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Abstract

In this work, we study a least-squares formulation of the source localization
problem given time-of-arrival measurements. We show that the formulation,
albeit non-convex in general, is globally strongly convex under certain con-
dition on the geometric configuration of the anchors and the source and on
the measurement noise. Next, we derive a characterization of the critical
points of the least-squares formulation, leading to a bound on the maximum
number of critical points under a very mild assumption on the measurement
noise. In particular, the result provides a sufficient condition for the critical
points of the least-squares formulation to be isolated. Prior to our work, the
isolation of the critical points is treated as an assumption without any justi-
fication in the localization literature. The said characterization also leads to
an algorithm that can find a global optimum of the least-squares formulation
by searching through all critical points. We then establish an upper bound
of the estimation error of the least-squares estimator. Finally, our numerical
results corroborate the theoretical findings and show that our proposed algo-
rithm can obtain a global solution regardless of the geometric configuration
of the anchors and the source.
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global strong convexity, critical points

1. Introduction

The source localization problem has been extensively studied for decades.
From emerging applications in mobile phones [7, 6, 1] to asset tracking, in-
telligent transportation system, and rescue and surveillance [21, 11, 19], lo-
calization is ubiquitous in our daily life. There are two main categories of
wireless location technologies, namely, mobile-based and network-based [19].
Mobile-based location technology determines the location of a source from
signals received from a set of emitters, while network-based location technol-
ogy determines the location of a source by measuring its signal parameters
received at the anchors of the network.

In this work, we consider the latter setting and are interested in locat-
ing a source via a collection of noisy measurements from m known anchors.
Specifically, let x⋆ ∈ Rd (with d = 2, 3) be the unknown source position. We
set m anchors located at ai ∈ Rd, for i = 1, . . . ,m, to measure the signal
propagation time between the source and each anchor. Let c := 1

m

∑m
i=1 ai

be the centroid of the anchors. Suppose that {ai − c}mi=1 spans Rd. For
i = 1, . . . ,m, the time-of-arrival measurement obtained from the i-th anchor
is given by

ti =
1

c
∥x⋆ − ai∥+ ni,

where c denotes the speed of the signal and n = [n1, . . . , nm]
T denotes the

measurement noise. To simplify notation, we consider the range measure-
ments

ri = ∥x⋆ − ai∥+ wi for i = 1, . . . ,m,

which can be obtained easily from the time-of-arrival measurement, with
measurement noise w = [w1, . . . , wm]

T = cn. With the above setup, one can
then consider a least-squares formulation of the source localization problem
in the squared domain [2, 3, 4, 20]:

min
x

f(x) :=
m∑
i=1

(∥x− ai∥2 − r2i )
2. (LS)

Although the algorithmic aspect of localization problems has been stud-
ied extensively, the geometric landscape of their optimization formulations
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is largely unexplored. Until recently, some papers show that the maximum-
likelihood (ML) functions of some localization problems given range mea-
surements with Gaussian measurement noise possess local strong convexity
at their global optima; see, [10, 18]. However, due to the non-smoothness
of these ML functions, iterative methods often get stuck at their local min-
ima unless given a good initialization; see the discussion in [3, Example
4.1]. On the contrary, despite the non-convexity of (LS), it is smooth and is
known that a global solution can be computed efficiently under some assump-
tions [2, 3]. This motivates us to study the geometric landscape of problem
(LS), which can then be exploited to design algorithms for solving (LS) with
theoretical guarantees.

1.1. Related Works

Cheung et al. [4] considered the source localization problem on R2 and
reformulated it as a quadratic minimization problem with a quadratic con-
straint. The authors solved the problem via the Karush-Kuhn-Tucker (KKT)
condition and determined the Lagrange multiplier by a five-root equation,
which can be solved via any root-finding algorithm. However, it is not clear
whether the result can be extended to the source localization problem on
R3. From an algorithmic point of view, the number of real roots is unknown
before solving the equation, thus root-finding algorithms could become less
effective.

Later, Beck et al. [2] viewed the same reformulation as in [4] as a general-
ized trust region subproblem (GTRS), the necessary and sufficient optimality
conditions of which and efficient algorithms for which have been extensively
studied in the literature; see, e.g., [8, 12, 23]. Specifically, the problem re-
duces to that of finding a root of a strictly decreasing function over a certain
interval, which can be solved via a bisection algorithm. Despite the mono-
tonicity of the function over the interval, every iteration of the bisection
algorithm requires finding a matrix inverse, which can be computationally
costly. Moreover, this method makes an assumption that depends on the
solution and therefore cannot be checked a priori. The method also assumes
that f admits isolated stationary points [3]. Although this assumption is
considered standard in the literature, it is not clear when it holds.

Another line of work is to solve the localization problem by taking the
sum-of-squares (SOS) approach; see, e.g., [20, 14]. In [20], Shames et al.
reformulated the problem based on SOS relaxation, which can be solved
by semidefinite programming techniques. Moreover, it is shown that the
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SOS relaxation is exact. However, the approach is computationally heavy in
practice and is more of theoretical interest. Nevertheless, the result suggests
that (LS) might possess some favorable problem structure for analysis.

1.2. Our Contributions

Existing works design algorithms for problem (LS) without considering
the underlying landscape of its objective function f . Although various al-
gorithms can tackle the problem efficiently in practice, not much is known
about the reason behind their success, as the problem is non-convex in gen-
eral. Our work aims to fill this gap in our understanding by studying problem
(LS) from the following perspectives:

� Geometric Perspective: We show that, under certain assumptions on
the geometric configuration of the anchors and the source, problem
(LS), albeit non-convex in general, exhibits global strong convexity
(see Theorem 1). In particular, if the source lies within the convex
hull of regularly located anchors on R2 and the measurement noise is
sufficiently small, then the function f is strongly convex on the whole
space (see Example 1). This provides an alternative perspective on
why localization inside the convex hull of anchors is favorable from an
algorithmic point of view. Besides, we characterize the gradient and
Hessian of f via the centroid of anchors (see Proposition 1). As a result,
we bound the maximum number of critical points of f under a very mild
assumption on the measurement noise (see Propositions 2 and 3). This
provides the first sufficient condition for the critical points of f to be
isolated. Prior to our work, such a property is assumed without any
justification; see, e.g., [3, 17].

� Algorithmic Perspective: Based on the characterization of critical points
of f , we propose an algorithm, called critical point finding algorithm
(CPFA), that finds a global minimum of problem (LS) by searching
through all of its critical points via Newton’s method (see Algorithm 1).
The key observation here is that the negative eigenvalues of the Hessian
∇2f(c) reveal the number of critical points of f and the information
that facilitates the root finding procedure. If the measurement noise
is sufficiently small, we further show that problem (LS) has a unique
global minimum, which is also a first in the localization literature (see
Proposition 4).
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� Estimation Perspective: We establish an upper bound on the estima-
tion error of a global minimum of problem (LS), that is, the distance
between the global minimum and the true source location x⋆ (see Theo-
rem 2). Although similar results have been developed in the localization
literature (see, e.g., [10, 18]), our bound is new for problem (LS).

1.3. Notation

The notation in this paper is mostly standard. We use ∥ · ∥ and ∥ · ∥op to
denote the Euclidean norm and the operator norm, respectively. We use I to
denote the identity matrix. Given a vector x̄ ∈ Rd and a scalar ρ ∈ R, we use
B(x̄, ρ) = {x ∈ Rd : ∥x−x̄∥ ≤ ρ} to denote the ball centered at x̄ with radius
ρ. Given a symmetric matrix A, we use λ(A) to denote its eigenvalues. In
particular, λmax(A) and λmin(A) denote the largest and smallest eigenvalues
of A, respectively. We use A ≻ 0 to indicate that A is positive definite.

2. Optimization Landscape

Recent works [10, 18] show that some non-convex localization problems
are locally strongly convex around their global optima. This suggests that,
despite its non-convexity, problem (LS) might possess some desirable global
optimization landscape that can be exploited in algorithm design. Surpris-
ingly, under certain assumption on the configuration of the anchors and the
source and on the measurement noise, the function f is globally strongly
convex on Rd. The following theorem presents a necessary and sufficient
condition for the strong convexity of f to hold.

Theorem 1. Define

R2 := ∥x⋆ − c∥2 + 1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i ). (1)

We have ∇2f(x) ≻ 0 for all x ∈ Rd if and only if

R2 <
2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
. (2)

Proof. First, the Hessian of f in (LS) can be computed as

∇2f(x) =
m∑
i=1

[
4(∥x− ai∥2 − r2i )I + 8(x− ai)(x− ai)

T
]
. (3)
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Expanding the first term and recalling that c = 1
m

∑m
i=1 ai, we get

m∑
i=1

(∥x− ai∥2 − r2i ) =
m∑
i=1

(∥x∥2 − 2⟨ai,x⟩+ ∥ai∥2 − r2i )

= m

(
∥x∥2 − 2

〈
1

m

m∑
i=1

ai,x

〉)
+

m∑
i=1

(
∥ai∥2 − r2i

)
= m

(
∥x− c∥2

)
−m

(
1

m

m∑
i=1

(r2i − ∥ai∥2) + ∥c∥2
)
.

(4)

Since r2i = ∥x⋆ − ai∥2 + 2wi∥x⋆ − ai∥ + w2
i for i = 1, . . . ,m, by completing

squares for the second term above, we have

1

m

m∑
i=1

(r2i − ∥ai∥2) + ∥c∥2

=
1

m

m∑
i=1

(∥x⋆ − ai∥2 − ∥ai∥2) +
1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i ) + ∥c∥2

= ∥x⋆∥2 − 2

〈
1

m

m∑
i=1

ai,x
⋆

〉
+ ∥c∥2 + 1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i )

= ∥x⋆ − c∥2 + 1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i ) = R2. (5)

Substituting (5) into (4), we obtain

4
m∑
i=1

(∥x− ai∥2 − r2i ) = 4m
(
∥x− c∥2 −R2

)
. (6)

Putting it into (3), the Hessian of f can then be written as

∇2f(x) = 4m(∥x− c∥2 −R2)I + 8

(
m∑
i=1

(x− ai)(x− ai)
T

)
. (7)

This implies that the smallest eigenvalue of ∇2f(x) is given by

λmin(∇2f(x)) = 4m(∥x− c∥2 −R2) + 8λmin

(
m∑
i=1

(x− ai)(x− ai)
T

)
. (8)
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Hence, the “only if” part can be trivially obtained by putting x = c in (8)
and noting that λmin(∇2f(c)) > 0.

Conversely, note that

λmin

(
m∑
i=1

(x− ai)(x− ai)
T

)

= min
∥v∥=1

vT

(
m∑
i=1

(x− ai)(x− ai)
T

)
v = min

∥v∥=1

m∑
i=1

(vT (x− ai))
2.

Putting this back to (8), we obtain

λmin(∇2f(x)) = min
∥v∥=1

4m

(
∥x− c∥2 −R2 +

2

m

m∑
i=1

(vT (x− ai))
2

)
. (9)

Now, for any v ∈ Rd satisfying ∥v∥ = 1, define

gv(x) := 4m

(
∥x− c∥2 −R2 +

2

m

m∑
i=1

(vT (x− ai))
2

)
.

Then, the gradient and Hessian of gv can be computed as

∇gv(x) =4m

(
2(x− c) +

2

m

m∑
i=1

2(vT (x− ai))v

)
=4m

(
2(x− c) + 4

(
vT (x− c)

)
v
)

and
∇2gv(x) = 4m(2I + 4vvT ).

In particular, we see that

∇2gv(x) ≻ 0 and ∇gv(c) = 0.

This implies that for any v ∈ Rd satisfying ∥v∥ = 1, the global minimum
of gv is attained at c. By putting x = c in (9) and requiring the resulting
expression to be positive, we obtain condition (2), as desired.

Theorem 1 is interesting because the objective function in (LS), albeit
non-convex in general, could exhibit strong convexity on the whole space Rd
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under certain condition on the geometric configuration of the source and the
anchors and on the measurement noise. Here, let us interpret condition (2)
by considering its left-hand side (lhs) and right-hand side (rhs) separately.

On the lhs, if we assume that wi ≪ ∥x⋆ − ai∥ for i = 1, . . . ,m,2 then
the quantity R2 roughly measures the squared distance between the source
and the centroid of anchors. On the rhs, 2

m
λmin(

∑m
i=1(ai − c)(ai − c)T ) =

2
m

∑m
i=1(ṽ

T (ai−c))2 is proportional to the average of the squared magnitude
of ai−c projected onto the vector ṽ, where ṽ is an eigenvector corresponding
to the smallest eigenvalue of∇2f(c). Such a value can be viewed as a measure
of degeneracy of the anchors. For example, when {ai−c}mi=1 do not span Rd,
the smallest eigenvalue is zero, thereby the rhs of (2) vanishes. Geometrically,
condition (2) is equivalent to B(c, R) lying within B(c, ρ), where R is defined

in (1) and ρ is defined as ρ =
√

2
m
λmin(

∑m
i=1(ai − c)(ai − c)T ).

In other words, the non-degeneracy of the anchors and the nearness of
the source x⋆ to the centroid c of anchors are sufficient to guarantee the
strong convexity of f on the whole space Rd. Contrary to the common
belief in the literature that localization inside the convex hull of anchors
offers better performance in a statistical sense (see, e.g., [16]), Theorem 1
provides an alternative perspective of what is a desirable configuration in a
source localization problem in an algorithmic sense. When the anchors are
regularly located, the convex hull of anchors roughly approximates the region
depicted in condition (2). On the other hand, when the vectors {ai}mi=1 do
not spread evenly on Rd, the region that the source x⋆ can be located for f
to enjoy a desirable geometry is much smaller. To understand condition (2)
better, we now look into some examples.

Example 1. Consider the source localization on R2. Suppose that there are
m anchors located at (ℓ cos 2πi

m
, ℓ sin 2πi

m
), for i = 1, . . . ,m; i.e., the anchors

are distributed uniformly on a circle centered at (0, 0) with radius ℓ. It can

2Such an assumption is standard in the localization literature; see, e.g., [24, 18].

8



be easily computed that c = 0 and

m∑
i=1

(ai − c)(ai − c)T =
m∑
i=1

(
ℓ cos 2πi

m

ℓ sin 2πi
m

)(
ℓ cos 2πi

m
ℓ sin 2πi

m

)
=

m∑
i=1

(
ℓ2 cos2 2πi

m
ℓ2 cos 2πi

m
sin 2πi

m

ℓ2 cos 2πi
m

sin 2πi
m

ℓ2 sin2 2πi
m

)
=ℓ2

(
m
2

0
0 m

2

)
,

where the last equality is given by standard trigonometric identities. This
implies that condition (2) is satisfied if the source lies within the ball B(0, ℓ)
given sufficiently small noise. Here, the ball B(0, ℓ) fully covers the convex
hull of the anchors {ai}mi=1. Figure 1a illustrates the case where m = 4.

Example 2. Consider the source localization on R3. Suppose that there are
8 anchors located at a1 = (ℓ, ℓ, ℓ), a2 = (ℓ, ℓ,−ℓ), a3 = (ℓ,−ℓ, ℓ), a4 =
(−ℓ, ℓ, ℓ), a5 = (−ℓ,−ℓ, ℓ), a6 = (−ℓ, ℓ,−ℓ), a7 = (ℓ,−ℓ,−ℓ), and a8 =
(−ℓ,−ℓ,−ℓ); i.e., the anchors are at the vertices of a cube centered at (0, 0, 0)
with side length 2ℓ. It can be computed that c = 0 and

m∑
i=1

(ai − c)(ai − c)T = 8

ℓ2 0 0
0 ℓ2 0
0 0 ℓ2

 .

Therefore, if the source lies within the ball with radius
√
2ℓ (as illustrated in

Figure 1b), condition (2.7) is satisfied. This shows that the ball B(0,
√
2ℓ)

roughly covers the convex hull of the anchors {ai}mi=1.

The above two examples correspond to the scenario where the anchors are
regularly located, which allows the vectors {ai − c}mi=1 to spread uniformly
over Rd. Next, let us consider another two examples in which the anchors
are less regularly located.

Example 3. Consider the source localization problem on R2. Suppose that
the anchors are located at the corners of a rectangle; i.e., a1 = (w, h), a2 =
(−w, h), a3 = (−w,−h), and a4 = (w,−h), for some w, h > 0. Similar to
the previous examples, we have c = 0 and

m∑
i=1

(ai − c)(ai − c)T = 4

(
w2 0
0 h2

)
.
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(a) Example 1. (b) Example 2.

Figure 1: The geometry of anchors (denoted by the blue dots) and the ball B(c, ρ) (denoted
by the black dashed lines) in Examples 1 and 2.

Condition (2) is equivalent to R2 < 2min{w2, h2}. The ball B(0,
√
2min{w, h})

is shown by the black dashed line in Figure 2a. As the rectangle gets flatter,
B(0,

√
2min{w, h}) gets much smaller than the convex hull of the anchors.

Example 4. Consider the source localization problem on R2. Suppose that
there are 9 anchors located at a1 = (w, h), a2 = (−w, h), a3 = (−w,−h),
a4 = (w,−h), a5 = (w

n
, h
n
), a6 = (−w

n
, h
n
), a7 = (−w

n
,−h

n
), a8 = (w

n
,−h

n
),

and a9 = (0, 0), for some w, h, n > 0; see Figure 2b. It can be computed that
c = 0 and

m∑
i=1

(ai − c)(ai − c)T = 4

(
1 +

1

n2

)(
w2 0
0 h2

)
.

According to condition (2), if

R2 <
2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
=

8

9

(
1 +

1

n2

)
min{w2, h2} = ρ2,

then ∇2f(x) ≻ 0 for all x ∈ Rd. Given that the first four anchors {ai}4i=1

the same as those in Example 3, it is surprising to see that the ball B(0, ρ)
becomes smaller after adding five more anchors {ai}9i=5 inside their convex
hull. The ball becomes even smaller when n gets larger; i.e., the anchors are
getting closer to the centroid. This demonstrates that adding anchors can
destroy the strong convexity of the function f .

Next, we present one example with an asymmetric set of anchors and
another example with a very small region B(c, ρ).
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(a) Example 3. (b) Example 4.

Figure 2: The geometry of anchors (denoted by the blue dots) and the ball B(c, ρ) (denoted
by the black dashed lines) in Examples 3 and 4.

Example 5. Consider the source localization problem on R2. Suppose that
there are 4 anchors located at a1 = (ℓ, ℓ), a2 = (ℓ/2,−ℓ), a3 = (−ℓ, 2ℓ), and
a4 = (−ℓ/2,−2ℓ), for some ℓ > 0; see Figure 3a. It can be computed that
c = 0 and

m∑
i=1

(ai − c)(ai − c)T = ℓ2
(

2.5 −0.5
−0.5 10

)
.

According to condition (2), if

R2 <
2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
= 1.2334ℓ2 = ρ2,

then ∇2f(x) ≻ 0 for all x ∈ Rd. Although the anchors are located asymmet-
rically, we see that the region B(c, ρ) is of reasonable size. This is because
the vectors {ai − c}mi=1 span the space Rd rather evenly.

Example 6. Consider the source localization problem on R2. Suppose that
there are 4 anchors located at a1 = (−ℓ,−0.1ℓ), a2 = (ℓ, 0.1ℓ), a3 = (−2ℓ,−0.1ℓ),
and a4 = (2ℓ,−0.1ℓ), for some ℓ > 0; see Figure 3b. It can be computed that
c = 0 and

m∑
i=1

(ai − c)(ai − c)T =

(
10ℓ2 0
0 0.042

)
.

According to condition (2), if

R2 <
2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
= 0.1

√
2ℓ = ρ2,
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(a) Example 5. (b) Example 6.

Figure 3: The geometry of anchors (denoted by the blue dots) and the ball B(c, ρ) (denoted
by the black dashed lines) in Examples 5 and 6.

then ∇2f(x) ≻ 0 for all x ∈ Rd. In this example, the trapezium formed
by the four anchors is very flat, implying that the minimum eigenvalue of∑m

i=1(ai − c)(ai − c)T is very small. As a result, the region B(c, ρ) is also
very small.

Strong convexity of a function is powerful in that it favors the fast conver-
gence of many numerical algorithms. Here, we record a corollary regarding
the convergence rate of gradient descent when applied to a strongly convex
objective function.

Corollary 1. If condition (2) holds, then gradient descent converges linearly
to the global minimum of problem (LS) regardless of the initialization.

Proof. Follows directly from, e.g., [13, Theorem 2.1.15].

3. Critical Points

In the previous section, we have shown that condition (2) is both neces-
sary and sufficient for the objective function f in (LS) to be strongly convex.
Such a condition involves not only the geometric configuration of the source
and anchors but also the measurement noise. In this section, we consider
the general setting where condition (2) need not hold and study the critical
points of f . Let us begin by expressing the gradient and Hessian of f in
terms of the centroid of anchors.

Proposition 1. For any v ∈ Rd, we have

∇f(c+ v) = 4m∥v∥2v +∇2f(c)v +∇f(c) (10)
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and
∇2f(c+ v) = ∇2f(c) + 4m∥v∥2I + 8mvvT . (11)

Proof. Every x ∈ Rd can be written as x = c+v for some v ∈ Rd. Plugging
this into (7), we have

∇2f(c+ v) =4m(∥v∥2 −R2)I + 8

(
m∑
i=1

(c+ v − ai)(c+ v − ai)
T

)

=4m(∥v∥2 −R2)I + 8

(
m∑
i=1

(
(c− ai)(c− ai)

T + vvT
))

=∇2f(c) + 4m∥v∥2I + 8mvvT .

By the fundamental theorem of calculus, we can then write the gradient as

∇f(c+ v)−∇f(c) =
∫ 1

0

∇2f(c+ tv)vdt

=

∫ 1

0

(∇2f(c) + 12mt2∥v∥2I)vdt

=(∇2f(c) + 4m∥v∥2I)v.

Rearranging the terms yields the desired result.

Proposition 1 is significant, as it elucidates the geometry of the objective
function f in (LS). For one thing, it shows that as a point x gets further
away from the centroid c of the anchors, all eigenvalues of ∇2f(x) get larger.
In particular, this implies that f is locally strongly convex at any x that is
sufficiently far from c. For another thing, it provides a more direct path to
understanding the critical points of f . Indeed, instead of characterizing the
critical points of f as those vectors x that satisfy

∇f(x) =
m∑
i=1

4(∥x− ai∥2 − r2i )(x− ai) = 0,

we can characterize them as those vectors v that satisfy

∇f(c+ v) = 4m∥v∥2v +∇2f(c)v +∇f(c) = 0. (12)

The latter is more amenable to analysis. Based on the characterization (12),
we can deduce the maximum number of critical points of f .
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Proposition 2. Suppose that for i = 1, . . . ,m, the measurement noise wi

follows a probability distribution that is absolutely continuous with respect to
the Lebesgue measure. Let γ ≤ d be the number of negative eigenvalues of
∇2f(c). Then, the number of critical points of f is at most 2γ + 1 almost
surely.

Proof. Suppose that ∇2f(c) = UΛUT for some orthogonal matrix U ∈
Rd×d and diagonal matrix Λ ∈ Rd×d. Write U =

[
u1 · · · ud

]
and Λ =

diag(λ1, . . . , λd). Every vector x ∈ Rd can be written as x = c+ v for some
vector v ∈ Rd. Since the vectors {ui}di=1 form a basis of Rd, we can write
∇f(c) =

∑d
i=1 biui and v =

∑d
i=1 piui. Denote

s =
d∑

i=1

p2i . (13)

Then, (12) can be written as

4mspi + λipi + bi = 0, i = 1, . . . , d. (14)

To proceed, we need the following two lemmas.

Lemma 1. The matrices ∇2f(c) and
∑m

i=1(ai − c)(ai − c)T are simultane-
ously diagonalizable.

Lemma 2. Let z ∈ Rd be any non-zero vector. Suppose that for i = 1, . . . ,m,
the measurement noise wi follows a probability distribution that is absolutely
continuous with respect to the Lebesgue measure. Then, the event zT∇f(c) =
0 is of measure zero.

Although∇2f(c) involves the measurement noise {wi}mi=1, Lemma 1 shows
that the eigenbasis U of ∇2f(c) is deterministic and is determined by the ge-
ometric configuration of the anchors {ai}mi=1. Since we have b = UT∇f(c) by
definition, Lemma 2 implies that bi ̸= 0 for i = 1, . . . , d almost surely. This,
together with (14), implies that 4ms + λi ̸= 0 and pi ̸= 0 for i = 1, . . . ,m.
Upon combining (13) and (14), we see that s satisfies

d∑
i=1

(
− bi
4ms+ λi

)2

= s. (15)
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In other words, s satisfies the system of equationsy =
d∑

i=1

(
bi

4ms+ λi

)2

=: h(s)

y = s.

(16)

It is clear that for i = 1, . . . , d, the function h is discontinuous at si = − λi

4m

if λi < 0. Without loss of generality, let us assume that the eigenvalues are
given in ascending order; i.e., λ1 ≤ λ2 ≤ · · · ≤ λd. Let γ ≤ d be the number
of negative eigenvalues of ∇2f(c). Then, the negative eigenvalues of ∇2f(c)
are given by 0 > λγ ≥ · · · ≥ λ1. Consequently, the function h possesses γ
discontinuity points, which break R+ into γ+1 intervals. Note that h is well-
defined on each of these intervals. Now, observe that the second derivative
of h is given by

h′′(s) = 96m2

d∑
i=1

b2i
(4ms+ λi)4

. (17)

We see that h′′(s) > 0 for all s except at those discontinuity points and
h′′(s) ≥ C for some constant C > 0 when s is bounded. This implies that h
is locally strongly convex on the first γ intervals and strictly convex on the
last interval. Therefore, there are at most two intersection points between

the graph y = h(s) and the line y = s on
(
−λj+1

4m
,− λj

4m

)
for j = 1, . . . , γ,

with λγ+1 being defined as zero.
Moreover, since the first derivative of h is given by

h′(s) = −8m
d∑

i=1

b2i
(4ms+ λi)3

,

the function h is monotonically decreasing and tends to zero as s → ∞ on
the interval

(
max

{
0,− λ1

4m

}
,∞
)
. Thus, the graph y = h(s) intersects with

the line y = s at most once on this interval. It follows that the total number
of solutions to (15) is at most 2γ + 1.

Proof of Lemma 1. Plugging x = c into (7), the Hessian of f at c is given
by

∇2f(c) = −4mR2I + 8

(
m∑
i=1

(ai − c)(ai − c)T

)
,
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(a) 0 ≤ λ1 ≤ λ2. (b) λ1 < 0 ≤ λ2. (c) λ1 ≤ λ2 < 0.

Figure 4: Sketch of system (16) in different localization scenarios on R2.

where R is defined in (1). Suppose that
∑m

i=1(ai− c)(ai− c)T = V ΣV T for
some orthogonal matrix V and diagonal matrix Σ. Then,

∇2f(c) = −4mR2I + 8V ΣV T = V
(
8Σ− 4mR2I

)
V T ,

where 8Σ − 4mR2I is also a diagonal matrix. Therefore, both ∇2f(c) and∑m
i=1(ai − c)(ai − c)T share the same eigenvectors, which establishes the

lemma. □
Proof of Lemma 2. Recall that ri = ∥x⋆ − ai∥2 + wi for i = 1, . . . ,m. The
gradient of f at c is given by

∇f(c) =
m∑
i=1

4
(
∥c− ai∥2 − ∥x⋆ − ai∥2

)
(c− ai)

−
m∑
i=1

8wi∥x⋆ − ai∥(c− ai) +
m∑
i=1

4w2
i (c− ai).

Therefore, the equation zT∇f(c) = 0 is quadratic in w. Upon applying the
result in [15], the desired result is obtained. □

Under a very mild assumption on the measurement noise, Proposition 2
reveals that the number of critical points of f is closely related to the number
of negative eigenvalues of the Hessian of f at c. Note that using (7), the
eigenvalues of ∇2f(c) are given by

λ(∇2f(c)) = −4mR2 + 8λ

(
m∑
i=1

(c− ai)(c− ai)
T

)
,

where R (defined in (1)) roughly measures the distance between the source
and the centroid of anchors. Hence, it is expected that the number of critical
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points of f is smaller when the anchors are more regularly located and the
source is closer to the centroid of anchors, and vice versa. This is the first
result in the literature that shows the relationship between the geometry of
the source localization problem and the maximum number of critical points.
Furthermore, the result implies that, as long as the measurement noise follows
a probability distribution that is absolutely continuous with respect to the
Lebesgue measure, the critical points of f are isolated. For the first time,
this provides a sufficient condition for the critical points of a least-squares
formulation of the source localization problem to be isolated and justifies a
common assumption in the literature (see, e.g., [3, 17]). It is worth noting
that our sufficient condition is very mild, because by the Radon–Nikodym
theorem, it essentially requires the measurement noise follows a probability
distribution that has a density with respect to the Lebesgue measure. Such
a requirement is satisfied by many continuous probability distributions, such
as the uniform distribution, Gaussian distribution, and Cauchy distribution.
Thus, Proposition 2 can be applied to a variety of noise distributions.

As a matter of fact, when considering the source localization problem on
R2, it can be shown that the critical points of f are isolated, regardless of
the probability distribution of the measurement noise. Specifically, we have
the following result:

Proposition 3. For the source localization problem on R2, the number of
critical points of f is at most 5.

Proof. Using the same notation as in the proof of Proposition 2, it remains
to prove the statement for the case where b1 = 0 or b2 = 0. To begin, let
us consider the case where b1 = b2 = 0. Using the definition of {bi}2i=1, it
is easy to see that b1 = b2 = 0 implies ∇f(c) = 0. Suppose there exists a
non-zero vector v ∈ Rd such that ∇f(c + v) = 0. Writing v =

∑2
i=1 piui,

we can, without loss of generality, assume that p1 ̸= 0 and λ1 = −4ms
using (14). Then, we have ∇f(c + tu1) = 0 for all t ∈ R, implying that f
is constant along the line {c + tu1 : t ∈ R}. However, when m ≥ 1, the
function f is coercive; i.e., for any sequence {xi}i≥0 satisfying ∥xi∥ → ∞,
we have f(xi)→∞. Hence, when b1 = b2 = 0, there exists only one critical
point of f , which is c.

Now, let us consider the case where there is exactly one i ∈ {1, 2} such
that bi = 0 (in other words, s > 0). Without loss of generality, we assume
that b1 = 0 and b2 ̸= 0. We consider the following cases:

17



Case 1: λ1 ≥ 0. Since s > 0, we see that 4ms + λ1 ̸= 0. This implies that
p1 = 0. Then, by direct substitution into (15), we have

s = 0 +

(
− b2
4ms+ λ2

)2

,

which in total yields at most 3 solutions.

Case 2: λ1 < 0. From (14), there are two possibilities, namely,

4ms+ λ1 = 0 or p1 = 0.

For p1 = 0, following the result in Case 1, there are at most 3 solutions. For
4ms + λ1 = 0 (i.e., s = − λ1

4m
), we first observe that λ1 ̸= λ2. Otherwise,

by (14), we have b2 = 0, which contradicts with our assumption. Plugging
this into (15) leads to(

− λ1

4m

)
= p21 +

(
−b2

4m
(−λ1

4m

)
+ λ2

)2

,

which yields at most 2 solutions. Combining the above two cases with the
case where b1, b2 ̸= 0 in Proposition 2, we conclude that there are at most 5
solutions to (15).

Now, let us show that the bounds on the number of critical points of f
given in Propositions 2 and 3 are tight. Specifically, we construct an instance
of the source localization problem on R2 (i.e., d = 2) in which the number of
critical points is exactly 2d+ 1 = 5.

Example 7. Consider the source localization problem on R2. Suppose that
the source is located at x⋆ = [−3.9939,−2.0593]T and the five anchors are
located at

a1 = [−0.4818, 0.4816]T , a2 = [−0.2438,−0.2857]T , a3 = [0.4484,−0.6043]T ,
a4 = [0.6287,−0.0933]T , a5 = [−0.3515, 0.5016]T .

Suppose that the measurement noise vector is given by

w = [−0.0071, 0.0006,−0.0185,−0.0040,−0.0054]T .
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(a) Plot of system (16). (b) Contour lines and gradient flow of f .

Figure 5: Computation visualization and geometric landscape of the source localization
problem in Example 7.

Then, as shown in Figure 5, there are in total five critical points, namely

ξ1 = [0.0536,−0.0151]T , ξ2 = [−3.6174,−2.4827]T , ξ3 = [−1.7820, 4.0657]T ,
ξ4 = [0.8177, 4.3817]T , ξ5 = [−3.9774,−2.0759]T .

As can be verified using the Hessian of f in (3), the first one is a local
maximum, the second and third are strict saddles, and the last two are local
minima. Figure 5a plots the system (16), while Figure 5b shows the contours
of f and its gradient-descent vector field.

The careful reader may notice that neither Proposition 2 nor Proposi-
tion 3 applies to the source localization problem on R3 in which the noise
distribution is not absolutely continuous with respect to the Lebesgue mea-
sure. Indeed, one can construct an instance of the source localization problem
on R3 under the noiseless setting in which the critical points are not even
isolated; i.e., there is an infinite number of critical points.

Example 8. Suppose that the source is located at x⋆ = [2, 0, 0]T and the
eight anchors (i.e., m = 8) are located at

a1 = [0.5, 1, 1]T , a2 = [−0.5, 1, 1]T , a3 = [0.5, 1,−1]T , a4 = [−0.5, 1,−1]T

a5 = [0.5,−1, 1]T , a6 = [−0.5,−1, 1], a7 = [0.5,−1,−1]T , a8 = [−0.5,−1,−1].
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Suppose that the measurements are noiseless; i.e., wi = 0 for i = 1, . . . ,m.
Then, the gradient and Hessian of f are given by

∇f(c) =

−320
0

 and ∇2f(c) =

−112 0 0
0 −64 0
0 0 −64

 ,

respectively. Decompose ∇2f(c) = UΛUT and write ∇f(c) = Ub. We then
have U = I, λ1 = −112, λ2 = −64, λ3 = −64, and b1 = −32, b2 = 0, b3 =
0. The system (14) implies that

(4ms+ λ2)p2 = 0.

Consider the case where 4ms+λ2 = 0 (i.e., s = −−64
4×8

= 2). We can compute
from (14) that

p1 =
−b1

4ms+ λ1

=
−32

4(8)(2) + (−112)
=

2

3
.

Putting this into (13), we have

2 =

(
2

3

)2

+ p22 + p23 ⇐⇒ p22 + p23 =
14

9
.

This shows that f possesses a circle of critical points, which are not isolated.

4. Algorithm

The previous section characterizes the critical points of f in (12) and
bounds their maximum number in Propositions 2 and 3. The results suggest
that finding all the critical points of f is as easy as finding the roots of a
univariate equation. In this section, we present and analyze an algorithm for
finding all the critical points and hence also a global minimum of f .

Let us collect the ingredients from the previous section and briefly outline
the algorithm here. Recall from (12) that every critical point of f satisfies

∇f(c+ v) = 4m∥v∥2v +∇2f(c)v +∇f(c) = 0

for some v ∈ Rd. Performing eigendecomposition on the Hessian ∇2f(c) =
UΛUT and writing ∇f(c) = Ub, v = Up for some vectors b ∈ Rd and
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p ∈ Rd, the critical points of f can be found by solving the following system
for {pi}di=1 and s ∈ R+:s =

d∑
i=1

p2i ;

4mspi + λipi + bi = 0 for i = 1, . . . , d.

(18)

Suppose that each measurement noise wi, for i = 1, . . . ,m, follows some
absolutely continuous probability distribution with respect to the Lebesgue
measure. Then, because of the result in Lemma 2, we can solve for the roots
of the equation

g(s) :=
d∑

i=1

(
bi

4ms+ λi

)2

− s = 0 (19)

via Newton’s method. Specifically, at every step, we perform an update on
s by

sk+1 = sk − g(sk)/g
′(sk) (20)

with

g′(sk) =
d∑

i=1

−8mb2i (4ms+ λi)
−3 − 1. (21)

Substituting the solutions s into (18) and converting the solution vectors
p ∈ Rd back to the standard basis of Rd, we obtain all the critical points of
f via

ξ = c+Up. (22)

Eventually, it is a trivial task to determine a global minimum of f by looking
for a critical point with the minimum objective value. Algorithm 1 outlines
the implementation details of the above discussion.

In the existing literature, several notable works, such as [4] and [2], also
solve problem (LS) by finding the roots of certain equations. Yet, as discussed
in Section 1.1, our algorithm is the first that utilizes the geometry of the
objective function f and is thus more reliable and efficient.

Algorithm 1, composing of a diagonalization step and Newton’s method,
has a complexity of O(d3 + log(d)eval(f)) for obtaining an ε-approximate
solution. It is worth pointing out that the diagonalization of ∇2f(c) plays a
key role in the algorithm. In particular:
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Algorithm 1 Critical Point Finding Algorithm (CPFA)

1: Input: Anchors’ location {ai}mi=1, and range measurements {ri}mi=1.
2: Output: Global optimum of f .
3: Compute c, ∇f(c) and ∇2f(c).
4: Diagonalize ∇2f(c) = UΛUT , with λ1 ≤ · · · ≤ λd.
5: Compute b = UT∇f(c).
6: Compute all possible solutions s via Algorithm 2.
7: For each s obtained, compute pi = − bi

4ms+λi
for i = 1, . . . , d.

8: Compute all critical points of f by (22).
9: Return the critical point with the minimum objective value.

Algorithm 2 Root-Finding Algorithm

1: Input: γ = number of negative eigenvalues of ∇2f(c), diagonalization
of ∇2f(c) = UΛUT , b = UT∇f(c), number of measurements m, per-
turbation ε.

2: Output: {s1, . . . , s2γ+1}.
3: if λi ≥ 0, for i = 1, . . . , d, then
4: s0 = ε.
5: while stopping criterion is not met do
6: sk+1 = sk − g(sk)/g

′(sk).

7: else
8: λγ+1 ← 0.
9: for i = 1, . . . , γ do

10: Initialize s2i−1
0 = −λi+1/(4m) + ε and s2i0 = −λi/(4m)− ε.

11: Initialize s2γ+1
0 = −λ1/(4m) + ε.

12: for j = 1, . . . , 2γ + 1 do
13: while stopping criterion is not met do
14: sjk+1 = sjk − g(sjk)/g

′(sjk).
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� Elucidate the geometry: The eigenvalues of ∇2f(c) reveals (i) whether
the objective function f possesses global strong convexity and (ii) the
number of critical points of f . The information allows Newton’s method
to search for roots over certain intervals.

� Avoid computing matrix inverses repeatedly: Without the diagonaliza-
tion of ∇2f(c), one has to solve for the roots of

∥(4msI +∇2f(c))−1∇f(c)∥2 − s = 0

instead of (19). Although the complexities of computing the diagonal-
ization of ∇2f(c) and the matrix inverse (4msI + ∇2f(c))−1 are on
the same order, this approach would incur extra computational cost
since a matrix inverse has to be computed in every Newton iteration
for different s, while the diagonalization of ∇2f(c) has to be done only
once in CPFA.

� Facilitate localizing different sources given the same set of anchors: Ac-
cording to the result in Lemma 1, the diagonalization of the Hessian
∇2f(c) is solely determined by the geometric configuration of the an-
chors. Therefore, as long as the locations of the anchors are fixed, the
diagonalization of ∇2f(c) can be pre-computed for recovering different
sources, resulting in a cheaper computational cost of the algorithm.

In Algorithm 1, we need to perform Newton’s method over several inter-
vals (see Line 10 in Algorithm 2) to look for all solutions of s and obtain
a global minimum by comparing the objective values of all critical points
derived from different solutions of s. Therefore, if we have some knowledge
about which interval the best s (i.e., the one that corresponds to a global
minimum of problem (LS)) is lying, we can focus our search on that interval
and thus reduce the computational time of the algorithm. As it turns out,
when the noise is sufficiently small, it can be shown that the best s lies on(
−λmin(∇2f(c))

4m
,∞
)
.

Proposition 4. Let ŝ := ∥x̂ − c∥2, where x̂ ∈ argminx f(x). If the mea-
surement noise wi is sufficiently small for i = 1, . . . ,m, then ŝ lies on(
−λmin(∇2f(c))

4m
,∞
)
. In particular, the global optimum of f is unique.
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The proof of the proposition relies on the following bound on the esti-
mation error of x̂, which is defined as the distance between x̂ and the true
source location x⋆ and will be proved in Section 5.

Fact 1. The estimation error of x̂ satisfies

∥x̂− x⋆∥ ≤ 4JK
√
m∥w∥+ 2K∥w∥2

for some constants J and K defined in (28) and (29), respectively.

Proof. It remains to show when

ŝ = ∥x̂− c∥2 > −λmin(∇2f(c))

4m
(23)

holds. Note that ŝ can be upper bounded by

ŝ = ∥x̂− c∥2 = ∥x̂− x⋆∥2 + 2⟨x̂− x⋆,x⋆ − c⟩+ ∥x⋆ − c∥2

≥ −2∥x⋆ − c∥(4JK
√
m∥w∥+ 2K∥w∥2) + ∥x⋆ − c∥2. (24)

Also, applying the results in (8) and (1), we obtain

− λmin(∇2f(c))

4m

(8)
=R2 − 2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
(1)
=∥x⋆ − c∥2 + 1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i )−

2

m
λmin

(
m∑
i=1

(ai − c)(ai − c)T

)
.

(25)

Combining these two inequalities then yields a sufficient condition for (23)
to hold:

− 2∥x⋆ − c∥(4JK
√
m∥w∥+ 2K∥w∥2)− 1

m

m∑
i=1

(2wi∥x⋆ − ai∥+ w2
i )

> −
λmin

(∑m
i=1(ai − c)(ai − c)T

)
4m

. (26)

Under the assumption that {ai−c}mi=1 spans Rd, the rhs of (26) is strictly neg-
ative. Therefore, when the measurement noise is sufficiently small, condition
(26) could be satisfied. Applying the argument in the proof of Proposition 2,
we can then see that the global optimum of (LS) is unique.
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Therefore, if the measurement noise is sufficiently small, then it suffices

to perform Newton’s method on the interval
(
−λmin(∇2f(c))

4m
,∞
)
, regardless

of the number of critical points of f . Moreover, the function f is known to
be monotonically decreasing on the interval, which also reduces the cost of
searching for the root. Besides, Proposition 4 provides a sufficient condition
for the uniqueness of the global optimum of the least-squares formulation
(LS) to hold without the strong convexity of the objective function f , which
is new in the literature; cf. [10, 18].

As a closing remark for this subsection, without any assumption on the
measurement noise, a similar algorithm can be developed for source local-
ization problem on R2 based on the proof of Proposition 3. For the sake of
brevity, we omit the algorithm here.

5. Estimation Performance

In the previous sections, we study the geometric properties of prob-
lem (LS) and their algorithmic consequences. In this section, we shift our
focus to the estimation quality of a global optimum x̂ of problem (LS) (also
referred to as a least-squares estimator). In particular, we are interested in
the estimation error of x̂, which is defined as the distance between x̂ and the
true source location x⋆. Intuitively, when the measurement noise is small, the
estimation error of x̂ should also be small. The following result formalizes
this intuition.

Theorem 2. Let x̂ be a global optimum of problem (LS). Then, the estima-
tion error of x̂ satisfies

∥x̂− x⋆∥ ≤ 4JK
√
m∥w∥+ 2K∥w∥2, (27)

where

J = max
i∈{1,...,m}

(∥x⋆ − ai∥) and (28)

K =

(
λmin

(
m∑
i=1

(ai+1 − ai)(ai+1 − ai)
T

))−1/2

. (29)

Before we proceed, several comments are in order. First, although esti-
mation error bounds for other localization problems have been established in
[10, 18], the result in Theorem 2 is new for (LS). Second, Theorem 2 does
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not impose any assumption on the distribution of the measurement noise, so
one can apply results from probability to obtain estimation error bounds for
different noise distributions. For instance, when the measurement noise w
follows a Gaussian distribution with mean zero and variance σ2I, then, with
probability at least 1− (2 exp(−µ2/2))

m
for some constant µ > 0, we have

∥x̂− x⋆∥ ≤ 4µJKmσ + 2µ2Kmσ2 (30)

with J and K defined in (28) and (29), respectively. As a result, the esti-
mation error is controlled by the standard deviation σ of the noise with high
probability. Third, unlike existing estimation error bounds in the localization
literature [10, 18], we make explicit how the constants in the bound depend
on the locations of the anchors and the number of measurements.

The proof of Theorem 2 utilizes the fact that the solution of (LS) can
be approximated by a so-called ordinary least-squares estimator, which is
computable in closed-form; see, e.g., [19]. Specifically, each measurement ri
roughly measures the distance between the source and the i-th anchor; i.e.

∥x⋆ − ai∥2 ≈ r2i , i = 1, . . . ,m.

Therefore, by subtracting the i-th equation from the (i+ 1)-st equation, we
obtain the system of linear equations

2(ai+1 − ai)
Tx⋆ ≈ ∥ai+1∥2 − ∥ai∥2 + r2i − r2i+1, i = 1, . . . ,m.

The above suggests that the source location x⋆ can be estimated by the
solution of the following minimization problem:

min
x∈Rd
∥Bx− g∥2. (31)

Here, we have

B :=

 (a2 − a1)
T

...
(am − am−1)

T

 and g :=
1

2

 ∥a2∥2 − ∥a1∥2 + r21 − r22
...

∥am∥2 − ∥am−1∥2 + r2m−1 − r2m

 .

(32)
The assumption that {ai−c}mi=1 spans Rd implies that {ai+1−ai}m−1

i=1 spans
Rd. Hence, the solution of (31), which we call an ordinary least-squares
estimator, is given by

xOLS = (BTB)−1BTg. (33)
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Proof of Theorem 2. Let r̂i = ∥x̂− ai∥ be the distance between an optimal
solution of (LS) and the i-th anchor for i = 1, . . . ,m, and ĝ be defined
similarly as g in (32) but with {ri}mi=1 replaced by {r̂i}mi=1. It is easy to see
that

∥xOLS − x̂∥ ≤ ∥(BTB)−1BT∥op∥g − ĝ∥. (34)

On one hand, we see that

∥(BTB)−1BT∥op =
√
λmax((BTB)−1)

=

(
λmin

(
m∑
i=1

(ai+1 − ai)(ai+1 − ai)
T

))−1/2

= K; (35)

on the other hand, defining M :=

1 −1
. . . . . .

1 −1

 ∈ R(m−1)×m and using

the optimality of x̂, we have

∥g − ĝ∥ ≤ 1

2
∥M∥op

√
f(x̂) ≤ 1

2
∥M∥op

√
f(x⋆). (36)

Moreover, the result in [9, Theorem 2.2] implies that

∥M∥op =
√

λmax(MMT ) ≤ 2. (37)

Now, upon writing r⋆i = ∥x⋆ − ai∥ as the distance between the true source
location and the i-th anchor for i = 1, . . . ,m and using the Cauchy-Schwarz
inequality, we have

√
f(x⋆) =

√√√√ m∑
i=1

(r⋆i − r2i )
2 ≤

m∑
i=1

(
2r⋆i |wi|+ w2

i

)
≤ 2 max

i∈{1,...,m}
(r⋆i )
√
m∥w∥+ ∥w∥2. (38)

Hence,
∥xOLS − x̂∥ ≤ 2K max

i∈{1,...,m}
(r⋆i )
√
m∥w∥+K∥w∥2. (39)
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Besides, by defining g⋆ similarly as g but with {ri}mi=1 replaced by {r⋆i }mi=1,
a similar computation shows that

∥xOLS − x⋆∥ ≤∥(BTB)−1BT∥op∥g − g⋆∥

≤∥(BTB)−1BT∥op ·
1

2
∥M∥op

√
f(x⋆)

≤2K max
i∈{1,...,m}

(r⋆i )
√
m∥w∥+K∥w∥2. (40)

Combining (39) and (40), the desired result follows from triangle inequality.
□

6. Numerical Simulation

In this section, we conduct numerical experiments to demonstrate our
theoretical findings and examine the performance of our proposed algorithm
CPFA. All numerical experiments were conducted on a PC running Windows
10 with an Intel® Core� i7-7700 3.60GHz CPU and 16GB memory.

6.1. Global Strong Convexity

In this subsection, we examine how likely problem (LS) is globally strongly
convex when a source and m anchors are generated randomly from a uni-
form distribution. Specifically, consider the source localization problem on
R2, where we randomly generate m anchors (for m = 3, . . . , 20) and a source
on [−5, 5]× [−5, 5]. Each measurement is contaminated by a noise that fol-
lows a Gaussian distribution with mean zero and variance σ2 = 0.01. We
conduct 1000 Monte Carlo simulations and evaluate the empirical probability
that condition (2) (or equivalently, global strong convexity) is satisfied. Fig-
ure 6a plots the empirical probability that problem (LS) is globally strongly
convex versus the number of anchors m from m = 3 to m = 20. As can
be seen, the empirical probability increases from 0.092 to 0.379 when the
number of anchors increases from m = 3 to m = 20.

Similarly, consider the source localization problem on R3, where we ran-
domly generate m anchors (for m = 4, . . . , 20) and a source on [−5, 5] ×
[−5, 5]× [−5, 5]. The measurement noise again follows a Gaussian distribu-
tion with mean zero and variance σ2 = 0.01. Figure 6b plots the empirical
probability that problem (LS) is globally strongly convex versus the number
of anchors m from m = 4 to m = 20. The empirical probability increases
from 0.009 to 0.118 when the number of anchors increases from m = 4 to
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(a) On R2. (b) On R3.

Figure 6: Empirical probability that problem (LS) is globally strongly convex.

m = 20. It can be seen that with the same number of anchors, the empirical
probability that problem (LS) is globally strongly convex is generally smaller
as the dimension of the source localization problem increases.

6.2. Performance of CPFA

6.2.1. Particular Configuration

In this subsection, we consider the source localization problem on R2,
where the anchors are set at [4, Section 5]

a1 = (0, 0)T ,a2 = (3000
√
3, 3000)T ,a3 = (0, 6000)T ,

a4 = (−3000
√
3, 3000)T ,a5 = (−3000

√
3,−3000)T

and the source is located either at x⋆ = (1000, 2000)T (which is within the
convex hull of the anchors) or at x⋆ = (−8000,−6000)T (which is outside
the convex hull of the anchors). Each measurement is independently con-
taminated by a zero-mean Gaussian noise with average power ranging from
0 to 3000 at an interval of 250. For each of the source locations, we run 1000
Monte Carlo simulations and take the average.

Figures 7a and 7b plot the mean squared error versus average noise
power from 0 to 3000 when the source lies at x⋆ = (1000, 2000)T and
x⋆ = (−8000,−6000)T , respectively. We compare the performance of CPFA
with that of SRLS [2] and SDR [5], as well as with the Cramér-Rao lower
bound (CRLB). The perturbation parameter of Newton’s method in CPFA
is set to be ε = 10−4. As can be seen in Figure 7a, when the source is located
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(a) x⋆ = (1000, 2000)T . (b) x⋆ = (−8000,−6000)T .

Figure 7: Mean squared error versus average noise power.

at x⋆ = (1000, 2000)T , CPFA and SRLS obtain the same mean squared error
under different noise levels. SDR performs better than both methods with
its mean squared error close to CRLB, particuarly when the average noise
power is large. Figure 7b shows a similar result when the source is located at
x⋆ = (−8000,−6000)T . The mean squared errors of CPFA and SRLS over-
lap, while SDR performs slightly better than both methods. This is because
the SDR solution is an approximation of the maximum likelihood estimator,
while the CPFA and SRLS solutions are not.

Next, Figures 8a and 8b plot the computational time of CPFA, SRLS, and
SDR under different noise levels when the source lies at x⋆ = (1000, 2000)T

and x⋆ = (−8000,−6000)T , respectively. As can be seen in Figures 8a and 8b,
the methods have similar computational time with different source locations
and under different noise levels. In both configurations, CPFA is the fastest,
while SDR is the slowest. This demonstrates the efficiency of CPFA compared
with other state-of-the-art localization algorithms.

6.2.2. Random Configurations

In this example, we consider two scenarios on R2 with five anchors: (i)
the anchors and the source are randomly distributed on [−10, 10]× [−10, 10];
(ii) the anchors are randomly distributed on [−5, 5]× [−5, 5] while the source
is randomly distributed on [−10, 10]× [−10, 10]; cf. [2, Example 2]. For both
scenarios, we evaluate the performance of CPFA, SRLS, and SDR under
different noise levels, namely, σ = 0.01, σ = 0.1, and σ = 1. The perturbation
parameter of Newton’s method in CPFA is set to be ε = 10−4. We run 1000
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(a) x⋆ = (1000, 2000)T . (b) x⋆ = (−8000,−6000)T .

Figure 8: Time (s) versus average noise power.

Monte Carlo simulations and record the mean squared errors in scenarios (i)
and (ii) in Tables 1a and 1b, respectively. We see from Table 1a that CPFA
and SRLS always obtain the same mean squared error over 1000 Monte Carlo
simulations regardless of measurement noise levels. Moreover, both methods
perform better than SDR when the noise power is small (i.e., when σ = 0.01
and σ = 0.1) but perform worse than SDR when the noise power is large (i.e.,
when σ = 1). Similar phenomenon can be observed in scenario (ii). We see
from Table 1b that, when σ = 0.01, CPFA, SRLS, and SDR obtain the same
mean squared error; when σ = 0.1, CPFA and SRLS perform equally good
and outperform SDR; when σ = 1, SDR outperforms CPFA and SRLS. It is
expected that when the geometric configuration of the source and anchors is
randomly generated, the SDR solution might not be tight enough, resulting
in a poor estimate of the source location. However, since problem (LS) is
suboptimal in the maximum likelihood sense, when the noise level is large,
CPFA and SRLS cannot estimate the source location well. Therefore, SDR
outperforms both methods in this case.

Tables 2a and 2b show the average computational time of CPFA, SRLS,
and SDR in scenarios (i) and (ii), respectively. As can be seen in both ta-
bles, CPFA has the shortest computational time among the three algorithms.
SRLS is about 4-10 times slower than CPFA, while SDR is about 700-4000
times slower than CPFA. This demonstrates that CPFA is a fast algorithm,
regardless of the noise level and the geometric configuration of the source
and anchors.
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σ CPFA SRLS SDR
0.01 0.0002 0.0002 0.0004
0.1 0.0238 0.0238 0.0322
1 3.0414 3.0414 2.9246

(a) Source and anchors are randomly distributed on
[−10, 10]× [−10, 10].

σ CPFA SRLS SDR
0.01 0.0002 0.0002 0.0002
0.1 0.0162 0.0162 0.0189
1 2.0769 2.0768 1.6825

(b) Source and anchors are randomly distributed on
[−10, 10]×[−10, 10] and [−5, 5]×[−5, 5], respectively.

Table 1: Mean squared errors of CPFA, SRLS and SDR under different noise levels.

σ CPFA SRLS SDR
0.01 0.0005 0.0050 0.3840
0.1 0.0013 0.0050 0.3747
1 0.0007 0.0049 0.3729

(a) Source and anchors are randomly distributed on
[−10, 10]× [−10, 10].

σ CPFA SRLS SDR
0.01 0.0004 0.0049 0.3817
0.1 0.0007 0.0050 0.3797
1 0.0001 0.0054 0.4073

(b) Source and anchors are randomly distributed on
[−10, 10]×[−10, 10] and [−5, 5]×[−5, 5], respectively.

Table 2: Computational time of CPFA, SRLS and SDR under different noise levels.

7. Conclusion

In this work, we established the global strong convexity of the squared-
range least-squares formulation of the time-of-arrival-based source localiza-
tion problem under certain assumption on the configuration of the anchors
and the source and on the measurement noise. We also presented several
instances that satisfy this assumption when the measurement noise is negli-
gible. Next, we characterized the critical points of the least-squares formu-
lation via the gradient and Hessian of the objective function at the centroid
of anchors. As a result, we obtained a finite upper bound on the maximum
number of critical points (implying that the critical points are isolated) un-
der a very mild assumption on the measurement noise. The characterization
also leads to an algorithm that solves the least-squares formulation glob-
ally by searching through all critical points. Moreover, we established an
upper bound on the estimation error of the least-squares estimator. Our nu-
merical results support the theoretical findings and show that our proposed
algorithm can consistently obtain a global minimum of the least-squares for-
mulation regardless of the geometric configuration of the source and the
sensors. An interesting future direction is to see whether a similar analysis
can be performed on other localization problems (such as the sensor network
localization problem; see, e.g., [22]) or structured sum-of-squares problems.
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