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Abstract

This paper proposes a Generalized Power
Method (GPM) to simultaneously solve
the joint problem of community detec-
tion and group synchronization in a di-
rect non-convex manner, in contrast to the
existing method of semidefinite program-
ming (SDP). Under a natural extension of
stochastic block model (SBM), our theoret-
ical analysis proves that the proposed algo-
rithm is able to exactly recover the ground
truth in O(n log2 n) time for problems of
size n, sharply outperforming the O(n3.5)
runtime of SDP. Moreover, we give a lower
bound of model parameters as a sufficient
condition for the exact recovery of GPM.
The new bound breaches the information-
theoretic limit for pure community detec-
tion under SBM, thus demonstrating the
superiority of our simultaneous optimiza-
tion algorithm over any two-stage method
that performs the two tasks in succession.
We also conduct numerical experiments on
GPM and SDP to corroborate our theoret-
ical analysis.

1 INTRODUCTION

Community detection methods typically make use
of the edge connectedness information of an observa-
tion network to infer the underlying clustering of the
nodes or agents participating in the network (Abbe,
2018; Yun and Proutiere, 2014; Amini and Levina,
2018; Gao et al., 2017). However, if additional infor-
mation about the nodes besides the edge connect-
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edness is available, chances are that the recovery
results of the clustering can outperform the pure
community detection methods, even its information-
theoretic limit (Abbe and Sandon, 2015), by care-
fully exploiting this extra information (Weng and
Feng, 2016; Binkiewicz et al., 2017; Zhang et al.,
2016). Based on this fact, one may proceed to won-
der whether a simultaneous recovery of both the
clustering and the additional nodal features can be
achieved efficiently, or, more efficiently than the triv-
ial two-stage method which first infers a community
structure and then recovers the nodal features as-
suming this community structure.

In this paper, we answer this question affirmatively
as for the scenario where the additional information
comes from the node-wise relative measurements be-
longing to a matrix group G, which arises in group
synchronization problems (Arie-Nachimson et al.,
2012; Boumal, 2016; Bandeira et al., 2016; Liu et al.,
2017, 2023). Such modeling of community detection
with additional node-wise measurement finds appli-
cations in a number of practical problems, for ex-
ample, the 2D class averaging of cryo-electron mi-
croscopy single-particle reconstruction (Frank, 2006;
Singer et al., 2011; Zhao and Singer, 2014), and si-
multaneous mapping and clustering of 3D object vol-
umes in computer vision (Bajaj et al., 2018).

Recently, Fan et al. (2022) looked into this prob-
lem and defined a model with its optimization prob-
lem, which we inherit with necessary adjustments
and generalizations. The model naturally extends
the celebrated stochastic block model (SBM) (Abbe
and Sandon, 2015) for community detection. As-
sume that there are n agents in a network partitioned
into K communities, and each agent i corresponds
to a group element gi ∈ G. With probability p, we
obtain the relative group measurement gig

−1
j ∈ G for

two agents i, j belonging to the same cluster; with
probability q, we obtain an observation noise g uni-
formly sampled from G for two agents i, j falling in
different clusters – a mechanism also named the out-
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Figure 1: Illustration of the joint optimization prob-
lem of community detection and group synchroniza-
tion. Left: we observe a network of n = 30 agents
falling in K = 3 equal-sized communities, with rela-
tive measurement gig

−1
j ∈ G between any connected

pair of nodes. Right: the target is to recover both
the underlying cluster and the group element gi of
each agent simultaneously.

lier noise model (Singer, 2011; Fan and Zhao, 2019).
Given these observations, we aim to recover both the
underlying clustering and the corresponding group
elements of all the agents. Figure 1 illustrates the
problem settings and the target of recovery.

The above can be formally stated as a non-convex
optimization problem (Fan et al., 2022) that jointly
involves the clustering variables and the rotational
group variables. As a result of this joint formu-
lation, through solving this problem, the cluster-
ing and synchronization tasks are performed at the
same time. Due to the computational hardness of
the problem, Fan et al. (2022) designed a semidef-
inite relaxation for the original problem, and then
solved the semidefinite program (SDP) with numer-
ical methods. By exploiting the mutual rotational
measurements to recover the underlying community
and rotation of each agent simultaneously, it enjoys
both theoretical and experimental advantages over
the state-of-the-art pure community detection meth-
ods, and hence the naive two-stage method.

However, a major challenge of applying SDP to
large-scale practice is still its time complexity. From
the theory side, the standard interior point method
for SDP typically takes O(n3.5) time to find an opti-
mal solution, which is rather computationally expen-
sive. This is evidenced by our numerical experiments
(see Section 6), where it already takes an unaccept-
able time to solve the problem of n ≈ 200 with stan-
dard Matlab SDP implementation. Moreover, the
theory developed in Fan et al. (2022) still leaves sev-
eral open questions. For example, it only takes care
of the G = SO(d) situation, and rigorous analysis is
only provided for K = 2. These issues hinder the
reliability of SDP when applied to general cases.

1.1 Contributions

Different from the methodology of convex relaxation
adopted by Fan et al. (2022), this paper proposes an
iterative Generalized Power Method (GPM) to di-
rectly tackle the non-convex optimization problem of
simultaneous community detection with group syn-
chronization, and provides a theoretical guarantee
for its linear convergence to the optimal solution un-
der certain conditions. Our contributions are three-
fold.

� Significant runtime boost, no discount on
boundary. Our algorithm sharply reduces the
time complexity to O(n log2 n) from O(n3.5) of
SDP without any compensation on the lower
bound for model parameters. Our numerical
studies also indicate a significantly boosted run-
time with no discount on the phase transition
boundary. The iterative algorithm is also struc-
turally simple and practically convenient to im-
plement.

� Broader coverage of theory. In this paper,
theoretical guarantees are provided for both ro-
tational (G = SO(d)) and orthogonal (G =
O(d)) cases, and the number of clusters is al-
lowed to be Θ(1). These generalize the scenario
considered by Fan et al. (2022) of rotational syn-
chronization with only 2 clusters.

� Outperforming any pure community de-
tection method. We also remark that the
conditions for linear convergence in this paper
are able to break the information-theoretic lower
bound

√
α−
√
β >
√
K for pure community de-

tection (Abbe and Sandon, 2015), thus demon-
strating the superiority of our joint method over
any naive two-stage approach that invokes a
pure community detection method.

1.2 Organization

The rest of this paper is organized as follows. Section
2 briefly introduces the preliminaries about commu-
nity detection and group synchronization, which are
important to the presentation and analysis of our
joint problem. Then, Section 3 presents a formal
definition of our probabilistic model and formulates
the non-convex optimization problem of simultane-
ous community detection with group synchroniza-
tion. Our non-convex methodology is elaborated in
Section 4, followed by a detailed statement of our
main theoretical results in Section 5. Their proofs
are deferred to the Appendix. Section 6 presents the
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numerical results from computer simulations. Fi-
nally, we make some discussions and conclude this
paper in Section 7.

1.3 Notation

We use X⊤ to denote the transpose of a matrix X.
If a matrixX has a d×d-block structure, then we use
Xij to refer to the (i, j)-th d×d block of X and Xi×
to refer to the i-th block row ofX. The n×n identity
matrix is denoted by In, the n × m all-one matrix
is denoted by 1n×m, and the n ×m all-zero matrix
is denoted by 0n×m. We use ⊗ and ⊙ to represent
the Kronecker product and Hadamard (elementwise)
product of two matrices with conforming shapes.

For matrix X ∈ Rn×n and integer k ≤ n, σk(X) is
the k-th largest singular value of X. ∥X∥ := σ1(X),

∥X∥2F := tr
(
X⊤X

)
, and ∥X∥∗ :=

∑n
k=1 σk(X) re-

spectively represents the operator norm, Frobenius
norm, and nuclear norm of X. We denote ⟨X,Y ⟩ :=
tr
(
X⊤Y

)
the (Frobenius) inner product of matrices

X,Y . λk(X) denotes its k-th largest (real) eigen-
value for symmetric X. For symmetric X ∈ Rn×n,
we define U := eigs[k:l](X) such that the columns
of U consist of the unit eigenvectors of X associ-
ated to eigenvalues λk(X), λk+1(X), ..., λl(X). we
simply write U = eigsl(X) if k = 1.

For any integer n ≥ 1 we define [n] := {1, 2, ..., n}.

2 PRELIMINARIES

In this section, we quickly go through two classical
problems, each of which enjoys an independent and
rich line of works: community detection and group
synchronization. Building up the fundamentals of
these two problems is essential for the development
of our main content.

Community Detection

The main problem to be studied in this paper has
a strong correlation to community detection prob-
lems under the symmetric stochastic block model
(SBM) (Abbe and Sandon, 2015) with parameters
(n, p, q,K). Assume that n agents in a network fall
in K underlying communities of equal size m = n/K
(balanced clustering). Then, SBM(n, p, q,K) gener-
ates a random undirected graph G such that every
two nodes are connected by an edge with probabil-
ity p if they belong to the same cluster, and with
probability q otherwise. We assume without loss of
generality that a node is always connected to itself
in SBM(n, p, q).

Clustering functions and clustering matrices (Wang
et al., 2021) are defined to formally represent the
community structure of the nodes. We denote C :
[n] → [K] the clustering function that maps node i
to cluster C(i) where it belongs. Conversely, we de-
fine Ij := {i ∈ [n] | C(i) = j} to be the set of nodes
in cluster j. We can one-hot encode the clustering
function in a clustering matrix H ∈ {0, 1}n×K , such
that Hij = 1 if and only if C(i) = j. Furthermore,
one can show that the following H is the set of all
n×K clustering matrices

H := {H ∈ {0, 1}n×K |H1K×1 = 1n×1,

11×nH = m11×K}.

Our cluster structure is invariant under permuta-
tions of the cluster numbering. As a result, we
can define the equivalent class of an H ∈ H to
be {HP | P ∈ SK}, where SK is the K-dimensional
permutation group. Therefore, given a ground truth
H∗, the estimation error (Wang et al., 2021) of
H ∈ H is defined as

ϵ(H) = min
P∈SK

∥H∗ −HP ∥F .

Now we discuss the computational cost of projecting
onto H. For arbitrary matrix M ∈ Rn×K , we say

ΠH(M) := argmin
H∈H

∥M −H∥F (1)

is the projection of M onto H. As is pointed
out by Wang et al. (2021), Problem 1 is equivalent
to a minimum-cost assignment problem (MCAP)
that can be tackled efficiently by existing algo-
rithms (Tokuyama and Nakano, 1995). The follow-
ing proposition by Wang et al. (2021) gives an upper
bound on its time complexity.

Proposition 1 (Proposition 1, Wang et al. (2021)).
Problem 1 can be solved in O(K2n log n) time.

When the parameters p and q are located in the
logarithmic sparsity region of SBM(n, p, q,K), i.e.,
p = α logn

n and β logn
n where α, β = O(1), Abbe and

Sandon (2015) derived that one can recover the un-
derlying clustering if and only if

√
α−

√
β >
√
K

under SBM. This is the information-theoretic limit
for the pure community detection problems.

Group Synchronization

Our main problem interacts with another non-
convex optimization problem named group synchro-
nization, and our focus will be on the synchroniza-
tion of orthogonal and rotational groups. Recall the
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d-dimensional orthogonal group over R is

O(d) :=
{
Q ∈ Rd×d

∣∣ QQ⊤ = Q⊤Q = Id
}

with the usual matrix multiplication as the group
operation. Moreover, the d-dimensional rotational
group SO(d), or special orthogonal group, consists
of all O(d) matrices with determinant 1.

In the typical formulation of group synchronization
(Boumal, 2016; Liu et al., 2017, 2023), there are n
agents in a measurement network and the i-th agent
corresponds to a group element gi ∈ G, where we
specially consider G ∈ {O(d),SO(d)} in this paper.
For group G, we define a set of block matrices Gn ⊂
Rnd×d as follows:

Gn :=

X ∈ Rnd×d

∣∣∣∣∣∣∣∣∣X =


g1
g2
...
gn

 , gi ∈ G

 .

Moreover, we define a block-diagonalization operator
bdiag(·) such that for g1, g2, · · · , gn ∈ G,

bdiag(X) :=


g1

g2
. . .

gn

 , ∀X =


g1
g2
...
gn

 .

And we denote bdiag(Gn) := {bdiag(X) |X ∈ Gn}.

For arbitrary matrix X ∈ Rd×d, we define

ΠO(d)(X) := argmin
Q∈O(d)

∥X −Q∥F (2)

as the projection of X onto O(d) (Arie-Nachimson
et al., 2012; Ling, 2022; Liu et al., 2023). Problem
2 can be categorized into the orthogonal Procrustes
problem (Gower and Dijksterhuis, 2004) that has a
closed-form solution:

Proposition 2. For any given X ∈ Rd×d, suppose
that UΣV ⊤ is the SVD of X. Then, ΠO(d)(X) =

UV ⊤, and maxQ∈O(d) ⟨X,Q⟩ = tr(Σ) = ∥X∥∗.

3 PROBLEM FORMULATION

In this section, we define our probabilistic model and
introduce the concerning optimization problem pro-
posed by Fan et al. (2022). We then reformulate
an equivalent variant of this problem to fit our non-
convex methodology, and build up some useful in-
frastructures such as rounding method, orthogonal
projection, and error metric.

3.1 The Probabilistic Model and the Joint
Optimization Problem

We consider a stochastic group block model (SGBM)
with parameters (n, p, q,K, d,G), and formulate the
corresponding joint optimization problem. Assume
that n agents in a network fall in K underlying com-
munities of equal size m = n/K, and each agent
i corresponds to a group element R∗

i ∈ G, where
G ∈ {O(d),SO(d)}. All the group elements consti-
tute a block matrix R∗ ∈ Gn. Denote C∗ the clus-
tering function, I∗k the set of agents {i : C∗(i) = k},
and H∗ ∈ H the clustering matrix.

SGBM(n, p, q,K, d,G) firstly generates a random
undirected graph G = (V,E) under SBM(n, p, q,K).
Then, it generates an observation matrix A ∈
Rnd×nd, whose (i, j)-th block is defined by the fol-
lowing process:

1. if {i, j} /∈ E, then Aij = 0d×d; otherwise,
2. if C∗(i) = C∗(j), then Aij = R∗

iR
∗⊤
j ;

3. if C∗(i) ̸= C∗(j),

(a) if i < j, then Aij = Rij ∼ Unif(G) which
is the uniform distribution over G with re-
spect to the Haar measure;

(b) if i > j, then Aij = A⊤
ji.

Given the observation matrix A, Fan et al. (2022)
introduced Problem Joint-G that aims to jointly re-
cover the community structureH ∈ H and the group
elements R ∈ Gn:

max
R∈Gn

H∈H

K∑
k=1

∑
i,j∈Ik

〈
Aij ,RiR

⊤
j

〉
. (Joint-G)

3.2 Reformulation of the Problem

The non-convexity of Problem Joint-G makes it com-
putationally intractable without proper reformula-
tions. One can integrate the group variables R
and clustering variables H into a block matrix
M(R,H) ∈ Rnd×nd, such that its (i, j)-block

Mij =

{
RiR

⊤
j , if C(i) = C(j),

0, otherwise.
(3)

Now, Problem Joint-G is equivalently cast to

max
R∈Gn

H∈H

⟨A,M⟩ . (4)

A blessing of introducing M into the problem is that
M actually admits a low-rank decomposition, which
paves the way for further linear algebra manipula-
tions.
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Proposition 3. For any R ∈ Gn and H ∈ H, let

V = (11×K ⊗R)⊙ (H ⊗ 1d×d) ∈ Rnd×Kd,

and M ∈ Rnd×nd as defined by (3). Then we have
M = V V ⊤. Moreover, V ⊤V = mIKd and hence
1√
m
V is orthonormal.

By Proposition 3, Problem 4 is reformulated as a
quadratic program subject to non-convex constraints

max
R∈Gn

H∈H

⟨A,M⟩ = max
V ∈E

〈
A,V V ⊤〉

= max
V ∈E

tr(V ⊤AV ), (JointQP-G)

where the feasible region

E := {(11×K ⊗R)⊙ (H ⊗ 1d×d) | R ∈ Gn,H ∈ H}

is non-convex. Since SO(d) is a subgroup of O(d),
Problem JointQP-G can be relaxed to

max
V ∈F

tr(V ⊤AV ), (JointQP-O(d))

where F := {(11×K ⊗R)⊙ (H ⊗ 1d×d) |R ∈ O(d)n,
H ∈ H} is again a non-convex feasible region. This
is the ultimate problem we will study in this paper.

3.3 Rounding and Projection

When E ̸= F , it is necessary to introduce a rounding
function R that maps a matrix V ∈ F back to E .
The rounding function is defined blockwise:

R(V )ij = det(Vij)Vij , ∀i ∈ [n], j ∈ [K].

Thanks to this simple rounding function R, the re-
laxation from Gn to O(d)n is proved to be sufficiently
tight. The proof is deferred to the Appendix.

For arbitrary X ∈ Rnd×Kd, we say

ΠF (X) := argmin
W∈F

∥W −X∥F

is the projection of X onto F . In Section 4, we
will provide Algorithm 2 to efficiently compute this
projection.

3.4 The Metric of Estimation Error

Consider an arbitrary V ∈ E . Similar to the permu-
tation invariance mentioned in Section 2, any per-
mutation of the clusters makes no difference under
the settings of SGBM, since the generation of the
observation matrix does not depend on the specific
numbering of clusters. Formally, any V Q ∈ E would

yield the same probabilistic distribution of observa-
tion as V , where Q ∈ Q := {P ⊗ Id | P ∈ SK} and
SK is the permutation group on [K], represented by
K ×K permutation matrices.

Moreover, right-multiplying any element of G com-
monly on each cluster neither affects the observation
it induces. This is because, for any i, j belonging to
the same cluster with group elements Ri,Rj , their
relative measurement remains intact after a common
right multiplication, i.e.

(RiU)(RjU)⊤ = RiUU⊤R⊤
j = RiR

⊤
j , ∀U ∈ G.

In block matrix language, for any W ∈ bdiag
(
GK
)

where

bdiag
(
GK
)
:=



U1

U2

. . .

UK


∣∣∣∣∣∣∣∣∣

Ui∈G
∀i∈[n]

 ,

V W ∈ E also yields the same probabilistic distribu-
tion of observation as V .

We can unify both permutation invariance Q and
orthogonality invariance bdiag

(
GK
)
by defining a

group PK(G) of RKd×Kd matrices, such that Q ∈
PK(G) if and only if

∃R ∈ GK ,P ∈ SK : Q = bdiag(R)(P ⊗ Id).

Now, an equivalence class of V is given by the orbit
of V under the PK(G) actions, which inspires us to
define an orbit distance for two points V1,V2.

Definition 1 (Orbit distance). For any V1,V2 ∈ E,

distG(V1,V2) := min
Q∈PK(G)

∥V1 − V2Q∥F

is said to be the orbit distance between V1 and V2.

It is easy to verify that distG is a metric. In order
to properly measure the estimation error of an arbi-
trary V ∈ E and the ground truth V ∗, we should
use the orbit distance to account for the invariances
underlying the observation.

Definition 2 (Estimation error). For any V ,V ∗ ∈
E where V ∗ is the ground truth,

ϵG(V ) := distG(V ,V ∗) = min
Q∈PK(G)

∥V − V ∗Q∥F

is said to be the estimation error of V .

4 NONCONVEX METHODOLOGY

We now propose a Generalized Power Method
(GPM) to tackle Problem JointQP-O(d); cf. Boumal
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(2016); Liu et al. (2017, 2023); Wang et al. (2021,
2022a,b):

Algorithm 1 GPM

1: Input: the observation matrix A, an initial
point V 0.

2: for t = 0, 1, 2, . . . , T − 1 do
3: V t+1 ← ΠF (AV t)
4: end for
5: if G = SO(d) then
6: V T ← R(V T )
7: end if
8: Return: V T

The structure of Algorithm 1 is concise. It iteratively
refines the initial guess V 0 by simply taking matrix
multiplication and projection onto the relaxed fea-
sible region F . The algorithm directly outputs the
last iteration in the orthogonal case G = O(d), and
rounds the last iteration to feasibility in the rota-
tional case G = SO(d). GPM does not introduce
any hyperparameters and is convenient to deploy in
practice.

To analyze the time complexity of Algorithm 1, we
first note that due to the logarithmic sparsity as-
sumption, every block row of the observation matrix
A has O(log n) non-zero blocks. It follows that AV
can be computed in O(n log n) time by exploiting the
sparsity of A. The only black box in Algorithm 1 –
until now – is the computation of the projection op-
erator ΠF . Here we unveil it by providing an efficient
algorithm to solve the projection. To this end, define
a mapping µ : Rnd×Kd → Rn×K that computes the
blockwise nuclear norm

µ(X)ij = ∥Xij∥∗ =

d∑
k=1

σk(Xij), ∀i ∈ [n], j ∈ [K].

We present our projection algorithm in Algorithm 2
and show that it has an O(n log n) running time in
Proposition 4.

Algorithm 2 Computation of ΠF

1: Input: X ∈ Rnd×Kd

2: H ← ΠH(µ(X))
3: generate a sequence {ei}ni=1 such that Hiei = 1
4: for i = 1, 2, · · · , n do
5: Ri ← ΠO(d)(Xiei)
6: end for
7: V ← (11×K ⊗R)⊙ (H ⊗ 1d×d)
8: Return: V

Proposition 4. Given that K, d = Θ(1), Algorithm
2 exactly solves ΠF (X) in O(n log n) time.

Let us review the design of GPM with intuition. As
its name suggests, the design of GPM is inspired
by the classical power method as well as its variant
orthogonal iteration method (Golub and Van Loan,
2013) for obtaining the dominant eigenvector and
the invariant (orthogonal) subspaces of a matrix,
respectively. In fact, our design is exactly encour-
aged by the structural resemblances between Prob-
lem JointQP-O(d) and the classical eigenvalue prob-
lems above. For example, both of them aim to max-
imize a quadratic objective, and both of them are
subject to norm and orthogonality constraints (note
that 1√

m
V is orthonormal).

At the same time, however, the analysis of the al-
gorithm is never a trivial corollary of the classical
results because F has a much more complicated ge-
ometry due to its discrete structure from the commu-
nity model and orthogonal block features from the
synchronization model, which demands our hands-on
analysis.

5 MAIN RESULTS

In this section, we formally state the main results,
Theorem 1–3, on the guarantee of linear convergence
of GPM under the metric of the estimation error per
iteration in the logarithmic sparsity region of SGBM,

i.e., p, q = O
(

logn
n

)
. We defer the proofs to the

Appendix.

Definition 3. Consider V ∈ F corresponding to
a clustering function C. For an observation matrix
A ∈ Rnd×nd, let M = µ(AV ). Then A is said to
preserve V by δ-separation if MiC(i) −Mij ≥ δ > 0
for all i ∈ [n] and j ̸= C(i), j ∈ [K].

Remark 1. The definition of δ-separation charac-
terizes the signal-to-noise ratio of our observations.
Specifically, for any node i, it states that the sig-
nal MiC∗(i) corresponding to its true cluster C∗(i)
is decently separated (in terms of the nuclear norm)
from the noise Mij corresponding to any other clus-
ter j ̸= C∗(i). This helps us bound the Lipschitz
constant of the projection function ΠF (·) in Propo-
sition 5 in the Appendix and further establish the
linear convergence of the estimation error.

Theorem 1 (Main). Suppose that the observation
matrix A is generated by

SGBM

(
n, p =

α log n

n
, q =

β log n

n
,K, d,G

)
,
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where α, β,K, d = Θ(1), and G ∈ {O(d),SO(d)}.
Let V 0 ∈ F and A be the input of Algorithm 1. Let
V ∗ ∈ E ⊆ F be the ground truth matrix, with C∗ the
ground truth clustering function. Then, Algorithm
1 outputs V T ∈ E such that ϵG(V

T ) ≤ τ within
O
(
n log n log n

τ

)
time, if

1. there exists a positive constant χ such that A
perserves V ∗ by (χmp)-separation;

2. for all i ∈ [n], µ(AV ∗)iC∗(i) ≥
√
2Kβ
α mp;

3. for χ satisfying (i), there exists

ρ > 2
√
2

√
d2

χ2
+

α2

2Kβ

such that ϵO(d)(V
0) ≤

√
m
ρ .

Note that Theorem 1 is a deterministic statement
given the three conditions above. The first and
second conditions describe a decent interaction be-
tween the observation A and the ground truth V ∗,
which sufficiently separates the signal (mutual mea-
surement) from noise. The third condition, on the
other hand, demands a reasonable initial guess V 0

of O(
√
m) error before the refinement steps in GPM.

Since the largest possible estimation error

sup
V ∈F

ϵO(d)(V ) = 2
√
Kdm = O(

√
m),

condition 3 is rather tolerant because it only requires
constant improvement from the worst guess.

The following Theorem 2 says that conditions 1 and
2 hold with high probability, given reasonable model
parameters (α, β,K, d).

Theorem 2 (Conditions 1 and 2). Suppose that
α, β,K, d = Θ(1), and the observation matrix A is
generated by SGBM for the given ground truth ma-
trix V ∗ with the clustering mapping C∗. If{ √

2Kβ < α, (5)

α−
√
2Kβ log eα√

2Kβ
> K, (6)

then conditions 1 and 2 in Theorem 1 happen simul-
taneously with probability at least 1 − n−Ω(1) for a
sufficiently large n.

Remark 2. The recovery requirements in (5) and
(6) are converted to δ-separation in Theorem 2, thus
implicitly controlling the linear convergence of our
proposed power method.

Condition 3 requires the existence of a good initial-
izer. To justify this, we design the following spectral

initialization method and show that it is able to gen-
erate a good V 0 with high probability.1

Algorithm 3 Randomized spectral clustering

1: Input: the observation matrix A
2: Initialize: R0 ∈ Rnd×d

3: generate H0 by Algorithm 2 in Gao et al. (2017)

4: H0 ← ΠH(H0), Û ← eigsKd(A)
5: for i ∈ [K] do
6: pick τi ∈ I0i uniformly randomly
7: for v ∈ I0i do

8: R0
v ← argminR∈O(d)

∥∥∥Ûv× −RÛτi×

∥∥∥
F

9: end for
10: end for
11: V 0 ←

(
11×K ⊗R0

)
⊙
(
H0 ⊗ 1d×d

)
12: Return: V 0

Theorem 3 (Condition 3). Suppose α, β,K, d =
Θ(1), and the observation matrix A is generated by
SGBM. Then, Algorithm 3 generates an initial V 0

satisfying condition 3 in Theorem 1 with probability
at least 1− (log n)−Ω(1) for a sufficiently large n.

6 NUMERICAL EXPERIMENTS

To corroborate the theoretical analysis, this section
evaluates the performance of GPM through different
numerical experiments including its phase transition
behavior, convergence performance, and CPU time,
and we provide a comparison with SDP (Fan et al.,
2022). All the simulations are conducted via MAT-
LAB R2021a on a workstation hosting a 64-bit Win-
dows 10 environment with Intel(R) Xeon(R) CPU
E5-2699 2.20GHz 2-processor CPU. Additional ex-
periment results are deferred to Appendix B.

6.1 Phase Transition

We first report the phase transition behavior of
GPM. For each selected pair of parameters (n,K),
we increment α and β from 0 to n

logn , and gener-
ate the observation under SGBM for N = 50 times.
Each time, GPM is invoked to attempt to recover
the ground truth. We regard an attempt success-
ful if and only if ϵG(V

⊤) ≤ τ = 10−3, and the

1Concurrent with our work, there emerged other spec-
tral methods such as Fan et al. (2023) that are proved to
produce a constant-level error forK = 2 case. We remark
that any initializer satisfying the

√
m/ρ requirement is

acceptable, because GPM is always able to refine the ini-
tialization to arbitrary precision. In this paper we shall
stick to our algorithm as its theory covers all K = Θ(1).
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rate of success at (α, β) is defined to be r(α, β) =
(# successes)/N .

We plot r(α, β) versus the change of α and β in
Figure 2, together with the theoretical threshold for
pure community detection

√
α −
√
β =

√
K (blue)

and the lower bound claimed in Theorem 2 (red).
See the Appendix for phase transition plots under
more parameter settings.

The results clearly exhibit a behavior of phase tran-
sition, and the theoretical lower bound is a sufficient
control. The gap in between indicates that even the
improved lower bound is still not tight for GPM,
which invites further analysis of the algorithm. One
can also observe that the transition pattern behaves
slightly differently for small and large settings of α
and β. This may suggest different properties of GPM
in the logarithmic sparsity region and the linear re-
gion.

We also plot the phase transition pattern of SDP
proposed in Fan et al. (2022), which is implemented
by Matlab CVX package and MOSEK solver. Ac-
cording to Figure 2, the recovery performance of
GPM notably outperforms SDP, while the boundary
of transition is less sharp.
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Figure 2: Phase transition results on GPM and
SDP with G = SO(3) and (n,K) = (50, 2). The
theoretical threshold for pure community detection√
α −

√
β =

√
K is plotted in blue; the improved

lower bound claimed in Theorem 2 is plotted in red.

6.2 Convergence Performance and CPU
Time

The convergence performance of GPM is also stud-
ied. At G = O(d), n = 400 and three different set-
tings of (K,α, β), we keep track of the estimation
error dynamics ϵG(V

t) of GPM. Experiments are re-
peated 10 times for each group of parameters, and we
plot the dynamics for one parameter setting in Fig-
ure 3 and leave others in the Appendix. Typically,
GPM is able to recover the ground truth within a
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Figure 3: Convergence results of GPM at G = O(d)
and n = 400, with parameters (K,α, β) = (5, 15, 10).
We plot 10 independent trails.

Table 1: Comparison of average CPU time (in sec-
onds) between GPM and SDP at G = SO(3),K = 2.

parameters
CPU time (s)
GPM SDP

n = 50, α = 8, β = 5 7.37 38.69
n = 100, α = 15, β = 10 7.81 721.21
n = 200, α = 25, β = 15 11.40 3600+
n = 400, α = 35, β = 25 20.39 3600+

considerably small number of iterations after a (log-
scaled) linear decay of estimation error, which again
aligns with our theory.

To further evidence the superiority of GPM in re-
spect of its time complexity, we also test the average
CPU time of both GPM and SDP on problems of
different scales. All the results reported in Table 1
obviously demonstrate a significantly improved time
efficiency of our algorithm than SDP.

7 CONCLUSION

This paper proposes a GPM to directly tackle the
non-convex problem of joint community detection
and group synchronization in the logarithmic spar-
sity region of SGBM. From the theoretical side, we
give a probabilistic bound for GPM to exactly re-
cover the ground truth in O(n log2 n) time, as an
improvement of the previous method relying on SDP
(Fan et al., 2022) that typically takes O(n3.5) time.
We also design a randomized spectral clustering
method as an initializer of GPM.

Generalizing the previous SDP theory, our anal-
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ysis of GPM applies to both orthogonal and ro-
tational synchronization, and makes up the unre-
solved cases of K ≥ 3. Meanwhile, our probabilistic
bound breaches the information-theoretic limit for
pure community detection under SBM, which implies
that GPM finely exploits the additional information
of group structures embedded in the joint problem.

Subsequent to the completion of our work, there
arose a continuing line of studies on a variety of ef-
ficient algorithms for this problem with additional
restrictions. For example, Fan et al. (2023) pro-
poses a new spectral method with a blockwise col-
umn pivoted QR factorization to achieve exact re-
covery of community structure and constant-level er-
ror on the group estimation for K = 2. Wang and
Zhao (2023) proposes a multi-frequency GPM for the
phase synchronization case G = U(1) ∼= SO(2) by
exploiting its MLE formulation. We note that our
recovery guarantee for the joint problem in Theo-
rem 2 breaks the information-theoretic lower bound√
α−
√
β >
√
K for pure community detection Abbe

and Sandon (2015). A future direction of theoretical
interest is to explore the necessary conditions for ex-
act recovery in the joint problem. It is also of interest
to apply our methodology to regimes other than the
logarithmic sparsity regime of SGBM. Overall, our
work opens up further questions regarding a deeper
insight into the joint problem, more efficient algo-
rithms, and the information-theoretic lower bound.
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Non-Convex Joint Community Detection and Group
Synchronization via Generalized Power Method:

Supplementary Materials

A PROOFS

A.1 Proof of Proposition 4

Proposition 4 guarantees the correctness and efficiency of Algorithm 2. The proof relies on the invariance of
the inner product ⟨X,V ⟩ for any X ∈ Rnd×Kd and V ∈ F , when transitioning the mask H from V to X:

Lemma 1. For any X ∈ Rnd×Kd, R ∈ O(d)n, and H ∈ H,

tr
(
X⊤( (11×K ⊗R)⊙ (H ⊗ 1d×d)

))
= tr

((
X ⊙ (H ⊗ 1d×d)

)⊤
(11×K ⊗R)

)
.

The proof of Lemma 1 is deferred to Appendix A.5

Proof of Proposition 4. We treat X as an n by K block matrix. By definition,

ΠF (X) = argmin
V ∈F

∥X − V ∥F = argmin
V ∈F

∥X∥2F + ∥V ∥2F − ⟨X,V ⟩ ,

where ∥V ∥2F = n is constant for all V ∈ F . Hence,

ΠF (X) = argmax
V ∈F

tr(X⊤V ) = argmax
R∈O(d)n,H∈H

tr
(
X⊤( (11×K ⊗R)⊙ (H ⊗ 1d×d)

))
.

Applying Lemma 1,

ΠF (X) = argmax
R∈O(d)n,H∈H

tr
((

X ⊙ (H ⊗ 1d×d)
)⊤

(11×K ⊗R))
)

= argmax
R∈O(d)n,H∈H

tr

(
n∑

i=1

(Xiei)
⊤Ri

)
, (7)

where ei is such that Hiei = 1. For any fixed H and every i ∈ [n], we denote UΣV ⊤ the SVD of Xiei . By
Proposition 2,

argmax
Ri∈O(d)

tr
(
(Xiei)

⊤
Ri

)
= UV ⊤

and accordingly
max

Ri∈O(d)
tr
(
(Xiei)

⊤Ri

)
= tr(Σ) = µ(X)iei .

Therefore, in order to maximize the expression in (7), it suffices to find

argmax
H∈H

n∑
i=1

µ(X)iei = argmax
H∈H

n∑
i=1

K∑
j=1

µ(X)ijHij = argmax
H∈H

⟨H, µ(X)⟩ = ΠH(µ(X)),

and then to perform O(d) projections for the selected blocks Xiei . This validates algorithm 2. Given that
K, d = Θ(1), step 2 in the algorithm takes O(n log n) time according to Proposition 1, and all other steps
take O(n) time. This completes the proof.
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A.2 Proof of Theorem 1

To prove Theorem 1, we first show the linear convergence of Algorithm 1 in the quotient space F/ ∼ under
the relaxed metric of estimation error, ϵO(d). Then, we present the tightness of the rounding procedure R
that brings forth Theorem 1 as a direct consequence.

Linear convergence under the metric ϵO(d)

This section is devoted to proving the following theorem on the linear convergence of Algorithm 1 under the
relaxed metric of estimation error ϵO(d).

Theorem 4. Suppose that the observation matrix A is generated by

SGBM

(
n,

α log n

n
,
β log n

n
,K, d,G

)
,

where α, β,K, d = Θ(1), and G ∈ {O(d),SO(d)}. Let V 0 ∈ F and A be the input of Algorithm 1, and
{V 1,V 2, ...} a sequence generated by the iterations in Algorithm 1. Let V ∗ ∈ E ⊂ F be the ground truth
matrix that incorporates the clustering function C∗. Then,

ϵO(d)(V
t+1) ≤ 1

2
ϵO(d)(V

t)

for arbitrary non-negative integer t, if conditions (i)–(iii) in Theorem 1 hold.

Recall that GPM iteratively updates the variable by the map ΠF (A · ) : F → F . Therefore, in order to
prove Theorem 4, it should be crucial to identify the important properties of the projection operator ΠF .
We first make two useful observations in the following Lemmas (whose proofs are deferred to Sections A.6
and A.7):

Lemma 2. For any Q ∈ PK(O(d)) and X ∈ Rnd×Kd, ΠF (XQ) = ΠF (X)Q.

Lemma 3. If condition (i) in Theorem 1 holds, then ΠF (AV ∗) = V ∗.

The core of the proof lies in controlling the behavior of the projection operator ΠF so that the estimation
error after each update can be bounded. One possible way, as Proposition 5 follows, is to show ΠF possesses
a Lipschitz-like property of linearly controlling the Frobenius distance of two points after a projection. The
proof of Proposition 5 is presented in Section A.8.

Proposition 5. Let X = AV ∗. If conditions (i) and (ii) in Theorem 1 hold, then

∥ΠF (X)−ΠF (X
′)∥F ≤

2

mp

√
d2

χ2
+

α2

2Kβ
∥X −X ′∥F .

for any X ′ ∈ Rnd×Kd.

For the sequence {V 0,V 1,V 2, ...} generated by GPM, denote Qt = argminQ∈PK(G) ∥V t − V ∗Q∥F for all
t ≥ 0. Given that conditions (i) and (ii) in Theorem 1 hold, we have∥∥V t+1 − V ∗Qt+1

∥∥
F
≤
∥∥ΠF (AV t)− V ∗Qt

∥∥
F
=
∥∥ΠF (AV tQt⊤)− V ∗∥∥

F

=
∥∥ΠF (AV tQt⊤)−ΠF (AV ∗)

∥∥
F
≤ 2

mp

√
d2

χ2
+

α2

2Kβ

∥∥AV tQt⊤ −AV ∗∥∥
F

=
2

mp

√
d2

χ2
+

α2

2Kβ

∥∥A(V t − V ∗Qt)
∥∥
F
,

where Lemma 2 yields the first equality, Lemma 3 yields the second equality, and the second inequality is
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due to Proposition 5. We can proceed to obtain∥∥A(V t − V ∗Qt)
∥∥
F
≤
∥∥(A− pV ∗V ∗⊤)(V t − V ∗Qt)

∥∥
F
+
∥∥pV ∗V ∗⊤(V t − V ∗Qt)

∥∥
F

≤
∥∥A− pV ∗V ∗⊤∥∥ ∥∥V t − V ∗Qt

∥∥
F
+
∥∥pV ∗V ∗⊤(V t − V ∗Qt)

∥∥
F

=
∥∥A− pV ∗V ∗⊤∥∥ ∥∥V t − V ∗Qt

∥∥
F
+m
√
mp

∥∥∥∥ 1

m
(V ∗Qt)⊤V t − IKd

∥∥∥∥
F

. (8)

Since we are expecting some relationship between
∥∥V t+1 − V ∗Qt+1

∥∥
F

and ∥V t − V ∗Qt∥F , it remains to

bound the two components
∥∥A− pV ∗V ∗⊤

∥∥ and
∥∥∥ 1
m (V ∗Qt)

⊤
V t − IKd

∥∥∥
F

respectively, as is presented in

the following two Propositions (whose proofs are deferred to Sections A.9 and A.10).

Proposition 6. There exists c1, c2, c3 > 0 such that∥∥A− pV ∗V ∗⊤∥∥ ≤ c1
√
qm+ c2

√
pm+ c3

√
log n

with probability at least 1− n−Ω(1).

Remark 3. In the logarithmic sparsity region, Proposition 6 gives a O(
√
log n) bound. Different from the

techniques in Theorem 6 of Liu et al. (2023) for controlling a similar term, the result here does not rely on
the celebrated matrix Bernstein inequality (Tropp, 2011), which loosely controls the term at O(log n).

Proposition 7. For ρ > 0, if ∥V t − V ∗Qt∥F ≤
√
m
ρ , then

m

∥∥∥∥ 1

m

(
V ∗Qt

)⊤
V t − IKd

∥∥∥∥
F

≤ 1

2

√
1 +

1

d

√
m

ρ

∥∥V t − V ∗Qt
∥∥
F
.

Proof for Theorem 4. Invoking Proposition 6 and 7, (8) becomes

∥∥V t+1 − V ∗Qt+1
∥∥
F
≤ 2

mp

√
d2

χ2
+

α2

2Kβ

(
1

2

√
1 +

1

d

mp

ρ
+ c0

√
log n

)∥∥V t − V ∗Qt
∥∥
F

≤
√
2 + o(1)

ρ

√
d2

χ2
+

α2

2Kβ

∥∥V t − V ∗Qt
∥∥
F

for a sufficiently large n. When

ρ > 2
√
2

√
d2

χ2
+

α2

2Kβ
,

we have ϵO(d)(V
t+1) ≤ 1

2ϵO(d)(V
t). When condition (iii) in Theorem 1 holds, the linear decay of ϵ(V t)

inductively applies to arbitrary nonnegative integer t, which establishes Theorem 4.

Tightness of rounding

It is an immediate implication of Theorem 4 that, prior to the rounding procedure, Algorithm 1 obtains
V T such that ϵO(d)(V

T ) ≤ τ within T = O
(
log n

τ

)
iterations. In each iteration of GPM, the projection

takes O(n log n) time according to Proposition 4, and the time complexity of matrix multiplication can also
achieve O(n log n) due to their sparse structures. Therefore, the total time complexity to obtain such a V T

is O
(
n log n log n

τ

)
. Compared with Theorem 1, the very difference lies in the metric of estimation error ϵG

after the rounding procedure R. We handle the tightness of R, hence the tightness of relaxation from E to
F unresolved in Section 3, by the following Proposition (the proof is presented in Section A.11).

Proposition 8. Suppose that G = SO(d), and V ∗ ∈ E is the ground truth. Then, for any V ∈ F such that
ϵO(d)(V ) <

√
2, ϵG(R(V )) = ϵO(d)(V ).

In theory and practice, the tolerance constant τ is usually far below
√
2. Therefore, combined with Theorem

4, Proposition 8 completes the proof of Theorem 1.
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A.3 Proof of Theorem 2

Firstly, we state two tail bounds for Bernoulli random variables and the random sum of uniformly distributed
orthogonal matrices, respectively.

Lemma 4 (Hajek et al. (2016), Lemma 2). Let X ∼ Binom(m,α log n/n) for m ∈ N, α = O(1), where
m = n

K for some K > 0. Let τ ∈ (0, α]. Then for a sufficiently large n,

Pr
(
X ≤ τ

K
log n

)
= n− 1

K (α−τ log( eα
τ )+o(1)).

Lemma 5 (Fan et al. (2022), Theorem A.3). Suppose that {ui}mi=1 and {Ri}mi=1 are two finite random
sequences independently and identically sampled from two independent distributions Bern(q) and Unif(O(d)),
respectively. Let S =

∑m
i=1 uiRi. Then, with probability at least 1− n−c,

∥S∥ ≤
√
2qm(c log n+ log 2d)

(√
1 +

c log n+ log 2d

18qm
+

√
c log n+ log 2d

18qm

)
.

Remark 4. Taking n = Km and q = β log n/n into Lemma 5, one can show that

∥S∥ ≤
√

2cβ

K

(√
1 +

cK

18β
+

√
cK

18β

)
log n (9)

with probability at least 1 − n−c. Considering 18β ≫ cK, (9) is simplified to ∥S∥ ≤
√

2cβ
K log n. This

simplification is always conducted throughout the following contents.

Now we present a straightforward result on the model parameters.

Lemma 6. Suppose that the positive constants α, β,K, d are given. let f(τ) = α− τ log eα
τ defined on (0, α].

If { √
2Kβ < α, (10)

α−
√
2Kβ log eα√

2Kβ
> K, (11)

then there exists τ̃ < α, c̃ > 1, and χ > 0, such that{
τ̃ ≥
√
2c̃Kβ + χα

d ; (12)

α− τ̃ log eα
τ̃ > K. (13)

Proof. One can observe that f(τ) = α− τ log
(
eα
τ

)
monotonically decreases in (0, α]. Therefore, the root τ∗

such that f(τ∗) = K is uniquely determined in (0, α), and τ < τ∗ if f(τ) > K and τ ∈ (0, α]. By (10), there
exists c1 > 1 such that

√
2cKβ < α for any 1 < c ≤ c1. By (11), there exists c2 > 1 such that for 1 < c ≤ c2,

α−
√
2cKβ log

eα√
2cKβ

> K,

and hence
√
2cKβ < τ∗ when

√
2cKβ < α. Pick c̃ ∈ (1,min{c1, c2}], and τ̃ ∈ (

√
2c̃Kβ, τ∗). (12) and (13)

immediately follow by taking χ = d(τ̃ −
√
2c̃Kβ)/α.

Proof of Theorem 2. Denote M = µ(AV ∗). We first consider the probability of two subevents defined as
follows for fixed i, j, j′ such that C(i) = j ̸= j′, and then apply union bound.{

there exists a constant χ > 0 such that Mij −Mij′ ≥ χmp; (14)

Mij >
√
2Kβ
α mp. (15)

Observe that
[AV ∗]ij =

∑
k:C(k)=j

AikR
∗
k =

∑
k:C(k)=j
C(k)=C(i)

wikR
∗
i +

∑
k:C(k)=j
C(k) ̸=C(i)

uikRikR
∗
k,
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where wik ∼ Bern(p), uik ∼ Bern(q),Rik ∼ Unif(O(d)). In fact, the two parts in the summation are
complementary, i.e.

[AV ∗]ij =

{(∑
k:C(k)=j wik

)
R∗

i , if C(i) = j,∑
k:C(k)=j uikRikR

∗
k, otherwise.

(16)

Therefore, due to edge independence, Mij = ∥XR∗
i ∥∗ = dX where X ∼ Binom(m,α log n/n). Likewise,

denoting S the random variable as stated in Lemma 5, σ1(Xij′) = ∥S∥ since the distribution of Unif(O(d))
is invariant under right (and left) orthogonal group actions, and consequently Mij′ ≤ dσ1(Xij′) = d ∥S∥.
Then both (14) and (15) are guaranteed to happen when X − ∥S∥ ≥ χ

dmp = χα
Kd log n; (17)

∥X∥ ≥
√

2β
K log n. (18)

With (5) and (6), we are able to invoke Lemma 6 to find a group of parameters τ̃ , c̃, χ such that
τ̃ < α, c̃ > 1, χ > 0; (19)

τ̃ ≥
√
2c̃Kβ + χα

d ; (20)

α− τ̃ log eα
τ̃ > K. (21)

Then, Lemma 4 indicates that

Pr

(
X ≥ τ̃

K
log n

)
≥ 1− n− 1

K (α−τ̃ log eα
τ̃ ), (22)

while another probabilistic bound on ∥S∥ is derived from Lemma 5:

Pr

(
∥S∥ ≤

√
2c̃β

K
log n

)
≥ 1− n−c̃. (23)

Combined with (19) and (20), the two events in (22) and (23) would immediately imply (17) and (18), and
consequently the subevents (14) and (15). They would further establish the final proposition, given that the
probability of both events stated in (22) and (23) is sufficiently high even after taking union bound over all
i ∈ [n] and j′ ∈ [K]. This is guaranteed by (19) and (21) because, by union bound, both events hold for all
i, j′ with probability at least

1− nKn− 1
K (α−τ̃ log eα

τ̃ ) − n−c̃+1 = 1−Kn− 1
K (α−τ̃ log eα

τ̃ −K) − n−c̃+1 = 1− n−Ω(1).

This completes the proof.

A.4 Proof of Theorem 3

While the community structure and group information are jointly optimized in GPM for exact recovery, this
initialization algorithm adopts an intuitive two-stage design as condition (iii) in Theorem 1 tolerates a rough
estimation. The first stage generates a preliminary guess of the community structure H. Similar to Wang
et al. (2021), we invoke Algorithm 2 in Gao et al. (2017), a greedy spectral clustering method, to obtain a
(imbalanced) clustering matrix, which is then rounded to a balanced clustering matrix H0 ∈ H. Theory
developed in Wang et al. (2021) has shown that for any numerical constant C,

ϵ(H0) ≤

√
Cn

log n
(24)

with probability at least 1−n−Ω(1). After obtaining an initialization H, the group elements are estimated in
the second stage. For each hypothesized cluster i obtained previously, a pivot node denoted by τi is located
by a randomized mechanism. Then, the relative group transformation between the pivot and any other node
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is estimated utilizing the corresponding block rows of Û = eigsKd(A). We consolidate the two estimations
into a matrix V 0 ∈ F as the return of the algorithm.

As the following Proposition points out, the algorithm has a decent theoretical performance regarding the
estimation precision of V 0 it generates. The proof of Proposition 9 is deferred to Section A.12.

Proposition 9. Suppose that α, β,K, d = Θ(1), and the observation matrix A is generated by SGBM for the
given ground truth matrix V ∗. Then, for any given constant ρ > 0, Algorithm 3 generates a V 0 such that

ϵO(d)

(
V 0
)
≤
√
m

ρ

with probability at least 1− (log n)−Ω(1) for a sufficiently large n.

Proof of Theorem 3. In fact, equipped with Proposition 9, Theorem 3 is immediately established. However,
we remark that this is not necessarily the unique algorithm fulfilling the requirements therein.

Remark 5. We also note that for K, d = Θ(1), step 4 of Algorithm 3 runs in O(n log n) time by using the
Lanczos method to compute the top Kd eigenvectors of a sparse observation matrix A with O(n log n) non-
zero blocks. So, given an initial guess on H0, Algorithm 3 runs in O(n log n) time, which does not impose
significant overhead on the power iterations in Algorithm 1 with the complexity O(n log2 n).

A.5 Proof of Lemma 1

Proof. We note that for any X ∈ Rnd×Kd, R ∈ O(d)n, and H ∈ H,

tr
(
X⊤( (11×K ⊗R)⊙ (H ⊗ 1d×d)

))
=

n∑
i=1

k∑
j=1

⟨Xij ,HijRi⟩ =
n∑

i=1

k∑
j=1

⟨HijXij ,Ri⟩

= tr
((

X ⊙ (H ⊗ 1d×d)
)⊤

(11×K ⊗R)
)
,

where Xij denotes the (i, j)-th block of X and Ri denotes the i-th block of R. This completes the proof.

A.6 Proof of Lemma 2

Proof. Since Q ∈ PK(O(d)), there exists a permutation π on [K] such that Qπ(i)i ∈ O(d) for all i ∈ [K], and
the remaining blocks of Q are zero. For any X = [Xij ], we have

(XQ)ij =

K∑
l=1

XilQlj = Xiπ(j)Qπ(j)j .

Therefore, µ(XQ)ij =
∥∥Xiπ(j)

∥∥
∗ = µ(X)iπ(j), and µ(XQ) is in fact the column permutation of µ(X)

according to π. Denote H ′,H the clustering matrices generated in the projection algorithm on the input X
and XQ respectively. Then, H ′

ij = 1 if and only if Hiπ(j) = 1. Now, for those i, j such that H ′
ij = 1, we

have

ΠF (XQ)ij = ΠO(d) ((XQ)ij) = ΠO(d)

(
Xiπ(j)Qπ(j)j

)
= ΠO(d)

(
Xiπ(j)

)
Qπ(j)j = ΠF (X)iπ(j)Qπ(j)j =

K∑
l=1

ΠF (X)ilQlj .

Hence ΠF (XQ) = ΠF (X)Q.

A.7 Proof of Lemma 3

Proof. Denote H ′ and H∗ the clustering matrices determined in the projection algorithm on the input AV ∗

and V ∗, respectively. Since condition (i) holds, H ′ = H∗. By (16), ΠO(d)

(
(AV ∗)iC(i)

)
= R∗

i . Hence
ΠF (AV ∗) = V ∗.
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A.8 Proof of Proposition 5

In order to establish the Lipschitz-like property of ΠF , we first show that the maps µ and ΠO(d) involved in
the computation of ΠF have a similar behavior.

Lemma 7. For any X,X ′ ∈ Rnd×Kd,

∥µ(X)− µ(X ′)∥F ≤
√
d ∥X −X ′∥F .

Proof. For simplicity we denote σk = σk(Xij) and σ′
k = σk(X

′
ij). Then

|µ(X)ij − µ(X ′)ij | = |σ1 − σ′
1 + σ2 − σ′

2 + ...+ σd − σ′
d|

≤
√
d
√
(σ1 − σ′

1)
2 + (σ2 − σ′

2)
2 + ...+ (σd − σ′

d)
2

≤
√
d
∥∥Xij −X ′

ij

∥∥
F
,

where Mirsky’s inequality (Stewart, 1990) yields the final step. Summing over the indices yields the desired
result.

Lemma 8. If Xij = ηR where η > 0 and R ∈ O(d), then

∥∥ΠO(d)(Xij)−ΠO(d)(X
′
ij)
∥∥
F
≤ 2

η

∥∥Xij −X ′
ij

∥∥
F

for any X ′
ij ∈ Rd×d.

Proof. Note that ΠO(d)(X) = ΠO(d)(λX) for any λ > 0 and X ∈ Rd×d, hence we have

∥∥ΠO(d)(Xij)−ΠO(d)(X
′
ij)
∥∥
F
=
∥∥R−ΠO(d)(X

′
ij)
∥∥
F
≤
∥∥∥∥R− 1

η
X ′

ij

∥∥∥∥
F

+

∥∥∥∥1ηX ′
ij −ΠO(d)(X

′
ij)

∥∥∥∥
F

=

∥∥∥∥R− 1

η
X ′

ij

∥∥∥∥
F

+

∥∥∥∥1ηX ′
ij −ΠO(d)

(
1

η
X ′

ij

)∥∥∥∥
F

≤ 2

∥∥∥∥R− 1

η
X ′

ij

∥∥∥∥
F

=
2

η

∥∥Xij −X ′
ij

∥∥
F
.

Proof of Proposition 5. Let ΠF (X) incoporate a community structure H and ΠF (X
′) incoporate H ′. Then

one can observe

∥ΠF (X)−ΠF (X
′)∥2F = d ∥H −H ′∥2F +

∑
j

∑
i∈Ij∩I′

j

∥∥ΠO(d)(Xij)−ΠO(d)(X
′
ij)
∥∥2
F
.

By lemma 3 in Wang et al. (2021), lemma 7, and lemma 8,

∥ΠF (X)−ΠF (X
′)∥2F ≤

4d

δ2
∥M −M ′∥2F +

∑
j

∑
i∈Ij∩I′

j

∥∥ΠO(d)(Xij)−ΠO(d)(X
′
ij)
∥∥2
F

≤ 4d2

δ2
∥X −X ′∥2F +

4

η2

∑
j

∑
i∈Ij∩I′

j

∥∥Xij −X ′
ij

∥∥2
F

≤
(
4d2

δ2
+

4

η2

)
∥X −X ′∥2F .

Taking δ = χmp and η =
√
2Kβ
α mp yields the result.
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A.9 Proof of Proposition 6

Proof. This is a direct generalization of Lemma 3.6 in Fan et al. (2022) when K ≥ 2 and the constraint is
relaxed from SO(d) to O(d). We apply similar notations. Observe that

Sout =


0 S12 S13 · · · S1K

S⊤
12 0 S23 · · · S2K

S⊤
13 S⊤

23 0 · · · S3K

...
...

...
. . .

...
S⊤
1K S⊤

2K S⊤
3K · · · 0

 =
∑
j>i


Sij

S⊤
ij

 .

Therefore, ∥Sout∥ ≤
∑

j>i ∥Sij∥, and likewise ∥Sin∥ ≤
∑

i ∥Sii∥. Following the argument therein, the result
can be established by union bound.

A.10 Proof of Proposition 7

Proof. We denote for simplicity V e = V ∗Qt, and Z = 1
mV e⊤V t. Recall that V e is the optimal approxima-

tion of V t, so any per-cluster orthogonal transformation never yields a smaller difference. Specifically,∥∥V t − V e
∥∥2
F
= min

P

∥∥V t − V eP⊤∥∥2
F

subject to

P =


P1

P2

. . .

PK

 ∈ PK(O(d)),Pi ∈ O(d).

However, note that

min
P

∥∥V t − V eP⊤∥∥2
F
=

K∑
i=1

min
Pi∈O(d)

 ∑
j∈Ie

i ∩Ii

∥∥V t
ji − V e

jiP
⊤
i

∥∥2
F
+

∑
j∈Ie

i ∪Ii/Ie
i ∩Ii

∥∥V t
ji − V e

jiP
⊤
i

∥∥2
F


=

K∑
i=1

2md− 2 max
Pi∈O(d)

∑
j∈Ie

i ∩Ii

〈
V t
ji,V

e
jiP

⊤
i

〉
=

K∑
i=1

2md− 2 max
Pi∈O(d)

〈
V t
ji,

∑
j∈Ie

i ∩Ii

V e
jiP

⊤
i

〉
=

K∑
i=1

(
2md− 2m max

Pi∈O(d)

〈
Pi,Z

⊤
ii

〉)
,

we obtain Pi = ΠO(d)

(
Z⊤

ii

)
(notice that Pi = Id at the same time). By Proposition 2, we have

tr(Zii) =
〈
I,Z⊤

ii

〉
=
〈
ΠO(d)

(
Z⊤

ii

)
,Z⊤

ii

〉
=

d∑
k=1

σk (Zii) ; (25)

∥Zii∥2F =
∥∥ΠO(d)

(
Z⊤

ii

)
Zii

∥∥2
F
=

d∑
k=1

σk (Zii)
2
; (26)

σk(Zii) ∈ [0, 1]. (27)

We now claim that

∥Z − IKd∥2F ≤
(
1 +

1

d

)
(Kd− tr(Z))2.
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To this end, observe that

∥Z − IKd∥2F =

K∑
i=1

∥Zii∥2F +
∑
j ̸=i

∥Zij∥2F − 2tr(Zii) + d


≤

K∑
i=1

∥Zii∥2F +

∑
j ̸=i

∥Zij∥F

2

− 2tr(Zii) + d


≤

K∑
i=1

(
∥Zii∥2F +

(√
d− ∥Zii∥F

)2
− 2tr(Zii) + d

)
. (28)

By (25), (26), and (27), we have

∥Zii∥2F − 2tr(Zii) + d =

d∑
k=1

σ2
k − 2

d∑
k=1

σk + d =

d∑
k=1

(1− σk)
2 ≤

(
d∑

k=1

(1− σk)

)2

= (d− tr(Zii))
2
, (29)

and (√
d− ∥Zii∥F

)2
≤
(√

d− tr(Zii)√
d

)2

=
1

d
(d− tr(Zii))

2
. (30)

Summing (29) and (30) over i, (28) yields

∥Z − IKd∥2F ≤
(
1 +

1

d

) K∑
i=1

(d− tr(Zii))
2 ≤

(
1 +

1

d

)( K∑
i=1

(d− tr(Zii))

)2

=

(
1 +

1

d

)
(Kd− tr(Z))

2
,

which validates our claim. Finally, since ∥V t − V e∥2F = 2mKd− 2mtr(Z), we have

m ∥Z − IKd∥F ≤
1

2

√
1 +

1

d

∥∥V t − V e
∥∥2
F
≤ 1

2

√
1 +

1

d

√
m

ρ

∥∥V t − V e
∥∥
F

for ρ > 0.

A.11 Proof of Proposition 8

Proof. We first observe that the community structures of V and V ∗ are identical up to some permutation
when ϵO(d)(V ) <

√
2. Otherwise, at least one node falls in a erroneous cluster and ϵO(d)(V ) ≥

√
2d ≥

√
2.

Now, without loss of generality, we may identify the community structure of V ∗ with that of V . Then no
permutation is required to present the equivalence class of V ∗, hence

ϵO(d)(V ) = min
W∈bdiag(O(d)K)

∥V − V ∗W ∥F , (31)

ϵSO(d)(R(V )) = min
W∈bdiag(SO(d)K)

∥R(V )− V ∗W ∥F . (32)

Our second observation is that no two group elements in the same cluster of V , say Ri and Rj , belong to
SO(d) and SO−(d) respectively. To see this, consider V e := V ∗W where W ∈ bdiag(O(d)K) is arbitrary.
Observe that no two group elements in the same cluster of V e belong to SO(d) and SO−(d) respectively,
because W exerts a unified group action on each cluster of V ∗ ∈ E . If the same does not hold for V , there
must exist some i ∈ [n] such that Ri ∈ SO(d),Re

i ∈ SO
−(d), or Ri ∈ SO−(d),Re

i ∈ SO(d). In both cases,
∥Ri −Re

i ∥F ≥
√
2, ∀W ∈ bdiag(O(d)K), hence ϵO(d)(V ) ≥

√
2.
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Therefore, when ϵO(d)(V ) <
√
2, the rounding procedure R(V ) = V T , where

T =


D1Id

D2Id
. . .

DKId

 ∈ bdiag(O(d)K), Dk = det(Ri) ∀i ∈ Ik.

This together with (32) gives

ϵSO(d)(R(V )) = min
W∈bdiag(SO(d)K)

∥V T − V ∗W ∥F . (33)

Moreover, since T ∈ bdiag(O(d)n), (31) gives

ϵO(d)(V ) = min
W∈bdiag(O(d)K)

∥V − V ∗W ∥F = min
W∈bdiag(O(d)K)

∥V T − V ∗W ∥F . (34)

Denote W ∗ a minimizer of (34), i.e.,

W ∗ = argmin
W∈bdiag(O(d)K)

∥V T − V ∗W ∥F .

Then ∥V T − V ∗W ∗∥F <
√
2. Since V T ∈ E , it follows from an argument similar to the second observation

that W ∗ ∈ bdiag(SO(d)K), lest the estimation error exceeds
√
2. Therefore, W ∗ also minimizes (33). We

then establish the equality ϵSO(d)(V T ) = ϵO(d)(V ).

A.12 Proof of Proposition 9

We make use of the following variant of Davis-Kahan theorem on the distance between eigenspaces of two
real symmetric matrices.

Proposition 10 (Davis-Kahan theorem, Yu et al. (2015)). Let M ,M∗ ∈ RN×N be symmetric matrices with
eigenvalues λ1 ≥ ... ≥ λN and λ∗

1 ≥ ... ≥ λ∗
N , respectively. For any integers k, l such that 1 ≤ k ≤ l ≤ N ,

let U = eigs[k:l](M),U∗ = eigs[k:l](M
∗). Suppose that min{λ∗

k−1 − λ∗
k, λ

∗
l − λ∗

l+1} > 0, where λ0 = +∞ and
λN+1 = −∞. Then, there exists Q∗ ∈ O(l − k + 1) such that

∥U −U∗Q∗∥F ≤
2
√
2
√
l − k + 1 ∥M −M∗∥

min{λ∗
k−1 − λ∗

k, λ
∗
l − λ∗

l+1}
.

Proof of Proposition 9. We prove the existence of such an algorithm by showing that Algorithm 3 does satisfy
all the desired properties. Observe that V ∗/

√
m are the leading eigenvectors of pV ∗V ∗⊤ with eigenvalues

pm, while the other eigenvalues of pV ∗V ∗⊤ are all zero. By Proposition 10, there exists Q∗ ∈ O(Kd) such
that ∥∥∥∥Û − 1√

m
V ∗Q∗

∥∥∥∥
F

≤ 2
√
2Kd

pm

∥∥A− pV ∗V ∗⊤∥∥ .
Denote Φ = 1√

m
V ∗Q∗. By Proposition 6, for sufficiently large n, there exists c4 > 0 such that

∥∥∥Û −Φ
∥∥∥
F
≤ 2
√
2Kd

pm

(
c1
√
qm+ c2

√
pm+ c3

√
log n

)
<

c4√
logm

. (35)

Also, by direct calculation,

Φv× =
1√
m
R∗

vQ
∗
C∗(v)×,

and it is a direct consequence that for all v ∈ [n],

∥Φv×∥F =
d

m
. (36)
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Moreover, for v, u belonging to the same ground truth cluster, we have

Φv×Φ
⊤
u× =

1

m
R∗

vR
∗⊤
u .

Lemma 8 then implies∥∥∥ΠO(d)

(
Ûv×Û

⊤
u×

)
−R∗

vR
∗⊤
u

∥∥∥
F
≤ 2m

∥∥∥Ûv×Û
⊤
u× −Φv×Φ

⊤
u×

∥∥∥
F
. (37)

Now we consider u = τi and v ∈ I0i ∩ I∗π(i). Suppose the following conditions hold for all i ∈ [n], whose
validity with high probability will be proved at the end of this section:

τi ∈ I∗π(i); (38)

there exists a constant c5 > 0 such that
∥∥∥Ûτi× −Φτi×

∥∥∥
F
≤
√

1
(8Kd+c5)ρ2m . (39)

Then (37) yields ∥∥R0
v −R∗

vR
∗⊤
τi

∥∥
F
≤ 2m

∥∥∥Ûv×Û
⊤
τi× −Φv×Φ

⊤
τi×

∥∥∥
F
.

Therefore, if we denote τC∗(v) = δ(v),

K∑
i=1

∑
v∈I0

i ∩I∗
π(i)

∥∥R0
v −R∗

vR
∗⊤
τi

∥∥2
F
≤ 4m2

n∑
v=1

∥∥∥Ûv×Û
⊤
δ(v)× −Φv×Φ

⊤
δ(v)×

∥∥∥2
F

≤8m2

(
n∑

v=1

∥∥∥(Ûv× −Φv×

)
Û⊤

δ(v)×

∥∥∥2
F
+

n∑
v=1

∥∥∥(Ûδ(v)× −Φδ(v)×

)
Φ⊤

v×

∥∥∥2
F

)

≤8m2 max
v∈[n]

∥∥∥Û⊤
δ(v)×

∥∥∥2
F
×

n∑
v=1

∥∥∥Ûv× −Φv×

∥∥∥2
F
+ 8m2 d

m

n∑
v=1

∥∥∥Ûδ(v)× −Φδ(v)×

∥∥∥2
F
,

where the second inequality follows from triangle inequality, and the third from (36) and the inequality

∥XY ∥F ≤ ∥X∥F ∥Y ∥F . Apply triangle inequality to (39), we have
∥∥∥Ûδ(v)×

∥∥∥2
F
≤ c6

m for some constant

c6 > 0. (39) again implies

K∑
i=1

∑
v∈I0

i ∩I∗
π(i)

∥∥R0
v −R∗

vR
∗⊤
τi

∥∥2
F
≤ 8c24c6m

logm
+ 8m2Kd

1

(8Kd+ c5)ρ2m
<

c7m

ρ2
,

where 0 < c7 < 1 is a constant. This yields

ϵ(V 0)2 ≤ Cnd

log n
+

K∑
i=1

∑
v∈I0

i ∩I∗
π(i)

∥∥R0
v −R∗

vR
∗⊤
τi

∥∥2
F

≤ Cnd

log n
+

c7m

ρ2
<

m

ρ2
,

which completes the proof.

We now show that (38) and (39) simultaneously hold with probability at least 1 − (log n)−Ω(1). Firstly,
according to (24), there exists a permutation π of the set [K] such that∣∣∣I0i ∩ I∗π(i)∣∣∣ ≥ m− CKm

2 log(Km)

for arbitrary i ∈ [K]. Therefore, for any fixed i, τi picked in algorithm 3 satisfy (38) with probability at least

1− CK

2 log(Km)
. (40)
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Secondly, for any size-m set T ⊂ [n], the size of the subset{
t ∈ T :

∥∥∥Ût× −Φt×

∥∥∥2
F
≤ 1

(8Kd+ c5)ρ2m

}
is at least m− m√

logm
. Otherwise (35) is contradicted since

∥∥∥Û −Φ
∥∥∥2
F
≥
∑
t∈T

∥∥∥Ût× −Φt×

∥∥∥2
F
>

m√
logm

1

(8Kd+ c5)ρ2m
>

c24
logm

for a sufficiently large m. Therefore, for any fixed i, (39) holds with probability at least

1− 1√
logm

. (41)

By (40), (41) and union bound, (38) and (39) simultaneously hold for all i with probability at least

1−K

(
CK

2 log(Km)
+

1√
logm

)
= 1− (log n)−Ω(1).

B ADDITIONAL EXPERIMENTS
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(a) G = O(3), n = 100,K = 4
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(b) G = O(3), n = 150,K = 3
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(c) G = O(3), n = 200,K = 4
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(d) G = SO(3), n = 100,K = 4
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(e) G = SO(3), n = 150,K = 3
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(f) G = SO(3), n = 200,K = 4

Figure 4: Phase transition results on GPM with three different pairs of parameters (n,K) = (100, 4), (150, 3),
and (200, 4) in both orthogonal and rotational scenarios. The theoretical threshold for pure community
detection

√
α −
√
β =
√
K is plotted in blue; the improved lower bound claimed in Theorem 2 is plotted in

red.
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(a) K = 8, α = 25, β = 15
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(b) K = 10, α = 35, β = 25

Figure 5: Convergence results of GPM at G = O(d) and n = 400, with parameters (K,α, β) = (8, 25, 15) and
(10, 35, 25).
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