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Abstract—Graph learning has been widely used in many
fields to study the relationships between different entities in a
dataset. We present an optimization framework based on the
proximal alternating direction method of multipliers (pADMM)
for learning general signed graphs from smooth signals. We show
that our proposed pADMM enjoys global convergence and a local
linear convergence rate. Then, we demonstrate the effectiveness
of the proposed framework through numerical experiments on
signed graphs. Our proposed framework provides a promising
approach for learning general signed graphs from smooth signals
and can be a valuable tool for data analysis and decision-making
in various fields.

Index Terms—Signed graph, graph learning, optimization,
graph signal processing, proximal ADMM, time-varying graphs

I. INTRODUCTION

Graph is a fundamental mathematical construct whose nodes
and edges can represent objects and their relationships, respec-
tively. We consider the scenario where each node has a signal,
and the similarity (or dissimilarity) of the signals on two
adjacent nodes is represented by a weight on the edge joining
the two nodes. In many real-world scenarios, the signals on the
nodes, referred to as the graph signals, can be observed, but
the set of edges and the corresponding weights, also known
as the topology of the graph, may be unknown. Therefore,
graph learning, which aims to infer graph topology from graph
signals, is an important problem in graph signal processing.

Most recent developments in graph learning focus only on
unsigned graph settings, where the edge weights are assumed
to be non-negative, such as [1]–[5]. There are some approaches
that extend the discussion to signed graph settings, such as
[6], which used the signed Laplacian matrix [7] to evaluate
the smoothness of signals over signed graphs. This is under
the assumption that for a positive (resp. negative) edge weight
with a large magnitude, the signals on the two nodes connected
by the edge have the same (resp. different) signs and similar
magnitudes. However, such an assumption is rather restrictive.
Under this assumption, an edge weight is negative if and only
if the signals between the nodes connected by the edge are
of different signs [6]. In particular, negative weights will not
exist in the graph if the signal values are all positive.

In light of this, a more general assumption for signed graphs
is introduced in [8], where the signed graph is split into two
different unsigned graphs based on the sign of the edge weight.

Graph signals are assumed to be smooth (i.e. low signal total
variation) on the graph with positive edge weights and non-
smooth (i.e., high graph signal total variation) on the graph
with negative edge weights. Several optimization frameworks
are built upon these assumptions, such as [8], [9]. The work
[10] further extended the discussion to dynamic graphs (or
time-varying graphs), where the graph structures evolve over
time. Due to the process of splitting the signed graph into two
unsigned graphs, complementarity constraints are introduced,
resulting in a non-convex optimization framework. Although
it is shown in [11] that the alternating direction method of
multipliers (ADMM) possesses a global convergence guaran-
tee when applied to solve the non-convex formualtion in [10],
there is no guarantee that an optimal solution can be found.

In this paper, we build upon the earlier work [2] and propose
a novel convex optimization formulation for general signed
graph settings, where we combine the two unsigned weights
into one variable to eliminate the complementarity constraint.
It is then solved using the globally convergent pADMM
algorithm. Numerical results show that our model outperforms
the state-of-the-art framework [10] in terms of both model
accuracy and algorithm runtime. In addition, we demonstrate
that our algorithm exhibits a local linear convergence rate.

II. BACKGROUND

A. Signed Graph Learning

Let G = (V, E) be a graph with V = [m] being the set of
nodes and E ⊂ V × V being the set of edges. The topology
of the graph is characterized by an edge weight matrix W ∈
Rm×m, where Wij 6= 0 if and only if (i, j) ∈ E . We only
consider undirected graphs with no self-loop, which implies
that W is symmetric and has only zero entries over the main
diagonal. The difference between signed and unsigned graphs
is that the former can take negative edge weights, whereas
the latter cannot. A graph signal is usually represented by
x ∈ Rm, whose i-th coordinate xi is the signal value on node
i. The task of signed graph learning can be formulated as
follows: Given a collection of n̄ graph signals x1, . . . ,xn̄ ∈
Rm from the same underlying graph G = (V, E) associated
with unknown W and E , learn the topology of the graph from
graph signals x1, . . . ,xn̄.



To learn the graph topology, the relationships between
edge weights and graph signals are required. We adopt the
assumption in [8], where we split G into two unsigned graphs
G+ = (V, E+) and G− = (V, E−), associated with two
weight matrices W+,W− ∈ Rm×m+ , respectively that satisfy
W = W+ −W− and

Es = {(i, j) ∈ E | W s
ij > 0} for s ∈ {+,−}.

It is assumed that the graph signal varies smoothly (resp.
nonsmoothly) accross G+ (resp. G−). The Lagragian matrices
Ls :− Diag(W s1)−W s with s ∈ {+,−} are used to define
the signal smoothness. The overall smoothness of the graph
signals x1, . . . ,xn̄ can be measured by total variation (also
known as Dirichlet energy), which is evaluated as

n̄∑
k=1

x>k L
sxk =

1

2

m∑
i=1

m∑
j=1

W s
ij · ||x̃i − x̃j ||22

=
1

2
||W s �D||1,1. (1)

Here, x̃i :− [(x1)i, . . . , (xn̄)i]
> is the data vector associated

with the i-th node and Dij :− ||x̃i − x̃j ||22. The signals are
smooth (resp. nonsmooth) if (1) is small (resp. high). Based
on the above, we can formally state the assumption of smooth
signal below:

Assumption 1. Given the graphs G+,G− and the signals
x1, . . . ,xn̄ on the graphs, the signals are assumed to have
low total variation on G+ ( 1

2 ||W
+ �D||1,1) and high total

variation on G− ( 1
2 ||W

− �D||1,1).

Note that splitting the signed weight matrix W into two
unsigned weight matrices W+ and W− will introduce com-
plementarity constraints in the optimization formulation (see,
e.g., [10]). Therefore, in actual implementation, we do not split
it into two matrices, but this does not affect our developments.

B. Model for Learning Signed Graphs from Smooth Signals

We introduce a novel model for learning the underlying
structure of signed graph from smooth signals. The model
considers general graphs, where the graph topology may vary
over time. Such graphs are called dynamic graphs, or time-
varying graphs. This leads to another assumption when we
are dealing with dynamic graph learning problems:

Assumption 2. Given dynamic graphs GT = {Gt}Tt=1, where
Gt = (Vt, Et) with |Vt| = m, Gt and Gt−1 are similar to each
other, in the sense that ||W (t+1) −W (t)|| is assumed to be
small.

Suppose that the graph signals x1, . . . ,xn ∈ Rm are se-
quentially collected from T non-overlapping time slots. Within
the t-th time slot, where t = 1, . . . , T , the weight matrix
W (t) ∈ Rm×m of the underlying graph remains static. The
n graph signals are partitioned into T disjoint groups and the
t-th group {x(t)

1 , . . . ,x
(t)
nt } consists of signals collected in the

t-th time slot. It follows that
∑T
t=1 nt = n. For t = 1, . . . , T ,

let D(t) ∈ Rm×m be given by D(t)
ij :− ||x̃(t)

i − x̃
(t)
j ||22 with

x̃
(t)
i :− [(x

(t)
1 )i, . . . , (x

(t)
nt )i]

> and D :− [D(1), . . . ,D(T )].
The goal then is to infer the (possibly time-varying) graphs
represented by ΞT :− [W (1), . . . ,W (T )]. Motivated by the
developments in [2], we consider the following formulation
of the problem:

min
ΞT

FT (ΞT ) +HT (ΞT ) +RT (ΞT ) (2)

s.t. W (t) = (W (t))>, diag(W (t)) = 0,

1>W (t)1 = 2δ, for t = 1, . . . , T. (C1)

Here,

FT (ΞT ) :−1

2

T∑
t=1

1>(W (t) �D(t))1, (3)

HT (ΞT ) :−1

2

T∑
t=1

[
α||W (t)||1,1 + β1||W (t)||2F

+ β2||Diag(W (t)1)||2F
]
, (4)

RT (ΞT ) :−γ
2

T−1∑
t=1

||W (t+1) −W (t)||1,1, (5)

and α, β1, β2, γ > 0, δ ∈ R are given parameters. For the ease
of demonstration in this paper, we let β = β1 = β2/2 > 0 to
simplify the above formulation. The first term FT evaluates the
overall signal smoothness on the learned graphs ΞT . It aims to
minimize the signal total variation on G+ and maximize the
signal total variation on G−. The second term HT consists
of the L1,1 norm and the squared Frobenius norm of the
weight matrices to balance weight magnitude and sparsity of
the learned weight matrices associated with the underlying
graphs. The squared Frobenius norm of Diag((W (t))1) aims
to ensure that the edge weights are evenly distributed among
all nodes in the original signed graph. The third term RT is
a temporal regularization term that is based on Assumption
2. The L1,1 norm promotes sparsity in the temporal variation
of the graph. The constraint (C1) balances the density of the
positive and negative weight matrices. Observe that problem
(2) is convex because it consists of only convex functions in
the objective and affine equalities in the constraints.

III. PROPOSED OPTIMIZATION FRAMEWORK FOR SIGNED
GRAPH LEARNING

A. Problem Reformulation

Let w(t) and d(t) be the vectors formed by stacking
the entries above the main diagonal of W (t) and D(t),
respectively. Set w :− [w(1),w(2), . . . ,w(T )] ∈ RTp and
d :− [d(1),d(2), . . . ,d(T )] ∈ RTp with p :− m(m− 1)/2. Let
B ∈ {0, 1}Tm×Tp, B′ ∈ {0,±1}Tm×Tp, B′′ ∈ {0, 1}T×Tp
satisfy

Bw = [W (1)1; . . . ;W (T )1], (6)
B′w = w −w′, (7)

B′′w = [1>w(1); . . . ; 1>w(T )], (8)



with w′ :− [w(1),w(1), . . . ,w(T−1)] ∈ RTp. Then, it can be
verified that problem (2) can be reformulated as

min
w∈RTp

d>w + α||w||1 + β(||w||22 + ||Bw||22) + γ||B′w||1

s.t. B′′w = δ1. (9)

By defining v :− [v1;v2] with v1 ∈ RTm,v2 ∈ RTp and
Bw = v1, B′w = v2, C :− [B;B′], C ′ :− [C;B′′],
problem (2) can be written as

min
w∈RTp,v∈RT (m+p)

fT (w) + gT (v)

s.t. C ′w − [v; δ1] = 0.
(10)

Here,

fT (w) :− d>w + α||w||1 + β||w||22, (11)

gT (v) :− β||v1||22 + γ||v2||1. (12)

B. Algorithmic Development

Let λ :− [λ1;λ2] ∈ RT (m+p+1) be the dual variable
associated with the constraint C ′w − [v; δ1] = 0 in problem
(10), where λ1 ∈ RT (m+p), λ2 ∈ RT . By denoting the
augmented Lagrangian function with penalty parameter ρ > 0
by

Lρ(w,v;λ) :−fT (w) + gT (v)− λ>(C ′w − [v; δ1])

+
ρ

2
||C ′w − [v; δ1]||22,

our proposed algorithm, termed pADMM-SGL, updates the
variables in the k-th iteration by

wk+1 = arg min
w∈RTp

Lρ(w,vk;λk) +
1

2
||w −wk||2G, (13a)

vk+1 = arg min
v∈RT (m+p)

Lρ(wk+1,v;λk) +
1

2
||v − vk||2H , (13b)

λk+1 = λk − ρ(Cwk+1 − vk+1), (13c)

where G ∈ RTp×Tp and H ∈ RT (m+p)×T (m+p) can be
chosen as any positive semidefinite matrices. As in [2], with
carefully selectedG andH , we may find analytical solution to
the subproblems (13a), (13b) and solve them at each iteration
efficiently.

To motivate the algorithmic development below, we need
to define the proximal operator. Given a proper extended real-
valued function f , we use

proxf (a) :− arg min
b

{
f(b) +

1

2
||b− a||22

}
to denote its proximal mapping evaluated at a ∈ dom(f).

Let G = I/τ1 − ρC ′>C ′ with 0 < τ1 < 1/ρ||C ′||22. Then,
we can rewrite (13a) as

wk+1 = proxτ1fT

[
wk − τ1ρC ′>

(
C ′wk −

[
vk

δ1

]
− λ′k

ρ

)]
.

(14)

Similarly, by letting H = (1/τ2 − ρ)I with 0 < τ2 < 1/ρ,
(13b) can be rewritten as

vk+1 = proxτ2gT

[
vk + τ2ρ

(
Cwk − v − λ′k

ρ

)]
. (15)

Then, we state the following two propositions, which are used
to solve the proximal form subproblems (14), (15).

Proposition 1. If fT (w) = d>w + α||w||1 + β||w||22 for
w ∈ RTp, then given any τ > 0, we have

proxτfT (w) =
1

2τβ + 1
Sτα(w − τd),

where
(Sκ(a))i = sgn(ai) max{(|ai| − κ), 0}

is the soft-thresholding operator [12].

Proposition 2. If gT (v) :− β||v1||22+γ||v2||1 for v = [v1;v2]
with v1 ∈ RTmand v2 ∈ RTp, then given any τ > 0, we have

proxτgT (v) =

 1

2τβ + 1
v1

Sτγ(v2)

 .
Due to the space limit, the proofs of Propositions 1 and 2

are deferred to the full version of this paper. By Propositions
1 and 2, we obtain

wk+1 =
1

2τβ + 1
Sτα(w̃k+1 − τd), (16a)

vk+1 =

 1

2τβ + 1
ṽk+1

1

Sτγ(ṽk+1
2 )

 , (16b)

where

w̃k+1 :−
wk − τ1ρC ′>

(
C ′wk −

[
vk

δ1

]
− λ

k

ρ

)
− τ1d

2τ1β + 1
,

ṽk+1 :− (1− τ2ρ)vk + τ1ρCw
k+1 − τ2λk.

The algorithm for solving (10) is summarized in Algorithm 1.
By adapting the analysis in [2], we can establish the global
convergence and local linear convergence of Algorithm 1.

IV. NUMERICAL RESULTS

A. Data Generation and Evaluation Metrics

In this subsection, we introduce the methods to construct
dynamic signed graphs and to generate synthetic signal data
that satisfy Assumptions 1 and 2. Due to space limit, the
numerical experiments regarding static graphs are deferred to
the full version of this paper. We adopt the signal generation
model in [10] with slight modifications. Given a signed graph
G with m nodes and its corresponding Laplacians L+ and
L−, let L+ = V +Λ+(V +)> and L− = V −Λ−(V −)> be
their eigen-decompositions. A graph signal that follows As-
sumption 1 can be generated by x = 1

2 (V +h1(Λ+)(V +)>+

V −h2(Λ−)(V −)>)x0 + ε, where h1(Λ) =
√

Λ†/||
√

Λ†||F ,
h2(Λ) =

√
Λ/||
√

Λ||F are low-pass and high-pass filters,



Algorithm 1 pADMM-SGL for problem (10)

1: Input: model parameters α, β > 0, T ≥ 1, γ ≥ 0, and
δ ∈ R; penalty parameter ρ > 0; step sizes τ1, τ2 > 0;
tolerances εp, εd > 0;

2: Initialize: k = 0, randomly pick w0 ∈ RTp, v0 ∈
RT (m+p), and λ0 ∈ RT (m+p+1), and pick sufficiently
large rp, rd;

3: while rp ≥ εp or rd ≥ εd do
4: update w according to (16a);
5: update v according to (16b);
6: update λ according to (13c);
7: set primal residual rp ← ||C ′wk+1 − [vk+1; δ1]||2;
8: set dual residual rd ← ρ||C>(vk+1 − vk)||2;
9: end while

respectively; Λ† is the Moore-Penrose pseudoinverse, x0 ∼
N (0, I); and ε is an additive white Gaussian noise. For
dynamic signed graph learning problem with T ≥ 2 timeslots,
we first construct the base model G1 by either the Erdős-Rényi
(ER) model with connectivity probability set at pER = 0.2,
or the preferential attachment (PA) model with 0.1m edges
attached per iteration so that the edge density is around
0.1 for each sign. The corresponding edge weights are set
as W

(1)
ij ∼ Uniform(0, 1). Half of the edges are then

selected randomly and set to be negative edges. After that,
we define the dynamic graph GT = {Gt}Tt=1, where each
Gt is constructed by perturbing r fractions of edges and
resampling corresponding edge weights of Gt−1 with the same
distribution Uniform(0, 1) so that Assumption 2 is satisifed.
The numbers of positive and negative edges remain unchanged
among all Gt. Finally, n graph signals x(t)

1 , . . . ,x
(t)
n are

generated from each Gt.
We compare our proposed approach with dynSGL in [10]1

and a MATLAB toolbox CVX [13], [14]2. Our evaluation con-
sists of two metrics, algorithm efficiency and model accuracy.
To measure algorithm efficiency, we compare the algorithm
execution time to find the optimal solution for pADMM-SGL,
CVX, and dynSGL. Note that the execution time for CVX at
m = 80 and m = 100 is not reported, as the algorithm runs
exceedingly slowly. To measure model accuracy, we employ
the multiclass F1 score as defined in [10] to compare our
model and dynSGL. This score is obtained by averaging the
F1+ and F1- scores, which are computed by comparing the
positive and negative edges of the learned graph to those of the
ground truth, respectively. Note that we do not report the F1
score for CVX, as the objective function for CVX is the same
as that of pADMM-SGL, and the results are expected to be the
same. The hyperparameters in pADMM-SGL and dynSGL are
tuned in order to make the edge density and similarity between
consecutive graphs close to those of the ground truth.

We set the magnitude of variation of ε to be 10% of the
signal power, and set r = 0.05, T = 10, n = 100. All tests

1https://github.com/SPLab-aviyente/dynSGL
2http://cvxr.com/cvx/

are conducted 50 times, and average values are recorded. Our
code is implemented in MATLAB3.

B. Performance of the algorithm

Table I(a) shows that pADMM-SGL is generally faster than
CVX and dynSGL. Table I(b) shows that pADMM-SGL is
significantly more accurate than dynSGL, and such result
is supported statistically by a t-test with significance level
p = 0.01. Also note that our algorithm performs generally
better on ER graphs than on PA graphs. This is due to
||Diag((W (t))1)||2F in (4). Moreover, Fig. 1 indicates that
pADMM-SGL exhibits a local linear convergence rate.

TABLE I: Performance comparison on dynamic signed graphs.

m CVX dynSGL pADMM-SGL

ER 20 6.1889 2.3334 0.2518
50 178.9360 4.6157 2.5264
80 − 9.0473 6.3870
100 − 13.0137 9.9193

PA 20 6.0456 2.3107 0.2723
50 185.0518 4.7493 3.3423
80 − 9.4161 9.3056
100 − 14.0884 15.4484

I(a) Runtime comparison on synthetic graphs.

m dynSGL pADMM-SGL

ER 20 0.3623 0.5354
50 0.3566 0.6124
80 0.3400 0.6064
100 0.3231 0.5881

PA 20 0.2957 0.5026
50 0.2783 0.5411
80 0.2684 0.5202
100 0.2574 0.4924

I(b) F-score comparison on synthetic graphs.

(a) m = 20. (b) m = 50

(c) m = 80. (d) m = 100

Fig. 1: Convergence performance of dynamic signed graphs.

3Our code can be found at https://github.com/dmddjack/padmm sgl.

https://github.com/SPLab-aviyente/dynSGL
http://cvxr.com/cvx/
https://github.com/dmddjack/padmm_sgl
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