long as

p2q ≥ C logn
n for some large enough constant C, we could have ‖Φ̃ − Φ‖F + ‖Ψ̃ − Ψ‖F =

O
(√

logn
p
√
q

)
< 2
√
n, which contradict to the above inequality. Thus, we have

dist(Φ,X?) = Dist(Φ,X?) = O
(√

log n

p
√
q

)
.

A.2 Initialization Error in Infinity Norm

Next, based on the Davis-Kahan theorem, we can bound the distance between X̃0 and X? in the
infinity norm, which is stated in the following result.
Lemma 6. Let Φ be the d-leading eigenvectors of Y . Then, we have

dist∞(Φ,X?) = O
(√

log n

p
√
nq

)
(22)

holds with probability at least 1−O(1/n).

Proof. Let Πm = argminΠ∈SO(d) ‖Φ−Φ(m)Π‖F . We can compute

‖(WΦ)m‖F = ‖W>
mΦ‖F ≤ ‖W>

mΦ(m)Πm‖F + ‖W>
m (Φ−Φ(m)Πm)‖F

≤ ‖W>
mΦ(m)‖F + ‖Wm‖2‖Φ−Φ(m)Πm‖F .

(23)

The fact that Φ(m) is independent from Wm implies ‖W>
mΦ(m)‖F = O(

√
nq log n), so we have

‖(WΦ)m‖F = O(
√
nq log n) (1 +O(1)) = O(

√
nq log n). (24)

Next, let Π? = argminΠ∈SO(d) ‖Φ−X?Π‖F , then we have

(Y Φ)m = pqX?
mX?>Φ + (WΦ)m = npqX?

mΠ? + pqX?
mX?>(Φ−X?Π?) + (WΦ)m.

Since Φ is the d-leading eigenvector of Y , we have Y Φ = ΦΣ with Σ ∈ Rd×d consisting of the
d-leading eigenvalues of Y . Applying the standard eigenvalue perturbation theory, e.g., [37, Theorem
4.11], we have

‖Σ− npqI‖2 = O(‖W ‖2) = O(
√
nq log n).

Based on the assumption that p2q = Ω
(

logn
n

)
, we can show that Σ ≥ 3

4npqI . Note that Y Φ = ΦΣ

implies Φm = (Y Φ)mΣ−1 for each m ∈ [n], then we have

‖Φm‖F ≤
4

3npq
‖(Y Φ)m‖F ≤

4

3npq
‖pqX?

mX?>Φm‖F +
4

3npq
‖(WΦ)m‖F ≤ 2

√
d,

where the last inequality holds because 4
3npq‖pqX

?
mX?>Φm‖F = 4

3n‖X
?>Φm‖F ≤ 4

√
d

3 and
(24). Therefore, for each m ∈ [n],

npq(Φm −X?
mΠ?) = Φm(npqI −Σ) + ΦmΣ− npqX?

mΠ?

= Φm(npqI −Σ) + (Y Φ)m − npqX?
mΠ?.

This further implies

npq‖Φm −X?
mΠ?‖F ≤‖Σ− npqI‖2‖Φm‖F + pq‖X?

mX?>(Φ−X?Π?)‖F + ‖(WΦ)m‖F
≤2
√
d‖W ‖2 +

√
npq‖Φ−X?Π?‖F +O

√
nq(log n)

=O(
√
nq log n),

where the last inequality holds because of Lemma 2 and Lemma 4. This completes the proof.
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Finally, since X0 = PSO(d)n(Φ), according to Lemma 2 in [27], we have

dist(X0,X?) ≤ 2 dist(Φ,X?) and dist∞(X0,X?) ≤ 2 dist∞(Φ,X?),

which complete the proof of Theorem 2.

B Full Proof of Theorem 3

In this section, we provide the full proof of Lemma 1, Proposition 1, and Proposition 2, which finishes
the proof of Theorem 3. To simplify the notation and the theoretical derivations, we assume without
loss of generality that X?

i = I for all 1 ≤ i ≤ n as one can separately rotate the space that each
variable Xi lies in such that the corresponding ground-truth X?

i is rotated to identity [39, Lemma
4.1]. Consequently, we have Yij = I for (i, j) ∈ A.

B.1 Proof of Lemma 1

For each 1 ≤ i ≤ n, |Ei| =
∑

1≤j≤n 1Ei(j), where 1Ei(·) denotes the indicator function w.r.t Ei.
Based on our model,

∑
1≤j≤n 1Ei(j) follows the binomial distribution B(n, q). According to the

Bernstein inequality [38], for any constant ε ∈ (0, 1), we have

Pr

∣∣∣∣∣∣
∑

1≤j≤n

1Ei(j)− nq

∣∣∣∣∣∣ ≥ εnq
 ≤ 2 exp

(
−

1
2ε

2n2q2∑
1≤j≤nE{12

Ei(j)}+ εnq/3

)

= 2 exp

(
−

1
2ε

2n2q2

nq + εnq/3

)
≤ 2 exp

(
−3

8
ε2nq

)
.

The last inequality holds because of ε < 1. Therefore,

Pr

(
∪

1≤i≤n
{|Ei| − nq| ≥ εnq}

)
≤ 2n exp

(
−3

8
ε2nq

)
≤ 2

n2
, (25)

where the last inequality holds because we assume that ε ≥
√

8 logn√
npq

. Similarly, we have

Pr

(
∪

1≤i≤n
{|Ai| − npq| ≥ εnpq}

)
≤ 2n exp

(
−3

8
ε2npq

)
≤ 2

n2
, (26)

Pr

(
∪

1≤i,j≤n

{∣∣Ei ∩ Aj | − npq2
∣∣ ≥ εnpq2

})
≤ 2n2 exp

(
−3

8
ε2npq2

)
≤ 2

n
, (27)

and

Pr

(
∪

1≤i,j≤n

{∣∣Aij | − np2q2
∣∣ ≥ εnp2q2

})
≤ 2n2 exp

(
−3

8
ε2np2q2

)
≤ 2

n
. (28)

Hence, we complete the proof of Lemma 1 once n ≥ 4.

B.2 Proof of Proposition 1

We can first compute∑
1≤i,j≤n

‖Xi −Xj‖F ≤
∑

1≤i,j≤n

1

|Aij |
∑
k∈Aij

(‖Xi −Xk‖F + ‖Xj −Xk‖F )

≤ 1

(1− ε)np2q2

∑
1≤i,j≤n

∑
k∈Aij

(‖Xi −Xk‖F + ‖Xj −Xk‖F ).

(29)

Here, the first inequality comes from the triangle inequality, while the second one follows from
Lemma 1. Now, invoking Lemma 1, which tells |Ak| ≤ (1 + ε)npq, gives∑

1≤i,j≤n

∑
k∈Aij

‖Xi −Xk‖F =
∑

1≤i≤n

∑
k∈Ai

∑
j∈Ak

‖Xi −Xk‖F

≤ (1 + ε)npq
∑

1≤i≤n

∑
k∈Ai

‖Xi −Xk‖F
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= (1 + ε)npq
∑

(i,k)∈A

‖Xi −Xk‖F .

By symmetry, we conclude that∑
1≤i,j≤n

∑
k∈Aij

(‖Xi −Xk‖F + ‖Xj −Xk‖F ) ≤ 2(1 + ε)npq
∑

(i,j)∈A

‖Xi −Xj‖F . (30)

Furthermore, we claim the following bound for any X ∈ SO(d)n:∑
1≤i,j≤n

‖Xi −Xj‖F ≥
n

2
dist1(X,X?). (31)

Combining (29), (30), (31), and the fact g(X) =
∑

(i,j)∈A ‖Xi −Xj‖F establishes Proposition 1.

Hence, it remains to show (31). First of all, according to the triangle inequality, we have∑
1≤i,j≤n

‖Xi −Xj‖F ≥
∑

1≤i≤n

∥∥∥∥∥∥nXi −
∑

1≤j≤n

Xj

∥∥∥∥∥∥
F

= n
∑

1≤i≤n

‖Xi −X‖F , (32)

where X = 1
n

∑
1≤j≤nXj can be taken as a diagonal matrix (since the Frobenius norm is invariant

up to a global rotation) with its first (d − 1) diagonal entries being positive. Finally, applying the
following lemma to (32) provides (31).

Lemma 7. For any A ∈ SO(d) and B = Diag(b1, . . . , bd) satisfying b1, . . . , bd−1 ∈ [0, 1] and
bd ∈ [−1, 1], we have

‖A−B‖F ≥
1

2
‖A− I‖F .

Proof. It is equivalent to show that ‖A−B‖2F ≥ 1
4‖A− I‖2F . Since A ∈ SO(d), we simplify as

d+ 〈A, I − 4B〉+ 2‖B‖2F =
∑

1≤i≤d

1 + Aii(1− 4bi) + 2b2i ≥ 0. (33)

To prove (33) holds for all A ∈ SO(d), we choose Ā = argminA∈SO(d)〈A, I−4B〉 = PSO(d)(4B−
I). It is easy to see that Ā is also a diagonal matrix. For any 1 ≤ i ≤ d− 1, we have

1 + Aii(1− 4bi) + 2b2i =

{
2(bi − 1)2, Aii = 1;
2b2i + 4bi, Aii = −1.

So it is always nonnegative since bi ≥ 0 for any 1 ≤ i ≤ d − 1. For the last summation in (33),
on the one hand, if Ādd = 1, then 1 + Add(1 − 4bd) + 2b2d = 2(bd − 1)2 ≥ 0. On the other
hand, if Ādd = −1, then there exist another 1 ≤ k ≤ d − 1 such that Ākk = −1. So we have
(1 + Akk(1 − 4bk) + 2b2k) + (1 + Add(1 − 4bd) + 2b2d) = 2b2k + 2b2d + 4(bk + bd) ≥ 0. The last
inequality holds because |bd| ≤ bk. We complete the proof.

B.3 Proof of Proposition 2

Based on (11) and our simplification that X?
i = I , 1 ≤ i ≤ n, we have

h(X)− h(X?) ≥
∑

(i,j)∈Ac

〈
I −Oij

‖I −Oij‖F
,X>i Xj − I

〉
. (34)

Let A = E
{

I−Oij

‖I−Oij‖F

}
, Zij =

I−Oij

‖I−Oij‖F · 1Ac(ij)− (1− p)qA, and Z ∈ Rnd×nd collects each
Zij in its (i, j)-th block. We can compute∣∣∣∣∣∣

∑
(i,j)∈Ac

〈
I −Oij

‖I −Oij‖F
,X>i Xj − I

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

1≤i,j≤n

〈
Zij + (1− p)qA,X>i Xj − I

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

1≤i,j≤n

〈
(1− p)qA,X>i Xj − I

〉∣∣∣∣∣∣ (35)
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+

∣∣∣∣∣∣
∑

1≤i,j≤n

〈
Zij , (Xi − I)>(Xj − I) + (Xi − I)> + (Xj − I)

〉∣∣∣∣∣∣ .
To bound the first term in (35), we can proceed as∣∣∣∣∣∣

∑
1≤i,j≤n

〈
(1− p)qA,X>i Xj − I

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈

(1− p)qA,

(
n∑
i=1

Xi

)>( n∑
i=1

Xi

)
− n2I

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈

(1− p)qA,

(
n∑
i=1

Xi + nI

)>( n∑
i=1

Xi − nI

)〉∣∣∣∣∣∣
≤

∥∥∥∥∥(1− p)qA

(
n∑
i=1

Xi + nI

)∥∥∥∥∥
F

∥∥∥∥∥
n∑
i=1

Xi − nI

∥∥∥∥∥
F

≤ ‖(1− p)qA‖F

∥∥∥∥∥
n∑
i=1

Xi + nI

∥∥∥∥∥
2

∥∥∥∥∥
n∑
i=1

Xi − nI

∥∥∥∥∥
F

≤ 2(1− p)qn‖A‖F

∥∥∥∥∥
n∑
i=1

Xi − nI

∥∥∥∥∥
F

.

(36)
Here, the second equality is true since

∑n
i=1 Xi can be taken as a diagonal matrix. According to [39,

Lemma A.1], we know that ‖A‖F =
∥∥∥E{ I−Oij

‖I−Oij‖F

}∥∥∥
F
≤ 1√

2
for all d ≥ 2. On the other hand,

we know that

dist(X,X?)2 =

n∑
i=1

‖Xi − I‖2F = 2 trace

(
nI −

n∑
i=1

Xi

)
≥ 2

∥∥∥∥∥
n∑
i=1

Xi − nI

∥∥∥∥∥
F

, (37)

where the last inequality holds because nI −
∑n
i=1 Xi is a nonnegative diagonal matrix. Therefore,

we obtain∣∣∣∣∣∣
∑

1≤i,j≤n

〈
(1− p)qA,X>i Xj − I

〉∣∣∣∣∣∣ ≤ (1− p)qn√
2

dist(X,X?)2

≤ (1− p)qn√
2

max
i
‖Xi − I‖F

n∑
i=1

‖Xi − I‖F .

(38)

To further bound the second term in (35), we can proceed as∣∣∣∣∣∣
∑

1≤i,j≤n

〈
Zij , (Xi − I)>(Xj − I) + (Xi − I)> + (Xj − I)

〉∣∣∣∣∣∣
≤(X − In)Z(X − In)> + 2

∣∣∣∣∣∣
∑

1≤i≤n

〈 ∑
1≤j≤n

Zij ,Xi − I

〉∣∣∣∣∣∣
≤‖Z‖op‖X − In‖2F + 2

∑
1≤i≤n

∥∥∥∥∥∥
∑

1≤j≤n

Zij

∥∥∥∥∥∥
F

‖Xi − I‖F

≤

2
√
d‖Z‖op + 2 max

1≤i≤n

∥∥∥∥∥∥
∑

1≤j≤n

Zij

∥∥∥∥∥∥
F

 ∑
1≤i≤n

‖Xi − I‖F ,

(39)

where In ∈ Rnd×d collects n identity matrix together and the last inequality holds because ‖X −
In‖2F =

∑
1≤i≤n ‖Xi−I‖2F ≤

∑
1≤i≤n(‖Xi‖F +‖I‖F )‖Xi−I‖F = 2

√
d
∑

1≤i≤n ‖Xi−I‖F .
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Using the randomness of Oij , we claim that with probability at least 1− 4d/n, we have

‖Z‖op ≤
√

8n(1− p)q log n, and max
1≤i≤n

∥∥∥∥∥∥
∑

1≤j≤n

Zij

∥∥∥∥∥∥
F

≤
√

8n(1− p)q log n. (40)

Combining the above bounds gives
h(X)− h(X?)

≥ −
(

2(
√
d+ 1)

√
8n(1− p)q log n+

(1− p)qn√
2

max
i
‖Xi − I‖F

) ∑
1≤i≤n

‖Xi − I‖F

≥ −npq
16
· dist1(X,X?),

(41)

where the last inequality holds because we assume p2q2 = Ω
(

logn
n

)
, maxi ‖Xi − I‖F =

dist∞(X,X?) = O(p), and
∑

1≤i≤n ‖Xi − I‖F = dist1(X,X?).

Finally, it remains to show that the two inequalities in (40) holds with probability at least 1− 4d/n.
It is quick to verify that E(Zij) = 0, ‖Zij‖op ≤ 1 + (1− p)q‖A‖F ≤ 2, and

E(Z2) = BlkDiag

∑
j

E(Z1jZ
>
1j), . . . ,

∑
j

E(ZnjZ
>
nj)


=
∑
j

E(Z1jZ
>
1j)⊗ In

= n(1− p)qE
(

(I −Oij)(I −Oij)
>

‖I −Oij‖2F
− (1− p)2q2AA>

)
⊗ In,

where BlkDiag(·) means the block diagonal matrix, ⊗ means the Kronecker product and In denotes
the n-by-n identity matrix. Thus, we have ‖E(Z2)‖op ≤ n(1 − p)q. According to the Matrix
Bernstein inequality [38], we have

Pr
(
‖Z‖op ≤

√
8n(1− p)q log n

)
≥ 1− 2nd exp

(
−4n(1− p)q log n

n(1− p)q + 2
√

8n(1− p)q log n/3

)

≥ 1− 2d

n
.

(42)
Here, the last inequality holds because we assume 2

√
8n(1− p)q log n/3 ≤ n(1 − p)q, which is

true as long as p = Ω(log n/n).

For any fixed 1 ≤ i ≤ n, a similar argument based on Matrix Bernstein inequality [38] shows that

Pr

‖∑
j

Zij‖F ≤
√

8n(1− p)q log n

 ≥ 1− 2d exp

(
−4n(1− p)q log n

n(1− p)q +
√

8n(1− p)q log n/3

)

≥ 1− 2d

n2
,

(43)
which implies Pr

(
maxi ‖

∑
j Zij‖F ≤

√
8n(1− p)q log n

)
≥ 1− 2d/n.

C Full Proof of Theorem 4

C.1 Proof of Corollary 1

Combining the convexity of f and Theorem 3, we have

−npq
8

∑
1≤i≤n

‖Xi −X?
i ‖F ≥ f(X?)− f(X) ≥

〈
∇̃f(X),X? −X

〉
, ∀ ∇̃f(X) ∈ ∂f(X).

(44)

21



for all X ∈ SO(d)n satisfying dist∞(X,X?) = O(p). For any ∇̃⊥Rf(X) ∈ ∂⊥Rf(X), we can
further compute〈

∇̃⊥Rf(X),X −X?
〉

=
∑

1≤i≤n

〈
∇̃⊥Rf(Xi),PT⊥Xi

(Xi −X?
i )
〉

≤
∑

1≤i≤n

‖∇̃⊥Rf(Xi)‖F · ‖PT⊥Xi

(Xi −X?
i )‖F .

On the one hand, notice that
PT⊥Xi

(Xi −X?
i ) =Xi −X?

i − PTXi
(Xi −X?

i )

=Xi

(
X>i (Xi −X?

i ) + (Xi −X?
i )>Xi

)
/2

=Xi(Xi −X?
i )>(Xi −X?

i )/2,

which implies

‖PT⊥X
(Xi −X?

i )‖F =
1

2
‖Xi(Xi −X?

i )>(Xi −X?
i )‖F ≤

1

2
‖Xi −X?

i ‖2F .

On the other hand, according to Lemma 1, with probability at least 1−O(1/n), for any i ∈ [n],

‖∇̃⊥Rf(Xi)‖F ≤ ‖∇̃f(Xi)‖F =

∥∥∥∥∥∥
∑
j∈Ei

∇̃fi,j(Xi)

∥∥∥∥∥∥
F

≤
∑
j∈Ei

∥∥∥∇̃fi,j(Xi)
∥∥∥
F
≤ |Ei| ≤ 2nq,

where ∇̃fi,j(Xi) ∈ ∂fi,j(Xi) satisfies ‖∇̃fi,j(Xi)‖F ≤ 1. Hence, we have〈
∇̃⊥Rf(X),X −X?

〉
≤ nq

∑
1≤i≤n

‖Xi −X?
i ‖2F ≤

npq

16

∑
i

‖Xi −X?
i ‖F

for any X such that dist∞(X,X?) ≤ p
16 . Invoking the above bounds into (44) yields the desired

result〈
∇̃Rf(X),X −X?

〉
=
〈
∇̃f(X)− ∇̃⊥Rf(X),X −X?

〉
≥ npq

16

∑
1≤i≤n

‖Xi −X?
i ‖F .

C.2 Proof of Contraction

Let us first present some preliminary results, which will be used in our later derivations. By noticing
that ∇̃f(Xi) =

∑
j∈Ei ∇̃fi,j(Xi) where ∇̃fi,j(Xi) ∈ ∂fi,j(Xi), we define

∇̃g(Xi) =
∑
j∈Ai

∇̃fi,j(Xi), ∇̃h(Xi) =
∑

j∈Ei\Ai

∇̃fi,j(Xi).

Recall that ∇̃Rg(Xi) = PTXi
(∇̃g(Xi)) and ∇̃Rh(Xi) = PTXi

(∇̃h(Xi)). Similarly, we have
∇̃f(Xi) = ∇̃g(Xi) + ∇̃h(Xi) and ∇̃Rf(Xi) = ∇̃Rg(Xi) + ∇̃Rh(Xi). Furthermore, the QR
decomposition-based retraction satisfies the second-order boundedness property, i.e., there exists
some M ≥ 1 such that

‖Xk+1
i −X?

i ‖F = ‖RetrXk
i

(
−µk∇̃Rf(Xk

i )
)
−X?

i ‖F

≤ ‖Xk
i − µk∇̃Rf(Xk

i )−X?
i ‖F +M · µ2

k‖∇̃Rf(Xk
i )‖2F .

(45)

Recall that ∇̃Rf(Xk
i ) = ∇̃Rg(Xk

i ) + ∇̃Rh(Xk
i ), we have

‖∇̃Rf(Xk
i )‖F ≤ ‖∇̃Rg(Xk

i )‖F + ‖∇̃Rh(Xk
i )‖F

≤ 5
√

2δ0nq + (1 + ε)npq ≤ (1 + 2ε)npq,
(46)

where the second inequality comes from

‖∇̃Rg(Xk
i )‖F =

∥∥∥∥∥∥
∑
j∈Ai

∇̃Rfi,j(Xi)

∥∥∥∥∥∥
F

≤
∑
j∈Ai

∥∥∥∇̃Rfi,j(Xi)
∥∥∥
F
≤ |Ai| ≤ (1 + ε)npq,
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and Lemma 10 and the last inequality is due to the choice δ0 ≤ ε2p2/50 (i.e., δ0 = O(p2)). Thus, by
choosing µk = O( δkn ), and δ0 = O(p2), the second-order term M · µ2

k‖∇̃Rf(Xk
i )‖2F = O(p6q2),

which is a very high-order error. In the following analysis, we will ignore this term to simplify our
derivations.

Using the above preliminaries and Corollary 1, we are ready to establish two key lemmas, which
show that if Xk ∈ N k

F ∩ N k
∞, then Xk+1 ∈ N k+1

F (Lemma 8) and Xk+1 ∈ N k+1
∞ (Lemma 9),

respectively. This completes the proof of Theorem 4.

Lemma 8. With high probability, suppose that Xk ∈ N k
F ∩N k

∞, µk = O( δkn ), and

δ0 = O(p2), and ξ0 = Θ(
√
npqδ0), (47)

then Xk+1 ∈ N k+1
F .

Proof. By ignoring the high-order error term in (45), in order to bound ‖Xk+1 −X?‖2F we can first
compute

‖Xk+1 −X?‖2F =
∑

1≤i≤n

‖Xk+1
i −X?

i ‖2F ≤
∑

1≤i≤n

‖Xk
i − µk∇̃Rf(Xk

i )−X?
i ‖2F

= ‖Xk −X?‖2F − 2µk

〈
∇̃Rf(Xk),Xk −X?

〉
+ µ2

k‖∇̃Rf(Xk)‖2F .

Then, according to Corollary 1, we have〈
∇̃Rf(Xk),Xk −X?

〉
≥ npq

16

∑
1≤i≤n

‖Xk
i −X?

i ‖F ≥
npq

16δk

∑
1≤i≤n

‖Xk
i −X?

i ‖2F

=
npq

16δk
‖Xk −X?‖2F ,

where the second inequality holds because ‖Xk
i −X?

i ‖F ≤ δk (i.e., Xk ∈ N k
∞). Combining the

above two inequalities gives

‖Xk+1 −X?‖2F ≤
(

1− µk ·
npq

8δk

)
‖Xk −X?‖2F + µ2

k‖∇̃Rf(Xk)‖2F

≤
(

1− pq

8

)
‖Xk −X?‖2F + (1 + 2ε)2n3p2q2µ2

k,

where the last inequality is due to (46). Since µk = O( δkn ) and ξ0 = Θ(
√
npqδ0) (i.e., ξk =

Θ(
√
npqδk), we have n3p2q2µ2

k = O(pqξ2
k), which implies

‖Xk+1 −X?‖2F ≤
(

1− pq

8

)
ξ2
k +

pq

16
ξ2
k =

(
1− pq

16

)
ξ2
k = ξ2

k+1.

This completes the proof.

Lemma 9. With high probability, suppose that Xk ∈ N k
F ∩N k

∞, µk = O( δkn ), and

δ0 = O(p2) and ξ0 = O(
√
npqδ0), (48)

then Xk+1 ∈ N k+1
∞ .

Proof. As stated at the beginning of Appendix B, we can assume without loss of generality that
R? = I and X?

i = I for all 1 ≤ i ≤ n. We divide the index set [n] into three sets

I1 =

{
i | ‖Xk

i − I‖F ≤
δk
4

}
, I2 =

{
i | δk

4
< ‖Xk

i − I‖F ≤
3δk
4

}
,

and I3 =

{
i | 3δk

4
< ‖Xk

i − I‖F ≤ δk
}
.

For any i ∈ I1

⋃
I2, we have

‖Xk
i − µk∇̃Rf(Xk

i )− I‖F ≤ ‖Xk
i − I‖+ µk‖∇̃Rf(Xk

i )‖ ≤ 3δk
4

+ 2µknpq ≤ δk+1,

(49)
where the last inequality holds because we choose µk = O( δkn ) ≤ δk

16n .
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It remains to consider the case i ∈ I3. Firstly, it is easy to see that

dist(Xk,X?)2 ≥
∑

i∈I2
⋃
I3

‖Xk −X?(δk)‖2F ≥
δ2
k

16
|I2

⋃
I3|.

Note that we have |I2

⋃
I3| ≤ dist(Xk,X?)2

δ2k/16
≤ 16ξ2k

δ2k
= O(npq) according to the assumption

ξ0 = O(
√
npqδ0). Hence, for any i ∈ I3, we have

∇̃f(Xi) =
∑

j∈Ai∩I1

Xi −Xj

‖Xi −Xj‖F
+

∑
j∈Ai\I1

Xi −Xj

‖Xi −Xj‖F
+ ∇̃h(Xi). (50)

Since |I2

⋃
I3| = O(npq), we can choose ξ0 properly such that |I2

⋃
I3| ≤ εnpq. Then, we have

|Ai \ I1| ≤ |I2

⋃
I3| ≤ εnpq and |Ai ∩ I1| ≥ |Ai| − |Ai \ I1| ≥ (1− 2ε)npq.

Let us use ∇̃g1(Xi) to denote the first term on the RHS of (50). We have

∇̃g1(Xi) =
∑

j∈Ai∩I1

Xi −Xj

‖Xi −Xj‖F
=

∑
j∈Ai∩I1

Xi − I

‖Xi −Xj‖F
+

I −Xj

‖Xi −Xj‖F

= σ(Xi − I) +
∑

j∈A∩I1

I −Xj

‖Xi −Xj‖F
,

(51)

where σ =
∑
j∈Ai∩I1

1
‖Xi−Xj‖F . For the last term in the above equation, we have∥∥∥∥∥∥

∑
j∈Ai∩I1

I −Xj

‖Xi −Xj‖F

∥∥∥∥∥∥
F

≤
∑

j∈Ai∩I1

‖I −Xj‖F
‖Xi −Xj‖F

≤ δk
4

∑
j∈Ai∩I1

1

‖Xi −Xj‖F
=
δkσ

4
.

In addition, the projection of Xi − I onto the cotangent space can be bounded as
‖PT⊥Xi

(Xi − I)‖F = ‖(Xi − I)‖2F /2 ≤ δ2
k/2,

which implies that ∇̃Rg1(Xi) = PTXi
(∇̃g1(Xi)) satisfies

‖∇̃Rg1(Xi)− σ(Xi − I)‖F ≤
δkσ

4
+
δ2
kσ

2
≤ δkσ

2
.

Then, the fact ∇̃Rf(Xi) = ∇̃Rg1(Xi) + PT⊥Xi

(∑
j∈Ai\I1

Xi−Xj

‖Xi−Xj‖F

)
+ ∇̃Rh(Xi) implies

‖∇̃Rf(Xi)− σ(Xi − I)‖F ≤ ‖∇̃Rg1(Xi)− σ(Xi − I)‖F + |Ai \ I1|+
∥∥∥∇̃Rh(Xi)

∥∥∥
F

≤ δkσ

2
+ εnpq + 5

√
2δ0nq.

Next, motivated by the update of ReSync, we can construct

Xk
i − µk∇̃Rf(Xk

i )− I = (1− µkσ)(Xk
i − I) + µk(∇̃Rf(Xi)− σ(Xi − I)),

which implies

‖Xk
i − µk∇̃Rf(Xk

i )− I‖F ≤(1− µkσ)‖Xk
i − I‖+ µk

(
δkσ

4
+
δ2
kσ

2
+ εnpq + 5

√
2δ0nq

)
≤(1− µkσ)δk + µk

(
δkσ

2
+ εnpq + 5

√
2δ0nq

)
=δk − µk

(
δkσ

2
− εnpq − 5

√
2δ0nq

)
.

(52)
In order to further upper bound the above inequality, we can compute

σ =
∑

j∈Ai∩I1

1

‖Xi −Xj‖F
≥

∑
j∈Ai∩I1

1

‖Xi − I‖F + ‖Xj − I‖F

≥ 4

5δk
|Ai ∩ I1| =

4(1− 2ε)npq

5δk
.
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where the second inequality holds because ‖Xi − I‖F + ‖Xj − I‖F ≤ 5δk/4 as j ∈ I1. It implies

δkσ

2
− εnpq − 5

√
2δ0nq ≥

2(1− 2ε)npq

5
− εnpq − 5

√
2δ0nq ≥

npq

4
.

By plugging the above bound into (52) and ignoring the high-order error term in (45), we complete
the proof.

Finally, we present Lemma 10 and its proof.

Lemma 10. With high probability, the following holds for all X0 ∈ N 0
∞:∥∥∥∇̃Rh(Xi)

∥∥∥
F
≤ 5
√

2δ0nq ∀ i ∈ [n]. (53)

Proof of Lemma 10. Firstly, define Õij = OijXjX
>
i , then

∇̃h(Xi) =
∑

j∈Ei/Ai

Xi −OijXj

‖Xi −OijXj‖F
=

∑
j∈Ei/Ai

I −OijXjX
>
i

‖Xi −OijXj‖F
Xi =

∑
j∈Ei/Ai

I − Õij

‖I − Õij‖F
Xi

The fact that X ∈ N 0
∞ implies that ‖Xi −Xj‖F ≤ 2δ0, i.e., ‖I −XjX

>
i ‖F ≤ 2δ0. For any

‖Oij − I‖ ≥
√

2δ0, we have∥∥∥∥∥ I − Õij

‖I − Õij‖F
− I −Oij

‖I −Oij‖F

∥∥∥∥∥
F

≤

∥∥∥∥∥ I − Õij

‖I − Õij‖F
− I − Õij

‖I −Oij‖F

∥∥∥∥∥
F

+

∥∥∥∥∥ I − Õij

‖I −Oij‖F
− I −Oij

‖I −Oij‖F

∥∥∥∥∥
F

≤ 2
√

2δ0

where the last inequality holds because∥∥∥∥∥ I − Õij

‖I − Õij‖F
− I − Õij

‖I −Oij‖F

∥∥∥∥∥
F

= ‖I − Õij‖F

∣∣∣∣∣ 1

‖I − Õij‖F
− 1

‖I −Oij‖F

∣∣∣∣∣
=

∣∣∣∣∣1− ‖I − Õij‖F
‖I −Oij‖F

∣∣∣∣∣
=

∣∣∣‖I −Oij‖F − ‖I − Õij‖F
∣∣∣

‖I −Oij‖F
≤ ‖Oij − Õij‖F
‖I −Oij‖F

=
‖I −XjX

>
i ‖F

‖I −Oij‖F
≤
√

2δ0,

and ∥∥∥∥∥ I − Õij

‖I −Oij‖F
− I −Oij

‖I −Oij‖F

∥∥∥∥∥
F

=
‖Oij − Õij‖F
‖I −Oij‖F

=
‖I −XjX

>
i ‖F

‖I −Oij‖F
≤
√

2δ0.

Let Φi = {j ∈ Ei/Ai | ‖Oij − I‖ ≤
√

2δ0}. According to the fact that |Ei/Ai| ≤ (1 + ε)nq and
the randomness of Oij , it is easy to show that |Φi| ≤

√
2δ0nq hold for all 1 ≤ i ≤ n with high

probability. Thus, by splitting the sum
∑
j∈Ei/Ai

in to two parts: j ∈ Φi and j /∈ Φi, we have∥∥∥∥∥∥
∑

j∈Ei/Ai

I − Õij

‖I − Õij‖F
−

∑
j∈Ei/Ωi

I −Oij

‖I −Oij‖F

∥∥∥∥∥∥
F

≤ 4
√

2δ0nq. (54)

Besides, since Oij is uniformly distributed on SO(d), according to Lemma A.1 in [39], we know

that E
{

I−Oij

‖I−Oij‖F

}
= c(d)I . Then, the matrix Bernstein’s inequality [38] tells us that, with high

probability, ∥∥∥∥∥∥
∑

j∈Ei/Ωi

I −Oij

‖I −Oij‖F
− |Ei/Ωi| · c(d)I

∥∥∥∥∥∥
F

≤
√

2δ0nq. (55)
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This, together with (54), implies that∥∥∥∥∥∥
∑

j∈Ei/Ai

I − Õij

‖I − Õij‖F
− |Ei/Ωi| · c(d)I

∣∣∣∣∣∣
F

≤ 5
√

2δ0nq.

The fact that ∇̃h(Xi) =
∑
j∈Ei/Ai

I−Õij

‖I−Õij‖F
Xi implies that∥∥∥∇̃h(Xi)− |Ei/Ωi| · c(d)Xi

∣∣∣
F
≤ 5
√

2δ0nq. (56)

We complete the proof by taking the projection operator ∇̃Rh(Xi) = PTXi
(∇̃h(Xi)) and the fact

that PTXi
(Xi) = 0.
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