
A Unified Approach to Synchronization Problems

over Subgroups of the Orthogonal Group

Huikang Liu* Man-Chung Yue� Anthony Man-Cho So�

Abstract

The problem of synchronization over a group G aims to estimate a collection of
group elements G∗

1, . . . , G
∗
n ∈ G based on noisy observations of a subset of all pairwise

ratios of the form G∗
iG

∗
j
−1. Such a problem has gained much attention recently and

finds many applications across a wide range of scientific and engineering areas. In this
paper, we consider the class of synchronization problems in which the group is a closed
subgroup of the orthogonal group. This class covers many group synchronization prob-
lems that arise in practice. Our contribution is fivefold. First, we propose a unified
approach for solving this class of group synchronization problems, which consists of a
suitable initialization step and an iterative refinement step based on the generalized
power method, and show that it enjoys a strong theoretical guarantee on the estima-
tion error under certain assumptions on the group, measurement graph, noise, and
initialization. Second, we formulate two geometric conditions that are required by our
approach and show that they hold for various practically relevant subgroups of the or-
thogonal group. The conditions are closely related to the error-bound geometry of the
subgroup — an important notion in optimization. Third, we verify the assumptions
on the measurement graph and noise for standard random graph and random matrix
models. Fourth, based on the classic notion of metric entropy, we develop and analyze
a novel spectral-type estimator. Finally, we show via extensive numerical experiments
that our proposed non-convex approach outperforms existing approaches in terms of
computational speed, scalability, and/or estimation error.
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1 Introduction

In many real-world estimation problems, the signals of interest, which are commonly re-
ferred to as ground truths, are constrained to lie in a group.1 One such example is the group
synchronization problem (or simply synchronization problem), in which the ground truth
takes the form G∗ = (G∗

1, . . . , G
∗
n) with G∗

1, . . . , G
∗
n being elements of a group G and is to be

estimated from noisy measurements of a subset of all pairwise ratios of the form G∗
iG

∗
j
−1

that are computed using the binary operation on G. Synchronization problems have found
applications across a wide range of areas, such as social science, distributed network, signal
processing, computer vision, robotics, structural biology, computational genomics, and ma-
chine learning, and hence have gained much attention over the past decade. Indeed, group
synchronization problems often appear as sub-tasks in many important problems from the
above areas, including community detection [1, 22] where G is the Boolean group; rank-
ing [23] and distributed clock synchronization [31] where G is the group of 2D rotations;
sensor network localization and cryo-electron microscopy where G is the group of orthogo-
nal matrices or special orthogonal matrices [24, 64]; the pose graph estimation problem [61]
where G is the group of Euclidean motions; the haplotype phasing problem [20, 65] where
G is the cyclic group (integers with modulo arithmetics); the multi-graph matching prob-
lem [40, 57] where G is the group of permutations. In most applications, after solving the
synchronization problem, the estimated group elements will in turn be used to estimate
another underlying signal, which is the ultimate target. In principle, one could estimate
the underlying signal directly or jointly with the group elements. However, as pointed out
in [8], estimating the signal given the group elements is a considerably easier task and can
be addressed using well-developed techniques for inverse problems. This motivates us to
focus on the synchronization problem.

Numerical approaches to synchronization problems are roughly divided into three cat-
egories: Spectral-type estimators, semidefinite programming (SDP) relaxations, and non-
convex approaches. In the context of synchronization problems, a spectral-type estimator
was first introduced in [66] for phase synchronization (i.e., G is the group SO(2) of 2D
rotations). It has later been generalized to synchronization problems over other subgroups
of the orthogonal group (see [2, 9, 48, 57]) and even general compact groups [60]. The
main cost of computing a spectral-type estimator comes in two parts. First, the eigen-
vectors corresponding to the first few eigenvalues of the graph connection Laplacian [9] or
a data matrix defined using the noisy observations are computed (see Sections 2 and 5.4
for details). Second, a certain rounding procedure is invoked to ensure that the returned
estimator lies in the feasible set Gn. The major advantages of spectral-type estimators are

1Recall that a group is a pair (G, ∗), where G is a set and ∗ is a binary operation on G, such that (i) ∗
is associative (i.e., g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3 ∈ G); (ii) there exists an identity element
id ∈ G (i.e., g ∗ id = id ∗ g = g for all g ∈ G); (iii) for each g ∈ G, there exists an inverse element g−1 of g
(i.e., g ∗ g−1 = g−1 ∗ g = id). For simplicity, we shall write g1g2 for g1 ∗ g2, where g1, g2 ∈ G. Also, we shall
abuse terminology and refer to G as the group.
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their low computational cost and ease of implementation.
The SDP relaxation approach is mainly based on convex relaxations of either the least

squares formulation or the least unsquared deviation formulation of the synchronization
problem, both of which are non-convex. These convex relaxations are SDP problems (hence
the name of the approach) that are obtained via the by-now classic lifting technique (see,
e.g., [54]) and are shown to be tight — the optimal solutions to the relaxed problem are also
optimal for its non-relaxed counterpart — under certain assumptions on the observation
and noise models [5, 6, 34, 41, 61, 74]. Recently, using results from harmonic analysis and
representation theory, an SDP relaxation for general compact groups and general objective
functions (as opposed to just the squared or unsquared deviation) has been derived and
studied in [8]. A major drawback of the SDP relaxation approach is that it does not scale
well with the number n of group elements to be estimated. Indeed, the approach requires
solving an SDP problem with an M ×M matrix decision variable, where M is linear in
n. As such, the computational cost is on the order of n3.5 [11, Section 6.6.3], which can
be prohibitive when n is large. One remedy of this is to devise specialized algorithms
for solving the large SDP problem. For example, an alternating direction augmented
Lagrangian method was developed in [74] to solve an SDP relaxation of the least unsquared
deviation formulation of the synchronization problem over the special orthogonal group.
However, the computational cost is still not satisfactory when n is beyond a few hundreds.
Moreover, the performance of the method is rather sensitive to how various parameters
(e.g., step size, penalty parameter) are tuned. Another possible remedy is to solve the
large SDP problem using the Burer-Monteiro heuristic [17, 18], which amounts to replacing
the large semidefinite matrix variable Z ∈ RM×M by some factorization Y Y ⊤ with Y ∈
RM×f and solving the resulting optimization problem with the smaller matrix variable
Y . However, the Burer-Monteiro heuristic, being a non-convex approach, is prone to sub-
optimality due to the presence of local minima, unless the factorization dimension f is
sufficiently large [7, 15, 16, 49].

In recent years, there have been attempts to solve the non-convex least squares for-
mulation of the synchronization problem directly without relaxing it. Such a non-convex
approach typically has two stages. In the first stage, a carefully designed initialization
procedure is used to produce a point that is close enough to the ground truth. Then,
in the second stage, an iterative procedure is used to refine the initial point. One pro-
cedure that is particularly suitable for the second stage is the generalized power method
(GPM) [42, 52, 55]. The idea of applying GPM to synchronization problems was first
introduced in [14] for phase synchronization and later further developed in [20] for the
joint alignment problem and in [76] for the community detection problem. In addition, the
analysis of GPM in [14] for phase synchronization was sharpened in [51, 83]. The advan-
tage of the GPM-based non-convex approach is that it is much faster and more scalable
than the SDP relaxation approach, as each iteration of GPM involves only matrix-vector
multiplications and projections onto the group G. As we shall see later, these projections
can be computed efficiently for many concrete groups G of practical relevance. Also, the
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GPM-based approach is easy to implement and requires no parameter tuning. It is worth
noting that although spectral-type estimators have been shown to be already qualitatively
optimal in certain settings [14, 48], we have observed in our experiments that by refining a
spectral-type estimator using GPM, the quality of the resulting estimator can be substan-
tially better (see Section 7). In other words, we can greatly improve the performance of
spectral-type estimators by paying a small amount of extra computational cost.

Interestingly, the procedures used to compute estimators of the ground truth can be
viewed as approximation algorithms for the non-convex formulation of the synchronization
problem at hand. For instance, it is known that the least squares formulation of synchro-
nization over the Boolean group is equivalent to the MAX-CUT problem [74], while that
of phase synchronization is equivalent to a complex quadratic maximization problem with
unit modulus constraint [6]. As such, the approximation accuracy of various least squares
estimators (i.e., the gap between the objective value attained by the estimator in question
and the optimal value of the formulation) can be determined, see, e.g., [32, 68, 71]. How-
ever, since an optimal solution to the non-convex formulation is in general different from
the ground truth, a more relevant and faithful measure of the quality of an estimator for
a synchronization problem is the estimation error, which is defined as the deviation of the
estimator from the ground truth. For synchronization over the special orthogonal group,
the estimation error of various estimators has been studied in [6, 14, 51, 74].

It should be mentioned that when G is the group of rotations (i.e., special orthogonal
matrices), the synchronization problem is equivalent to the problem of multiple rotation
averaging [35], and the GPM is also known as the Jacobi-type method [35, Section 7.4].
Moreover, various specialized algorithms are developed in the literature for multiple rota-
tion averaging, such as the Weiszfeld algorithm. However, it is often difficult to extend
the algorithm and/or its theory to a general subgroup of the orthogonal group. Since our
paper focuses on algorithms for general subgroups, we do not go into the details of these
specialized algorithms. We refer the interested reader to [35] and the references therein.

Finally, we mention two relatively new yet effective approaches to general group syn-
chronization problems, both of which fall into the category of message passing algorithms.
First, an approximate message passing algorithm was derived in [58] for solving synchro-
nization over general compact groups. Based on ideas from statistical physics, the work [58]
provides a non-rigorous analysis on the asymptotic statistical guarantee of their algorithm
in the large n limit. Second, a powerful framework has recently been developed in [46]
for removing unreliable observations in the input data to general synchronization problems
by leveraging a notion called cycle-edge consistency. It would be interesting to investigate
both the theoretical and practical performance of our non-convex approach when combined
with the framework in [46]. We leave this as a future work.
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1.1 Contributions

In this paper, we consider synchronization problems over closed subgroups of the orthogonal
group O(d), which include, e.g., the orthogonal group O(d) itself, the special orthogonal
group SO(d), the permutation group P(d), and the cyclic group Zm (see Section 2.1 for
their definitions). We propose and analyze a non-convex approach for tackling this class
of synchronization problems. Our main contribution is fivefold.

� First, we derive a master theorem for the proposed non-convex approach. Under four
assumptions that are respectively related to the subgroup, noise, measurement graph,
and initialization, our master theorem establishes an upper bound on the estimation
error of the iterates of GPM and hence provides performance guarantees for the
proposed non-convex approach (see Theorem 1). The master theorem is applicable
to general closed subgroups of the orthogonal group, measurement graphs, and noise.
It also clearly reveals the roles played by these main components of a synchronization
problem.

� Second, we formulate two key geometric conditions on the subgroup that can be
used to verify the assumptions in the master theorem. These conditions are closely
related to the error-bound geometry of the subgroup, which is a classic notion in
optimization and plays an important role in the analysis of various iterative methods.
We also prove that the two geometric conditions hold for the orthogonal group, the
special orthogonal group, the permutation group, and the cyclic group, which are all
practically relevant in the context of group synchronization problems.

� Third, we study random models of the measurement graph and noise. In particular,
we show that if the measurement graph is the Erdős-Rényi random graph and the
noise matrix is a random matrix with independent sub-Gaussian entries, then the
assumptions on the measurement graph and noise in the master theorem will hold
with high probability when the number n of target group elements is sufficiently
large. This result is useful since many well-known random variables are sub-Gaussian,
including the Gaussian, uniform, Bernoulli, and any bounded random variables.

� Fourth, we develop a novel spectral-type estimator, named the entropic spectral es-
timator, for our target class of synchronization problems. The entropic spectral esti-
mator has an intimate connection to the classic geometric concept of metric entropy.
We prove that under the above-mentioned geometric conditions and random models
of the measurement graph and noise, the entropic spectral estimator will satisfy the
assumption on the initialization of the non-convex approach with high probability.

� Finally, through extensive numerical experiments, we study the empirical perfor-
mance of our proposed non-convex approach on synchronization problems over sev-
eral subgroups of the orthogonal group. The experiment results show that the pro-
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posed approach outperforms existing ones in terms of computational speed, scalabil-
ity, and/or estimation error.

Although the idea of applying GPM to solve synchronization problems over closed sub-
groups of the orthogonal group O(d) is natural in view of our earlier discussion, due to the
non-commutativity of O(d), many of the key steps in [51] that rely on the commutativity
of SO(2) break down. Hence, extending the theoretical results in [51] to synchronization
problems over general subgroups of O(d) is highly non-trivial. Furthermore, the measure-
ment and noise settings in this paper are significantly more general than those considered
in [51]. It should also be pointed out that for cyclic synchronization Zm-sync, another
non-convex approach was developed in [20]. However, unlike the approach in [20], the
dimension of the iterates and the computational cost of our approach do not increase with
m. Therefore, our approach is arguably more efficient.

1.2 Organization

The rest of the paper is organized as follows. We formally introduce the group synchro-
nization problem and some definitions related to it in Section 2. In Section 3, we propose
a unified non-convex approach for solving synchronization problems over closed subgroups
of the orthogonal group. We then prove a master theorem on the performance guarantee
of the proposed approach in Section 4. In Section 5, we verify the conditions of the master
theorem for various closed subgroups of the orthogonal group and standard random mea-
surement graph and noise models. Lastly, we present results on the numerical performance
of the proposed approach in Section 7 and conclude the paper in Section 8.

1.3 Notation

We use the following notation throughout the paper. For any nd × nd (resp. nd × d)
block matrix Y , we denote by [Y ]ij (resp. [Y ]i) its (ij)-th (resp. i-th) d × d block. For
any two matrices X and Y , we denote their Kronecker product by X ⊗ Y and, if they
have conformable dimensions, their inner product by ⟨X,Y ⟩ = Tr(X⊤Y ). We use ∥X∥
and ∥X∥F to denote the operator norm and Frobenius norm of X, respectively. For any
integer k ≥ 1, we denote the k × k identity matrix by Ik. We use c, c0, c1, . . . to denote
numerical constants in mathematical statements and proofs, whose values may change from
appearance to appearance. For a graph with node set [n] := {1, . . . , n}, we denote by (i, j)
the edge between nodes i and j.
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2 Group Synchronization

2.1 Basic Setup

Let d ≥ 1 be an integer. The basic objects in our study are the d-dimensional orthogonal
group — i.e., the set of d× d orthogonal matrices

O(d) :=
{
Q ∈ Rd×d : QQ⊤ = Q⊤Q = Id

}
with matrix multiplication as the binary operation — and its closed subgroups — i.e.,
closed subsets of O(d) that form a group under matrix multiplication. These include many
of the groups mentioned in Section 1, such as the orthogonal group O(d) itself (the Boolean
group corresponds to O(1) = {−1,+1}), the special orthogonal group

SO(d) := {Q ∈ O(d) : det(Q) = 1} ,

the permutation group
P(d) := O(d) ∩ {0, 1}d×d,

and the cyclic group of order m

Zm :=

{[
cos 2kπ

m − sin 2kπ
m

sin 2kπ
m cos 2kπ

m

]
: k = 0, . . . ,m− 1

}

(which is a closed subgroup of O(2)).
Given a closed subgroup G of the orthogonal group, the problem of group synchroniza-

tion over G, denoted by G-sync, is to estimate the ground truth G∗ = (G∗
1, . . . , G

∗
n) ∈ Gn

based on noisy observations of the pairwise ratios

Cij ≈ G∗
iG

∗
j
−1, (i, j) ∈ E,

where E ⊆ {(i, j) ∈ [n]2 : i < j} is a collection of index pairs. We view Gn as a subset of
Rnd×d, so that [G∗]i = G∗

i for i = 1, . . . , n. Note that if we multiply the target elements
G∗

1, . . . , G
∗
n by a common group element Q ∈ G from the right, then the resulting elements

G∗
1Q, . . . , G

∗
nQ would yield precisely the same set of measurements since

G∗
iQ(G∗

jQ)−1 = G∗
iQQ

−1G∗
j
−1 = G∗

iG
∗
j
−1. (1)

Therefore, we can at best recover the target elements up to some unknown common trans-
formation Q ∈ G from the right. This motivates us to define the estimation error ε(G) of
an estimator G ∈ Gn as

ε(G) := min
Q∈G

∥G−G∗Q∥F . (2)

It is immediate from the definition that ε(G) = ε(GQ′) for any Q′ ∈ G.
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The pair ([n], E) forms a graph, called the measurement graph of the synchronization
problem G-sync. There are various ways to model the noisy observations of the pairwise
ratios. One way is to adopt the additive noise model

Cij = G∗
iG

∗
j
−1 + Θij , (i, j) ∈ E,

where {Θij : (i, j) ∈ E} are the noise matrices. Such a model appears frequently in the
group synchronization literature, see, e.g., [6, 14, 41, 51, 57, 59, 66]. Another way is to
adopt the multiplicative noise model

Cij = G∗
iG

∗
j
−1Θij , (i, j) ∈ E,

see, e.g., [20, 60, 74]. A special case of this is the so-called outlier noise model, where Θij

((i, j) ∈ E) is either a random element distributed uniformly (with respect to the Haar
measure) over G or the identity element of G. We will report numerical results of our
proposed non-convex approach for both the additive and multiplicative noise models in
Section 7.

Most existing works on computational approaches to synchronization problems assume
that the noise matrices {Θij : (i, j) ∈ E} are independent. We shall also make this assump-
tion in our subsequent development. However, it is worth noting that such an assumption
may not be ideal for recovery. Indeed, in applications such as cryo-electron microscopy [67],
the noisy observations {Cij : (i, j) ∈ E} are usually estimated as maximizers of the cross-
correlation, in which case the noise matrices are dependent. For approaches that address
the case of dependent noise matrices, we refer the reader to, e.g., [12] and the references
therein.

2.2 Least Squares Formulation

For any closed subgroup G of the orthogonal group O(d), since Q−1 = Q⊤ for any Q ∈ G,
we can formulate the least squares estimation problem associated with G-sync as

min
G∈Rnd×d

∑
(i,j)∈E

∥[G]i[G]⊤j − Cij∥2F

subject to [G]i ∈ G, i = 1, . . . , n.

Any optimal solution to this problem is said to be a least squares estimator for the problem
G-sync.2 By the orthogonality of the blocks [G]1, . . . , [G]n, we can rewrite the above problem
as

max
G∈Rnd×d

Tr
(
G⊤CG

)
subject to G ∈ Gn,

(3)

2By the same argument as in (1), it can be seen that the least squares estimator is not unique.
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where C ∈ Rnd×nd is the block matrix defined by

[C]ij :=


Cij , if (i, j) ∈ E,

C⊤
ji , if (j, i) ∈ E,

Id, if i = j,

0, otherwise,

i, j = 1, . . . , n. (4)

Problem (3) is non-convex and in general NP-hard, as it is equivalent to the MAX-CUT
problem when G is the Boolean group O(1) = {+1,−1}. A standard idea for tackling
problem (3) is to consider its SDP relaxations [2, 6, 41, 61, 74], which can be solved by
off-the-shelf solvers in polynomial time. However, this approach does not scale well with n
since it requires solving an SDP problem with an nd× nd matrix variable.

3 A Non-Convex Approach

Instead of convexification, we propose to tackle the non-convex problem (3) directly by a
two-stage approach. An important subroutine in our approach is the projection of a d× d
matrix onto the group G. This projection, denoted by ΠG , is defined by

ΠG (X) := argmin
Q∈G

∥X −Q∥F = argmax
Q∈G

⟨X,Q⟩, X ∈ Rd×d, (5)

so that
dist(X,G) := min

Q∈G
∥X −Q∥F = ∥X − ΠG(X)∥F .

Using the projection ΠG , we can map any nd × d matrix to the feasible region Gn of the
problem G-sync using the block-wise projection Πn

G : Rnd×d → Gn given by3[
Πn

G (Y )
]
i

= ΠG ([Y ]i) , i = 1, . . . , n.

When the group G is clear from the context, we omit the subscript G from the symbols Πn
G

and ΠG . We record a useful property of the projection Π before moving on.

Lemma 1. For any X ∈ Rd×d and any r > 0, we have

Π(r ·X) = Π(X).

The proof of Lemma 1 is straightforward and thus omitted.
We now describe the details of the two stages of our approach. The first stage aims

to find a feasible point G0 ∈ Gn that has a sufficiently small estimation error ε(G0). The-
orem 1 below provides an explicit upper bound on the estimation error ε(G0) that our

3Strictly speaking, the maps ΠG and Πn
G are set-valued since in general problem (5) can have multiple

minimizers. Nevertheless, all the results in this paper hold for any of the minimizers.
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non-convex approach requires. In Section 5.4, we propose a novel spectral-type estimator,
called the entropic spectral estimator, for general group synchronization problems and show
that under certain random models of the measurements and noise, the entropic spectral
estimator satisfies the said upper bound on the estimation error with overwhelming prob-
ability. Moreover, the entropic spectral estimator can be computed efficiently. Hence, it
can be used as G0 in the first stage.

In the second stage, starting with the initial point G0 obtained from the first stage, we
iteratively refine the estimates using GPM, which is described below.

Algorithm 1 Generalized Power Method (GPM) for G-sync

1: Input: the matrix C and an initial point G0

2: for t = 0, 1, 2, . . . do
3: Gt+1 = Πn(CGt)
4: end for

The name “generalized power method” of Algorithm 1 comes from its close resemblance
to the classic power method [62] for computing the dominant eigenvector of a matrix. In
fact, problem (3) can be seen as a constrained eigenvalue problem. More precisely, each
column v of G is not only normalized to a fixed length (indeed, ∥v∥2 =

√
n) and orthogonal

to all other columns as in the usual eigenvalue problem, but also subject to the extra
constraint that the d-dimensional sub-vectors v1:d, vd+1:2d, . . . , v(n−1)d+1:nd are all of unit

length (here, we use the Matlab notation vk:ℓ to denote the sub-vector (vk, · · · , vℓ)⊤ of v).
Despite this resemblance, the analysis of GPM for solving group synchronization problems
is highly non-trivial due to the said extra constraint.

Overall, the proposed non-convex approach enjoys several computational advantages
and is very efficient. For the first stage, the main cost of computing the entropic spectral
estimator lies in the computation of the first d eigenvectors of the matrix C and the
generation of independent copies of uniformly random orthogonal matrices, which can be
done efficiently by a host of modern eigen-solvers [50, 62] and random orthogonal matrix
samplers [30, 56, 69], respectively. For the second stage, we can see from Algorithm 1 that
GPM does not require the tuning of any parameter and can be implemented extremely
easily. The computational cost in each iteration consists of two parts: (i) d matrix-vector
multiplications for forming the product CGt and (ii) the block-wise projection Πn, which
can be decomposed into n projections Π onto the group G. As we will see in Section 5.1,
for the orthogonal group O(d), the special orthogonal group SO(d), and the permutation
group P(d), the projection Π reduces to a singular value decomposition (SVD) or a d-
dimensional linear programming problem; for the cyclic group Zm, the projection Π can
be computed using a simple, explicit formula involving trigonometric functions. Thus,
the two parts mentioned above are well-suited for parallelization and can be implemented
efficiently for many closed subgroups of the orthogonal group.
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4 A Master Theorem

In this section, we present a master theorem on the estimation performance of our proposed
non-convex approach. We begin with some definitions. Let Ē = E∪{(1, 1), . . . , (n, n)} and
consider the extended measurement graph ([n], Ē). Every node in this graph has precisely
one self-loop. For i, j ∈ [n], let wij = 1 if either (i, j) ∈ Ē or (j, i) ∈ Ē; otherwise let
wij = 0. The degree ri of node i ∈ [n] of the extended measurement graph is then given
by ri =

∑n
j=1wij . Note that for any i ∈ [n], we have ri ≥ 1 since wii = 1. Let ∆ ∈ Rnd×nd

be the block matrix defined by

[∆]ij := wij

(
[C]ij −

[
G∗G∗⊤

]
ij

)
=


Cij −G∗

iG
∗
j
⊤, if (i, j) ∈ E,

C⊤
ji −G∗

iG
∗
j
⊤, if (j, i) ∈ E,

0, otherwise,

i, j = 1, . . . , n, (6)

where C ∈ Rnd×nd is the matrix defined in (4) and G∗ ∈ Gn is the ground truth. Further-
more, let D̄ := Diag(r1, . . . , rn) ∈ Rn×n, W̄ ∈ Rn×n be the matrix defined by W̄ij = wij ,
i, j = 1, . . . , n, and e ∈ Rn be the all-one vector. Set D = D̄ ⊗ Id ∈ Rnd×nd, W =
W̄ ⊗ Id ∈ Rnd×nd, and F = ee⊤ ⊗ Id ∈ Rnd×nd. We define the following parameter for the
measurement graph:

κ :=

∥∥∥∥D−1W − 1

n
F

∥∥∥∥ .
The parameter κ is related to the connectedness of the measurement graph ([n], E), see
the discussion after Theorem 1. For any G ∈ Gn, we define

QG := argmin
Q∈G

∥G−G∗Q∥F = argmax
Q∈G

〈
G∗⊤G,Q

〉
= Π

(
G∗⊤G

)
, (7)

where the last equality follows from the definition of Π in (5). In particular, we have
ε(G) = ∥G−G∗QG∥F . For simplicity, we write Qt = QGt for all t ≥ 0.

The following theorem is the first main theoretical result of this paper, which provides a
bound on the rate at which the estimation error of the iterates generated by the proposed
non-convex approach decays under certain assumptions on the subgroup, measurement
graph, noise, and initialization.

Theorem 1 (Master Theorem for GPM). Suppose that

(i) there exists a constant α ≥ 1 such that for any t ≥ 0,

∥G∗⊤Gt − n ·Qt∥F ≤ α

2

∥∥Gt −G∗Qt
∥∥2
F

;

(ii) κ ≤ 1
32 ;
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(iii)
∥∥D−1∆

∥∥ ≤ 1
32 and

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥

F
≤ (

√
2−1)

√
n

48α ;

(iv) ε(G0) ≤
√
n

8α .

Then, the iterates {Gt}t≥1 generated by GPM satisfy

ε(Gt) ≤
(

1√
2

)t

ε(G0) + 6(
√

2 + 1)
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
, ∀t ≥ 1.

Let us elaborate on conditions (i)–(iv) in and the implications of Theorem 1 before giving
its proof. Condition (i) reflects the geometry of the subgroup G through the projection map
ΠG . Indeed, as we shall see in Section 5.1, it can be interpreted as an error bound condition,
which provides a measure of proximity of points in the convex hull of G to G itself. We
will also show in Section 5.1 that condition (i) holds with α = 1 when G is the orthogonal
group O(d), the special orthogonal group SO(d), or the permutation group P(d). We
conjecture that condition (i) actually holds for arbitrary closed subgroups of the orthogonal
group, see Conjecture 1. Condition (ii) is related to the measurement graph ([n], E) and
represents the requirement that the measurement graph needs to be sufficiently connected.
In particular, we have κ = 0 when the measurement graph is complete (i.e., wij = 1 for
all 1 ≤ i < j ≤ n). Condition (iii) depends on normalized deviation matrix D−1∆ and,
roughly speaking, requires that the noise in the measurements cannot be too large. This
condition suggests that when we quantify the information contained in the observations
{Cij : (i, j) ∈ E}, we should normalized the deviations matrices {∆ij : (i, j) ∈ E} by the
degrees {ri : i ∈ [n]} of the nodes in the (extended) measurement graph. This is consistent
with our intuition that under the same level of noise, more information is available at node
i if there are more observations related to G∗

i . For the special case of SO(2)-sync with
a complete measurement graph, a similar condition is used in the analysis of the SDP
relaxation approach, see [6, Definition 3.1]. Condition (iv) captures the requirement that
GPM needs to be initialized with a point G0 of sufficiently small estimation error.

Under the setting of Theorem 1, we see that any accumulation point G∞ of the sequence
of iterates {Gt}t≥0 generated by GPM satisfy

ε(G∞) ≤ 6(
√

2 + 1)
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
,

which implies that, in the absence of noise (i.e., ∆ = 0), every accumulation point of the
sequence {Gt}t≥0 is, up to some common transformation, equal to the ground truth G∗. In
Section 6, we will show that under standard models of noise and measurement graph, the
estimation error

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥

F
achieved by our approach is nearly optimal

for both continuous and discrete subgroups of the orthogonal group.
We should also point out that the numerical constants in the statement of Theorem 1

are not important, as they can be improved by bootstrapping the analysis. The key message
conveyed by Theorem 1 is that the estimation error of the iterates produced by the suitably

12



initialized GPM decreases at least geometrically to some quantity characterized by the
subgroup, measurement graph and noise.

Note that Theorem 1 does not guarantee the convergence of the sequence {Gt}t≥0

generated by GPM. In the recent paper [47], which appeared after this paper was posted on
arXiv, Ling considered the problem O(d)-sync under the setting of complete measurement
graph and additive Gaussian noise and showed that if the standard deviation of the noise

is on the order of
√
n√

d(
√
d+

√
logn)

, then GPM, when initialized by a spectral estimator, will

generate iterates that converge linearly to a maximum likelihood estimator (which coincides
with an optimal solution to the non-convex least squares formulation) with high probability.
However, whether such a result can be extended to settings involving other closed subgroups
of O(d) or more general measurement graphs or deterministic noise models remains open.

4.1 Proof of Theorem 1

We first establish an useful inequality for the projection map.

Lemma 2. For any X,Y ∈ Rd×d, we have

∥Π (X + Π(X) + Y ) − Π (X)∥F ≤ 2 ∥Y ∥F .

Proof. Let Q = Π (X + Π(X) + Y ). We have

∥X + Π(X) + Y −Q∥2F ≤ ∥X + Π(X) + Y − Π(X)∥2F .

Simply algebraic manipulation on the last inequality yields

⟨Y,Q− Π(X)⟩ ≥ ⟨X + Π(X),Π(X) −Q⟩ . (8)

Similarly, we also have
∥X − Π(X)∥2F ≤ ∥X −Q∥2F ,

which implies that
⟨X,Π(X) −Q⟩ ≥ 0. (9)

Therefore,

∥Y ∥F · ∥Q− Π(X)∥F ≥ ⟨Y,Q− Π(X)⟩ ≥ ⟨X + Π(X),Π(X) −Q⟩

≥ ⟨Π(X),Π(X) −Q⟩ = ⟨Π(X),Π(X) −Q⟩ = d− ⟨Π(X), Q⟩ =
1

2
∥Π(X) −Q∥2F ,

where the first inequality follows from the Cauchy-Schwarz inequality, the second from (8),
and the third from (9). If ∥Q− Π(X)∥F = 0, then Π (X + Π(X) + Y ) = Π(X) and hence
the desired inequality holds trivially. If ∥Q− Π(X)∥F ̸= 0, then we have arrived at

∥Y ∥F ≥ 1

2
∥Π(X) −Q∥F ,

which completes the proof.

13



Several interesting consequences are immediate from Lemma 2. First, by taking Y to
be the zero matrix, we see that for any X ∈ Rd×d,

Π(X + Π(X)) = Π(X).

Second, by using the triangle inequality and Lemma 2, we can easily get that for any
X,Y ∈ Rd×d and Q ∈ G,

∥Π (X + Y ) −Q∥F ≤ 2 ∥Y −Q∥F + 3 ∥Π (X) −Q∥F . (10)

The inequality (10) will be used in the proof of the master theorem. Moreover, if we set
X = rQ for r > 0 in (10) and take the limit r → 0, then we have

∥Π (Y ) −Q∥F ≤ 2 ∥Y −Q∥F . (11)

The inequality (11) was established in [51, Proposition 3.3] for the special case of SO(2)
via a completely different proof. Therefore, Lemma 2 is not only a strengthened but also a
more general version of [51, Proposition 3.3]. Since [51, Proposition 3.3] has already been
applied in a number of works to study phase synchronization problems [83] or even other
estimation problems [26, 72], we believe that Lemma 2 will find further applications in
synchronization or other estimation/optimization problems over general subgroups of the
orthogonal group.

The proof of Theorem 1 also relies on the following technical lemma:

Lemma 3. Let α ≥ 1 be given. If for some t ≥ 0,∥∥∥G∗⊤Gt − n ·Qt
∥∥∥
F
≤ α

2

∥∥Gt −G∗Qt
∥∥2
F
,

then

ε(Gt+1) ≤ 4
√

2

(
α · ε(Gt)

2
√
n

+ κ+
∥∥D−1∆

∥∥) ε(Gt) + 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
.

Proof. By the definition of Gt+1 and Lemma 1, we have

ε(Gt+1) = min
Q∈G

∥Gt+1 −G∗Q∥F ≤ ∥Gt+1 −G∗Qt∥F = ∥Πn
(
2D−1CGt

)
−G∗Qt∥F .

Using (10) with Q = G∗
iQ

t,

X = [G∗Qt + 2D−1∆G∗Qt]i,

and

Y = [G∗Qt + 2
(
D−1(C − ∆)Gt −G∗Qt

)
+ 2D−1∆(Gt −G∗Qt)]i

14



for i ∈ [n], we get

ε(Gt+1)

≤ 2
√

2
∥∥G∗Qt + 2

(
D−1(C − ∆)Gt −G∗Qt

)
+ 2D−1∆(Gt −G∗Qt) −G∗Qt

∥∥
F

+ 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

= 4
√

2
∥∥D−1(C − ∆)Gt −G∗Qt +D−1∆(Gt −G∗Qt)

∥∥
F

+ 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

≤ 4
√

2
∥∥D−1(C − ∆)Gt −G∗Qt

∥∥
F

+ 4
√

2
∥∥D−1∆

∥∥ · ε(Gt)

+ 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
.

(12)

Using the definitions of C in (4)and ∆ in (6), it is easy to verify that [C−∆]ij = wijG
∗
iG

∗
j
⊤

for i, j ∈ [n]. It follows that∥∥D−1(C − ∆)Gt −G∗Qt
∥∥
F

=
∥∥∥D−1 · BlkDiag(G∗

1, . . . , G
∗
n) ·W · BlkDiag

(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt −G∗Qt

∥∥∥
F

=
∥∥∥BlkDiag(G∗

1, . . . , G
∗
n)
(

(D−1W ) · BlkDiag
(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

)∥∥∥
F

=
∥∥∥D−1W

(
BlkDiag

(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

)∥∥∥
F

≤ 1

n

∥∥∥F (BlkDiag
(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

)∥∥∥
F

+

∥∥∥∥(D−1W − 1

n
F

)(
BlkDiag

(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

)∥∥∥∥
F

≤ 1√
n

∥∥∥G∗⊤Gt − n ·Qt
∥∥∥
F

+ κ ·
∥∥Gt −G∗Qt

∥∥
F

≤
(
α · ε(Gt)

2
√
n

+ κ

)
ε(Gt),

(13)

where the second equality is due to the fact that D−1 and BlkDiag(G∗
1, . . . , G

∗
n) commute

and the identity
G∗Qt = BlkDiag(G∗

1, . . . , G
∗
n) · (e⊗Qt),

the third equality is due to the fact that D−1W (e ⊗ Qt) = e ⊗ Qt, the second-to-last
inequality is due to the identities

F
(

BlkDiag
(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

)
= e⊗

(
G∗⊤Gt − n ·Qt

)
,∥∥∥BlkDiag

(
G∗

1
⊤, . . . , G∗

n
⊤
)
·Gt − e⊗Qt

∥∥∥
F

=
∥∥Gt − BlkDiag (G∗

1, . . . , G
∗
n) · (e⊗Qt)

∥∥
F

=
∥∥Gt −G∗Qt

∥∥
F
,
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and the last inequality is due to the assumption of the lemma and the definition of Qt.
The desired result now follows by putting (12) and (13) together.

Armed with Lemma 3, we can now prove the master theorem.

Proof of Theorem 1. We first show by induction that for any t ≥ 0,

ε(Gt) ≤
√
n

8α
. (14)

For t = 0, this follows directly from the supposition that ε(G0) ≤
√
n

8α . Next, we assume

that ε(Gt) ≤
√
n

8α for some t ≥ 0. By Lemma 3, conditions (ii)–(iii), and the inductive
hypothesis,

ε(Gt+1) ≤ 4
√

2

(
α · ε(Gt)

2
√
n

+ κ+
∥∥D−1∆

∥∥) ε(Gt) + 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

≤ 4
√

2

(
1

16
+

1

32
+

1

32

) √
n

8α
+

(2 −
√

2)
√
n

16α
=

√
n

8α
,

which yields (14). Using Lemma 3, conditions (ii)–(iii) and inequality (14), we have that

ε(Gt+1) ≤ 4
√

2

(
α · ε(Gt)

2
√
n

+ κ+
∥∥D−1∆

∥∥) ε(Gt) + 3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

≤ 1√
2
· ε(Gt) + 3

√
2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

≤ 1√
2
·
(

1√
2
· ε(Gt−1) + 3

√
2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

)
+ 3

√
2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

=

(
1√
2

)2

ε(Gt−1) +

(
1 +

1√
2

)
3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

≤
(

1√
2

)t+1

ε(G0) +

(
1 +

1√
2

+

(
1√
2

)2

+ · · ·

)
3
√

2
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F

=

(
1√
2

)t+1

ε(G0) + 6(
√

2 + 1)
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
,

which completes the proof.

In the next section, we show that condition (i) in Theorem 1 is satisfied by various
closed subgroups of the orthogonal group, while conditions (ii) and (iii) are satisfied by
certain random measurement graph and random noise models. Moreover, we propose a
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novel spectral-type estimator and show that for the said subgroups and under the said
random measurement graph and noise models, condition (iv) in Theorem 1 is satisfied by
the proposed estimator. These results demonstrate the utility and power of Theorem 1.

5 Verifying the Conditions of the Master Theorem

5.1 Error-Bound Geometry of the Subgroup G

In order to apply the master theorem in the last section, the subgroup G has to satisfy
certain geometric conditions. In this section, we formulate these conditions and verify them
for four specific subgroups, namely the orthogonal group O(d), the special orthogonal group
SO(d), the permutation group P(d), and the cyclic group Zm. Along the way, we show
that the projection maps associated with these subgroups can be computed in a tractable
manner.

To begin, let conv(G) denote the Euclidean convex hull of the subgroup G in Rd×d (not
the geodesic convex hull on O(d)). It is easy to check that a point X ∈ conv(G) lies in the
subgroup G if and only if any (and hence all) of the following three quantities vanishes:

dist(X,G), Tr(Id −X⊤ΠG(X)), d− ∥X∥2F .

Therefore, these quantities can serve as proximity measures to G for points in conv(G). We
now investigate the connection between our non-convex approach to the geometry of G, as
reflected through the ratios of these proximity measures. The precise geometric conditions
are given as follows.

Condition 1. There exists a constant α ≥ 1 such that

dist(X,G) ≤ αTr(Id −X⊤ΠG(X)), ∀X ∈ conv(G).

Condition 2. There exists a constant β ∈ (0, 1] such that

β Tr(Id −X⊤ΠG(X)) ≤ d− ∥X∥2F , ∀X ∈ conv(G).

The above two conditions play an important role in our development. Indeed, if we
take X = 1

nG
∗⊤G, then Condition 1 immediately implies that∥∥∥G∗⊤G− n ·QG

∥∥∥
F
≤ αTr

(
n · Id −Q⊤

GG
∗⊤G

)
=
α

2
∥G−G∗QG∥2F ,

which is precisely condition (i) in the master theorem. The usefulness of Condition 2 will
become clear when we study the initialization for GPM in Section 5.4.

It is worth noting that Conditions 1 and 2 are reminiscent of error bound conditions,
which have been extensively studied in the optimization literature and applied to analyze
the convergence rates of various iterative methods, see, e.g., [50, 75, 79, 81, 82, 84] and the
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references therein. Roughly speaking, an error bound condition postulates that the distance
function associated with some target set (often difficult to characterize theoretically and
not computable in practice) is bounded above by a continuous surrogate function (often
easier to characterize theoretically and compute in practice) that vanishes on the target set.
In the context of synchronization problems, such a condition was first introduced in [51]
to study the optimization performance of GPM.

The main result of this subsection is summarized in the following theorem, which will
be proved in a case-by-case manner.

Theorem 2. For G = O(d) or G = SO(d), the projection ΠG can be computed in closed
form via the SVD of a d× d matrix; for G = P(d), the projection ΠG can be computed by
solving a d-dimensional linear programming problem; for G = Zm, the projection ΠG can
be computed in closed form via the formula in Proposition 2. Moreover, Conditions 1 and
2 hold for the groups O(d), SO(d), P(d), and Zm with

α =


1, if G = O(d), SO(d), or P(d),

1, if G = Zm with m = 1, 2,(√
2 sin π

m

)−1
, if G = Zm with m ≥ 3

and

β =



1, if G = O(d),
1
2 , if G = SO(d),
2
d , if G = P(d),

1, if G = Zm with m = 1,

sin2 π
m , if G = Zm with m ≥ 2.

Motivated by Theorem 2, we formulate the following conjecture:

Conjecture 1. Let G be any closed subgroup of the orthogonal group O(d). Then, there
exist constants α ≥ 1 and β ∈ (0, 1] such that

dist(X,G)

α
≤ Tr(Id −X⊤ΠG(X)) ≤

d− ∥X∥2F
β

, ∀X ∈ conv(G).

The validity of Conjecture 1 would imply that condition (i) in the master theorem is
superfluous.

5.1.1 Proof of Theorem 2: Orthogonal Group O(d)

The projection ΠO(d) is given by the solution to the well-known orthogonal Procrustes

problem [33], i.e., for any X ∈ Rd×d with SVD UXΣXV
⊤
X , we have

ΠO(d)(X) = UXV
⊤
X .
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Now, let X ∈ conv(O(d)) be arbitrary. By Carathéodory’s theorem, there exist
Q1, . . . , QL ∈ O(d) and ω1, . . . , ωL ≥ 0 such that

L∑
ℓ=1

ωℓ = 1 and X =
L∑

ℓ=1

ωℓQℓ.

Then, for any j ∈ [d],

σj(X) = σj

(
L∑

ℓ=1

ωℓQℓ

)
≤

L∑
ℓ=1

ωℓσj (Qℓ) =
L∑

ℓ=1

ωℓ = 1, (15)

where σj(·) denotes the j-th largest singular value. This implies that Id − ΣX is positive
semidefinite and

dist(X,O(d)) =
∥∥X − ΠO(d)(X)

∥∥
F

=
∥∥∥UXΣXV

⊤
X − UXV

⊤
X

∥∥∥
F

= ∥Id − ΣX∥F

≤ Tr (Id − ΣX) = Tr
(
Id − VXΣXVX

⊤
)

= Tr
(
Id −X⊤ΠO(d)(X)

)
.

Thus, Condition 1 holds for O(d) with α = 1. Furthermore, we have

Tr
(
Id −X⊤ΠO(d)(X)

)
= Tr (Id − ΣX) =

d∑
j=1

(1 − σj(X))

≤
d∑

j=1

(1 − σj(X))(1 + σj(X)) =

d∑
j=1

(1 − σ2j (X)) = d− ∥X∥2F ,

(16)

which shows that Condition 2 holds for O(d) with β = 1.

5.1.2 Proof of Theorem 2: Special Orthogonal Group SO(d)

We adopt a similar strategy to the one used in Section 5.1.1 to establish Condition 1
for SO(d). First, we have the following result, which gives an explicit formula for the
projection ΠSO(d) and is known as the Kabsch algorithm [43].

Lemma 4. Let X ∈ Rd×d be a matrix with SVD X = UXΣXV
⊤
X . Let IX ∈ Rd×d be the

diagonal matrix defined by IX = Diag(1, . . . , 1, det(UXV
⊤
X )). Then, we have

ΠSO(d) (X) = UXIXV
⊤
X .

Now, let X ∈ conv(SO(d)) be arbitrary. Using Lemma 4, we have

dist(X,SO(d)) =
∥∥X − ΠSO(d)(X)

∥∥
F

=
∥∥∥UXΣXVX

⊤ − UXIXVX
⊤
∥∥∥
F

= ∥Id − ΣXIX∥F

≤ Tr (Id − ΣXIX) = Tr
(
Id − VXΣXIXVX

⊤
)

= Tr
(
Id −X⊤ΠSO(d)(X)

)
,
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where the inequality follows from (15). This shows that Condition 1 holds for SO(d) with
α = 1.

To establish Condition 2 for SO(d), let X ∈ conv(SO(d)) be arbitrary and consider
first the case where det(UXVX) = 1. Then, we have IX = Id and ΠSO(d)(X) = ΠO(d)(X).
It follows from (16) that

Tr
(
Id −X⊤ΠSO(d)(X)

)
= Tr

(
Id −X⊤ΠO(d)(X)

)
≤ d− ∥X∥2F .

Next, consider the case where det(UXVX) = −1, i.e., ΠO(d)(X) ∈ O(d) \ SO(d). Since
X ∈ conv(SO(d)), by Carathéodory’s theorem, there exist Q1, . . . , QL ∈ SO(d) and
ω1, . . . , ωL ≥ 0 such that

L∑
ℓ=1

ωℓ = 1 and X =
L∑

ℓ=1

ωℓQℓ.

Hence, we have

d− ∥X∥2F ≥ Tr
(
Id −X⊤ΠO(d)(X)

)
=

L∑
ℓ=1

ωℓ

d∑
j=1

(
1 − λj(Q

⊤
ℓ ΠO(d)(X))

)
≥

L∑
ℓ=1

ωℓ · 2 = 2,

(17)

where the first inequality follows from (16) and the second inequality follows from the fact
that Q⊤

ℓ ΠO(d)(X) ∈ O(d) \ SO(d) and hence the eigenvalues of Q⊤
ℓ ΠO(d)(X) are either +1

or −1 with at least one being −1. This gives

Tr
(
Id −X⊤ΠSO(d)(X)

)
= Tr (Id − ΣXIX) = 1 + σd(X) +

d−1∑
j=1

(1 − σj(X))

≤ 2 +
d−1∑
j=1

(1 − σ2j (X)) ≤ 2 +
d∑

j=1

(1 − σ2j (X)) ≤ 2
(
d− ∥X∥2F

)
,

where the first equality follows from Lemma 4, the second equality follows from the as-
sumption that det(UXVX) = −1, the first inequality follows from the fact that σj(X) ≤ 1
for j = 1, . . . , d, and the last inequality follows from (17). This shows that Condition 2
holds for SO(d) with β = 1

2 .

5.1.3 Proof of Theorem 2: Permutation Group P(d)

It is easy to verify that the projection ΠP(d) is given by an optimal solution to the assign-

ment problem [19], i.e., for any X ∈ Rd×d, we have

ΠP(d)(X) = argmax
Q∈P(d)

⟨Q,X⟩.
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The above problem can be solved in polynomial time by linear programming or the Hun-
garian (also known as the Kuhn–Munkres) algorithm.

To establish Condition 1 for P(d), we first note that for any Q ∈ P(d), we either have
d = Tr(Q) or d− Tr(Q) ≥ 2. It follows that

∥Id −Q∥2F =
d∑

i=1

d∑
j=1

(Id −Q)2ij =
d∑

i=1

d∑
j=1

|(Id −Q)ij |

=
∑
i ̸=j

Qij +
d∑

i=1

(1 −Qii) = 2d− 2 Tr(Q) ≤ (d− Tr(Q))2.

(18)

For any Y ∈ conv(P(d)), by Carathéodory’s theorem, there exist Q1, . . . , QL ∈ P(d) and
ω1, . . . , ωL ≥ 0 such that

L∑
ℓ=1

ωℓ = 1 and Y =

L∑
ℓ=1

ωℓQℓ.

Using (18), we get

∥Id − Y ∥F ≤
L∑

ℓ=1

ωℓ ∥Id −Qℓ∥F ≤
L∑

ℓ=1

ωℓ (d− Tr (Qℓ)) = d− Tr(Y ). (19)

Now, let X ∈ conv(P(d)) be arbitrary. Since ΠP(d)(X)⊤X ∈ conv(P(d)), by invoking (19)

with Y = ΠP(d)(X)⊤X, we obtain

dist(X,P(d)) =
∥∥X − ΠP(d)(X)

∥∥
F

=
∥∥∥ΠP(d)(X)⊤X − Id

∥∥∥
F

≤ d− Tr
(

ΠP(d)(X)⊤X
)

= Tr
(
Id −X⊤ΠP(d)(X)

)
.

This shows that Condition 1 holds for P(d) with α = 1.
We will need the following definition.

Definition 1 (Minimum Separation). The minimum separation of a discrete set G is
defined as

τ = min
Q,Q′∈G, Q ̸=Q′

∥Q−Q′∥F .

To establish Condition 2 for P(d), we prove the following stronger result, which relates
β to the minimum separation and states that Condition 2 actually holds for any discrete
subgroup of O(d).
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Proposition 1. Let G be a discrete subgroup of O(d) with at least two elements and
minimum separation τ . Then, Condition 2 holds for G with

β =
τ2

2d
.

Proof. The compactness of O(d) implies that G must be finite. Hence, we may let G =
{Q1, . . . , QL} with Q1, . . . , QL ∈ O(d). For any X ∈ conv(G), there exist ω1, . . . , ωL ≥ 0
such that

L∑
ℓ=1

ωℓ = 1 and X =
L∑

ℓ=1

ωℓQℓ.

Without loss of generality, suppose that ω1 = maxℓ∈[L] ωℓ. Then, we have

max
Q∈G

Tr(X⊤Q) ≥ Tr(X⊤Q1) = Tr

(
L∑

ℓ=1

ωℓQ
⊤
ℓ Q1

)
≥ ω1d+ (1 − ω1) min

i ̸=j
Tr(Q⊤

i Qj),

which implies that

Tr
(
Id −X⊤ΠG(X)

)
= d− max

Q∈G
Tr(X⊤Q) ≤ (1 − ω1)

(
d− min

i ̸=j
Tr(Q⊤

i Qj)

)
. (20)

On the other hand, we have

∥X∥2F =

L∑
ℓ=1

ω2
ℓ ∥Qℓ∥2F +

∑
ℓ′ ̸=ℓ

ωℓωℓ′ Tr(Q⊤
ℓ′Qℓ) ≤

L∑
ℓ=1

ω2
ℓd+

∑
ℓ′ ̸=ℓ

ωℓωℓ′ max
i ̸=j

Tr(Q⊤
i Qj)

≤
L∑

ℓ=1

ω2
ℓd+

(
1 −

L∑
ℓ=1

ω2
ℓ

)
max
i ̸=j

Tr(Q⊤
i Qj) = d−

(
d− max

i ̸=j
Tr(Q⊤

i Qj)

)(
1 −

L∑
ℓ=1

ω2
ℓ

)

≤ d−
(
d− max

i ̸=j
Tr(Q⊤

i Qj)

)
(1 − ω1) ,

which, upon substitution into (20), shows that Condition 2 holds for G with

β =
d− maxi ̸=j Tr(Q⊤

i Qj)

d− mini ̸=j Tr(Q⊤
i Qj)

.

Finally, note that

2

(
d− min

i ̸=j
Tr(Q⊤

i Qj)

)
= max

i ̸=j
∥Qi −Qj∥2F = 2d,

and that

2

(
d− max

i ̸=j
Tr(Q⊤

i Qj)

)
= min

i ̸=j
∥Qi −Qj∥2F = τ2.

This completes the proof.

When G = P(d), a simple calculation shows that τ = 2 . Hence, by Proposition 1,
Condition 2 holds for P(d) with β = 2

d .
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5.1.4 Proof of Theorem 2: The Cyclic Group Zm

We first prove that Condition 1 holds for Zm for any integer m ≥ 1. In particular, we show
that

dist(X,Zm) ≤

Tr
(
Id −X⊤ΠZm(X)

)
, if m = 1, 2,

1√
2 sin( π

m)
Tr
(
Id −X⊤ΠZm(X)

)
, if m ≥ 3.

To do so, we note that every X ∈ conv(Zm) is of the form

X =

[
x −y
y x

]
and gives rise to a complex number zX ∈ C defined by zX = x+iy, where i is the imaginary
unit. Let ℜ(z) denote the real part of any complex number z ∈ C,

Qk =

[
cos 2kπ

m − sin 2kπ
m

sin 2kπ
m cos 2kπ

m

]
, k = 0, . . . ,m− 1, (21)

and
k̂(X) ∈ argmin

k∈{0,...,m−1}
∥X −Qk∥2F .

For m = 1, we have k̂(X) = 0 for any X ∈ conv(Z1) and hence ΠZ1(X) = Q0 = I2. It
follows that

dist(X,Z1) = ∥X − I2∥F ≤ Tr(I2 −X) = Tr(I2 −X⊤ΠZ1(X)),

i.e., Condition 1 holds for Z1 with α = 1. For m = 2, if ℜ(zX) = x ≥ 0, then k̂(X) = 0
and ΠZ2(X) = Q0 = I2; if ℜ(zX) = x < 0, then k̂(X) = 1 and ΠZ2(X) = Q1 = −I2.
Therefore, we have

dist(X,Z2) =

{
∥X − I2∥F
∥X + I2∥F

≤
{

Tr(I2 −X)
Tr(I2 +X)

≤ Tr(I2 −X⊤ΠZ2(X)),
if x ≥ 0,
if x < 0,

which shows that Condition 1 holds for Z2 with α = 1.
Now, consider the case where m ≥ 3. On one hand, we have

dist(X,Zm) =
∥∥∥X −Qk̂(X)

∥∥∥
F

=
√

2
∣∣∣zX − zQk̂(X)

∣∣∣ =
√

2

∣∣∣∣zX − e
2k̂(X)πi

m

∣∣∣∣ , (22)

where | · | denotes the modulus of a complex number. On the other hand,

Tr
(
I2 −X⊤ΠZm(X)

)
= 2 − Tr(X⊤Qk̂(X)) = 2

(
1 −ℜ

(
zX · e−

2k̂(X)πi
m

))
. (23)
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(a) R0 (b) 1 −R0

Figure 1: The regions R0 and 1 −R0 associated with the cyclic group Z6. On panel (a),
the blue points are the group elements of Z6 and the points on the two red line segments
are the maximizers of the ratio (25).

Therefore, in order to establish Condition 1 for Zm, we need to bound the ratio∣∣∣z − e
2kπi
m

∣∣∣
1 −ℜ

(
z · e−

2kπi
m

) (24)

subject to the constraint that z = zX for some X ∈ conv(G) with k̂(X) = k. By symmetry,
we can assume without loss of generality that k̂(X) = 0 and consider the shaded region
R0 shown in Figure 1(a), which is defined by

R0 :=

{
z ∈ C : z ∈ conv({zQ0 , . . . , zQm−1}), 0 ∈ argmin

k∈{0,...,m−1}

∣∣∣z − e
2kπi
m

∣∣∣} .
Over the region R0, the ratio (24) reduces to

|1 − z|
1 −ℜ (z)

. (25)

Let z1 and z2 be the midpoints between 1 and its two neighboring group elements e2πi/m

and e−2πi/m, respectively. We claim that any point on the line segments [1, z1] ∪ [1, z2]
(see Figure 1(a)) is a maximizer of the ratio (25) over R0. To see this, we consider the
polar representation z′ = |z′| · eiϕ of the transformed variable z′ = 1 − z, which lies in the
region 1−R0 (see Figure 1(b)). By the angle sum formula for the regular m-gon, we have
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ϕ ∈
[
−π
(
1
2 − 1

m

)
, π
(
1
2 − 1

m

)]
. It follows that

max
z∈R0

|1 − z|
1 −ℜ (z)

= max
z′∈1−R0

|z′|
ℜ(z′)

= max
ϕ∈[−π( 1

2
− 1

m),π( 1
2
− 1

m)]

1

ℜ(eiϕ)

= max
ϕ∈[−π( 1

2
− 1

m),π( 1
2
− 1

m)]

1

cosϕ
≤ 1

cos
(
1
2 − 1

m

)
π

=
1

sin π
m

.

(26)

This proves the claim since

|1 − z|
1 −ℜ (z)

=
1

sin π
m

, ∀z ∈ [1, z1] ∪ [1, z2].

Now, using (22), (23), and (26), we get

dist(X,Zm) ≤ 1√
2 sin π

m

Tr
(
Id −X⊤ΠZm(X)

)
.

This shows that Condition 1 holds for Zm (where m ≥ 3) with α = 1√
2 sin π

m

.

Next, we establish Condition 2 for Zm with m ≥ 1. It is trivial to show that Condition 2
holds for Z1 with β = 1. For m ≥ 2, since Zm is a discrete subgroup of O(2), we compute

τ =
∣∣∣1 − e

2πi
m

∣∣∣ =

√
2 − 2 cos

2π

m
= 2 sin

2π

m

and apply Proposition 1 to conclude that Condition 2 holds for Zm with

β =
4 sin2 2π

m

2(2)
= sin2 π

m
.

Finally, let us derive an explicit formula for the projection ΠZm , where m ≥ 1.

Proposition 2. For any

X =

[
x11 x12
x21 x22

]
∈ R2×2,

define

θ =

arccos x21−x12√
(x11+x22)2+(x21−x12)2

, if x11 + x22 ≥ 0,

2π − arccos x21−x12√
(x11+x22)2+(x21−x12)2

, if x11 + x22 < 0,

which always lies in [0, 2π). Then, for any m ≥ 1,

ΠZm(X) =

Qround(m
4
−mθ

2π ), if 0 ≤ θ ≤ π
2 + π

m ,

Qround( 5m
4

−mθ
2π ), if π

2 + π
m < θ < 2π,

where round( · ) rounds a number to its closest integer and Qk is defined in (21).
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Proof. The result is trivial when m = 1. Thus, we assume that m ≥ 2. Then, we have

argmin
k∈{0,...,m−1}

∥X −Qk∥2F = argmin
k∈{0,...,m−1}

⟨X,Qk⟩

= argmin
k∈{0,...,m−1}

{
(x11 + x22) cos

2kπ

m
+ (x21 − x12) sin

2kπ

m

}
= argmin

k∈{0,...,m−1}
sin

(
θ +

2kπ

m

)
.

Since θ can take any value in [0, 2π) and 2kπ
m lies in [0, 2(m−1)π

m ], we have

0 ≤ θ +
2kπ

m
≤ 2π +

2(m− 1)π

m
< 4π.

Moreover, the function φ 7→ sinφ has two peaks in
[
0, 2π + 2(m−1)π

m

)
, namely at φ = π

2

and φ = 5π
2 . It follows that

argmin
k∈{0,...,m−1}

∥X −Qk∥2F = argmin
k∈{0,...,m−1}

min

{∣∣∣∣θ +
2kπ

m
− π

2

∣∣∣∣ , ∣∣∣∣θ +
2kπ

m
− 5π

2

∣∣∣∣} . (27)

We first consider the case where 0 ≤ θ ≤ π
2 + π

m . Note that

θ +
2kπ

m
≤ π

2
+
π

m
+

2(m− 1)π

m
=

5π

2
− π

m
,

which implies that ∣∣∣∣θ +
2kπ

m
− 5π

2

∣∣∣∣ ≥ π

m
.

Also, since
m

4
− mθ

2π
≥ m

4
− m

2π

(π
2

+
π

m

)
= −1

2
,

we have round
(
m
4 − mθ

2π

)
∈ {0, . . . ,m− 1}. Setting k = round

(
m
4 − mθ

2π

)
, we get∣∣∣∣k − (m4 − mθ

2π

)∣∣∣∣ ≤ 1

2

and hence ∣∣∣∣θ +
2kπ

m
− π

2

∣∣∣∣ ≤ π

m
.

These, together with (27), yield

argmin
k∈{0,...,m−1}

∥X −Qk∥2F = argmin
k∈{0,...,m−1}

∣∣∣∣θ +
2kπ

m
− π

2

∣∣∣∣
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= argmin
k∈{0,...,m−1}

∣∣∣∣k − (m4 − mθ

2π

)∣∣∣∣ = round

(
m

4
− mθ

2π

)
.

Next, we consider the case where π
2 + π

m < θ < 2π. Note that

θ +
2kπ

m
− π

2
>
π

2
+
π

m
− π

2
=
π

m
,

which implies that ∣∣∣∣θ +
2kπ

m
− π

2

∣∣∣∣ ≥ π

m
.

Also, since
5m

4
− mθ

2π
<

5m

4
− m

2π

(π
2

+
π

m

)
= m− 1

2
,

we have round
(
5m
4 − mθ

2π

)
∈ {0, . . . ,m− 1}. Setting k = round

(
5m
4 − mθ

2π

)
, we get∣∣∣∣k − (5m

4
− mθ

2π

)∣∣∣∣ ≤ 1

2

and hence ∣∣∣∣θ +
2kπ

m
− 5π

2

∣∣∣∣ ≤ π

m
.

These, together with (27), yield

argmin
k∈{0,...,m−1}

∥X −Qk∥2F = argmin
k∈{0,...,m−1}

∣∣∣∣θ +
2kπ

m
− 5π

2

∣∣∣∣
= argmin

k∈{0,...,m−1}

∣∣∣∣k − (5m

4
− mθ

2π

)∣∣∣∣ = round

(
5m

4
− mθ

2π

)
.

This completes the proof.

5.2 Erdős-Rényi Measurement Graphs

Recall from our discussion in Section 4 that the parameter κ can be viewed as a measure of
the connectivity of the measurement graph ([n], E). In particular, when the measurement
graph is complete, we have κ = 0, which shows that condition (ii) in the master theorem
is satisfied. As it turns out, the condition can be satisfied by measurement graphs that are
much sparser. In this subsection, we show that if the measurement graph is an Erdős-Rényi
random graph with observation rate p ≥ c logn

n for some constant c > 0 — i.e., the edge
weights {wij : 1 ≤ i < j ≤ n} are independent and identically distributed (i.i.d.) Bernoulli
random variables with

wij =

{
1, with probability p,

0, with probability 1 − p,
1 ≤ i < j ≤ n
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— then condition (ii) in the master theorem will be satisfied with high probability. More
precisely, we have the following result:

Theorem 3. Suppose that the measurement graph is an Erdős-Rényi random graph with
observation rate p ∈ (0, 1]. Then, there exist constants c1, c2 > 0 such that whenever
p ≥ c1 logn

n , we will have κ ≤ 1
32 with probability at least 1 − 1

nc2 .

Proof. Using the definitions of D, W , F , and κ in Section 4, we compute

κ =

∥∥∥∥D−1W − 1

n
F

∥∥∥∥ =

∥∥∥∥(D̄ ⊗ Id)−1(W̄ ⊗ Id) − 1

n
(ee⊤ ⊗ Id)

∥∥∥∥
=

∥∥∥∥(D̄−1 ⊗ Id
)

(W̄ ⊗ Id) − 1

n
(ee⊤ ⊗ Id)

∥∥∥∥
=

∥∥∥∥(D̄−1W̄
)
⊗ Id −

1

n
(ee⊤ ⊗ Id)

∥∥∥∥
=

∥∥∥∥(D̄−1W̄ − 1

n
ee⊤
)
⊗ Id

∥∥∥∥
=

∥∥∥∥D̄−1W̄ − 1

n
ee⊤
∥∥∥∥ ,

where the second line follows from the fact that (A1⊗A2)
−1 = A−1

1 ⊗A−1
2 for any invertible

matrices A1 and A2, the third line follows from the fact that (A1 ⊗ A2)(A3 ⊗ A4) =
(A1A3) ⊗ (A2A4) for any matrices A1, A2, A3, A4 with conformable dimensions, the fourth
line follows from the bilinearity of the Kronecker product, and the last line follows from
the fact that ∥A1 ⊗A2∥ = ∥A1∥ · ∥A2∥ (these properties of the Kronecker product can be
found in, e.g., [37, Chapter 4.2]). Now, we bound∥∥∥∥D̄−1W̄ − 1

n
ee⊤
∥∥∥∥ ≤

∥∥∥∥In − 1

p(n− 1) + 1
D̄

∥∥∥∥ · ∥∥D̄−1W̄
∥∥+

1

p(n− 1) + 1

∥∥W̄ − E[W̄ ]
∥∥

+

∥∥∥∥ 1

p(n− 1) + 1
E[W̄ ] − 1

n
ee⊤
∥∥∥∥ .

Since D̄−1W̄ has non-negative entries and each of its rows sums to 1, we have
∥∥D̄−1W̄

∥∥ ≤ 1
by [36, Corollary 6.1.5]. Moreover, observe that∥∥∥∥In − 1

p(n− 1) + 1
D̄

∥∥∥∥ = max
i∈[n]

∣∣∣∣1 − ri
p(n− 1) + 1

∣∣∣∣ ,
where ri =

∑n
j=1wij = 1 +

∑
j ̸=iwij for i = 1, . . . , n. By Chernoff’s inequality (cf. [73,

Exercise 2.3.5]), for any t ∈ (0, 1], we have

Pr

∣∣∣∣∣∣
∑
j ̸=i

wij − p(n− 1)

∣∣∣∣∣∣ ≥ tp(n− 1)

 ≤ 2 exp

(
−p(n− 1)t2

3

)
, i = 1, . . . , n.
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It follows that for any t ∈ (0, 1],

Pr

(∥∥∥∥In − 1

p(n− 1) + 1
D̄

∥∥∥∥ ≥ tp(n− 1)

p(n− 1) + 1

)
≤ 2n · exp

(
−p(n− 1)t2

3

)
.

Next, by adapting the results in [13, Examples 3.14 and 6.8] and [10, Corollary 3.6], we
have, for any p ≥ logn

n , that

Pr
(∥∥W̄ − E[W̄ ]

∥∥ ≥ 172
√
pn
)
≤ exp

(
−pn

8

)
, (28)

see the proof of [53, Lemma 2]. Lastly, since E[W̄ ] = (1 − p)In + p · ee⊤, we have∥∥∥∥ 1

p(n− 1) + 1
E[W̄ ] − 1

n
ee⊤
∥∥∥∥ =

∥∥∥∥ 1 − p

p(n− 1) + 1
In +

(
p

p(n− 1) + 1
− 1

n

)
ee⊤
∥∥∥∥

=
1 − p

p(n− 1) + 1
.

Upon setting t = 1
66 and assuming that p ≥ (172×66)2 logn

n , we conclude that

κ ≤ tp(n− 1)

p(n− 1) + 1
+

172
√
pn

p(n− 1) + 1
+

1 − p

p(n− 1) + 1
<

1

32

with probability at least 1 − 1
n9000 .

5.3 Additive Sub-Gaussian Noise Model

Recall that under the additive noise model, the measurements are given by

Cij = G∗
iG

∗
j
⊤ + Θij , (i, j) ∈ E. (29)

The purpose of this subsection is to show that condition (iii) in the master theorem holds
for a large class of noise matrices {Θij : (i, j) ∈ E}. Specifically, we focus on the case
where {Θij : (i, j) ∈ E} is a collection of independent random matrices whose entries are
i.i.d. sub-Gaussian random variables.

Definition 2 (Sub-Gaussian Random Variable). A random variable ξ is said to be sub-
Gaussian with parameter σ > 0 if

E[exp(λξ)] ≤ exp

(
λ2σ2

2

)
, λ ∈ R.

It can be shown that if ξ is sub-Gaussian in the above sense, then it necessarily satisifies
E[ξ] = 0. The class of sub-Gaussian random variables is rich. It contains, for example, the
Gaussian, uniform, Bernoulli, and any bounded random variables, see [73, Example 2.5.8].
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In particular, a Gaussian random variable with mean zero and standard deviation σ > 0
is sub-Gaussian with parameter σ.

We first establish a tail inequality for the operator norm of the block matrix ∆ (see (6)
for the definition), which will be useful for verifying condition (iii) in the master theorem.

Proposition 3. Suppose that the measurement graph is an Erdős-Rényi random graph
with observation rate p ∈ (0, 1]. Let {Θij : 1 ≤ i < j ≤ n} be independent noise matrices
that are independent of the measurement graph and whose entries are i.i.d. sub-Gaussian
random variables with parameter σ > 0. Then, there exists constants c0, c1, c2 > 0 such

that whenever p ≥ c0(logn)2

n , we have

Pr
(
∥∆∥ ≥ c1σ

√
pnd

)
≤ c2
n
.

If the sub-Gaussian entries {Θij : 1 ≤ i < j ≤ n} are zero-mean Gaussian with standard

deviation σ > 0, then the same inequality holds under the weaker requirement p ≥ c0 logn
n .

Proof. Using (6) and (29), we can write each block in ∆ as

[∆]ij = wij

(
[C]ij −

[
G∗G∗⊤

]
ij

)
= wij

(
Cij −G∗

iG
∗
j
⊤
)

= wijΘij , 1 ≤ i < j ≤ n.

Therefore, conditioning on the measurement graph (i.e., on the values of the random
variables {wij : 1 ≤ i < j ≤ n}), ∆ is an nd×nd symmetric matrix whose upper triangular
entries are independent random variables. Since the operator norm ∥ · ∥ is a convex, 1-
Lipschitz function in the matrix entries, by Talagrand’s inequality [45], there exist constants
c0, c1 > 0 such that

Pr

∥∆∥ ≥ E[∥∆∥] + sσ
√

log nd

∣∣∣∣∣ ∥∆∥∞ ≤ 3σ
√

log nd and max
i∈[n]

∑
j>i

wij ≤ epn


≤ c0 exp

(
−c1s2

)
.

(30)

Using [10, Corollary 3.3], we obtain

E

∥∆∥

∣∣∣∣∣ ∥∆∥∞ ≤ 3σ
√

log nd and max
i∈[n]

∑
j>i

wij ≤ epn


≤ c2σ

max
i∈[n]

√
d
∑
j>i

wij +
√

log nd

 ≤ c2σ
(√

epnd+
√

log nd
) (31)
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for some constant c2 > 0. Substituting (31) into (30) and taking s =
√

lognd
c1

, we find that

for some constants c3, c4 > 0, whenever p ≥ c3(logn)2

n ,

Pr

∥∆∥ ≥ c4σ
√
pnd

∣∣∣∣∣ ∥∆∥∞ ≤ 3σ
√

log nd and max
i∈[n]

∑
j>i

wij ≤ epn

 ≤ c0
nd
. (32)

We now bound the probabilities of the two conditioned events. Since ([Θ]12)11 is a
sub-Gaussian random variable with parameter σ > 0, we can show by using the Markov
inequality that

Pr
(

([∆]12)11 > 3σ
√

log nd
)
≤ Pr

(
([Θ]12)11 > 3σ

√
log nd

)
≤ 1

n4d4
,

which, by the union bound, implies that

Pr
(
∥∆∥∞ > 3σ

√
log nd

)
≤ 2

n2d2
. (33)

Next, since {wij : 1 ≤ i < j ≤ n} are i.i.d. Bernoulli random variables with parameter p,
by the union bound and Chernoff’s inequality [73, Theorem 2.3.1], there exist constants

c5, c6 > 0 such that whenever p ≥ c5(logn)2

n ,

Pr

max
i∈[n]

∑
j>i

wij ≥ epn

 ≤
n∑

i=1

Pr

∑
j>i

wij ≥ epn

 ≤ n · exp(−p(n− 1)) ≤ c6
n
. (34)

The desired inequality then follows by combining (32), (33), and (34).
The last claim under the Gaussian assumption can be proved by similarly conditioning

on the event
max
i∈[n]

∑
j>i

wij ≥ epn

and using [10, Corollary 3.9]. This completes the proof.

The following theorem, which is a substantial generalization of [6, Proposition 3.3],
shows that under the setting of Proposition 3, condition (iii) in Theorem 1 will be satisfied
with high probability.

Theorem 4. Consider the setting of Proposition 3 and let α ≥ 1 be arbitrary. Then, there

exist constants c0, c1, c2 > 0 such that whenever p ≥ c0(logn)2

n and σ ≤ c1
√
pn

αd , we have

Pr

(∥∥D−1∆
∥∥ ≤ 1

32
and

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥

F
≤ (

√
2 − 1)

√
n

48α

)
≥ 1 − c2

n
.

If the sub-Gaussian entries {Θij : 1 ≤ i < j ≤ n} are zero-mean Gaussian with standard

deviation σ > 0, then the same inequality holds under the weaker requirement p ≥ c0 logn
n .
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Proof. Upon applying Chernoff’s inequality [73, Exercise 2.3.2], we have

Pr

(
ri ≤ 1 +

p(n− 1)

2

)
≤
(

2

e

)p(n−1)/2

, i = 1, . . . , n.

The above inequality and the union bound imply that for some constants c0, c1 > 0,

whenever p ≥ c0(logn)2

n (p ≥ c0 logn
n in the Gaussian case), we have

Pr

(∥∥D−1
∥∥ ≥

(
1 +

p(n− 1)

2

)−1
)

≤
n∑

i=1

Pr

(
ri ≤ 1 +

p(n− 1)

2

)
≤ n ·

(
2

e

)p(n−1)/2

≤ c1
n
.

This, together with Proposition 3, implies the existence of constants c2, c3, c4 > 0 such that

whenever p ≥ c2(logn)2

n (p ≥ c2 logn
n in the Gaussian case) and σ ≤ c3

√
pn

αd , we have

∥∥D−1∆
∥∥ ≤

∥∥D−1
∥∥ · ∥∆∥ ≤

(
1 +

p(n− 1)

2

)−1

∥∆∥ ≤
√

2 − 1

192α
√
d
≤ 1

32
(35)

with probability at least 1 − c4
n .

Next, we bound
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
. By inequality (11), we have∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
≤ 4

∥∥D−1∆G∗∥∥
F
.

Since G∗ has n blocks, each of which is a d× d orthogonal matrix, we have ∥G∗∥F =
√
nd.

Using the inequality
∥∥D−1∆G∗∥∥

F
≤
∥∥D−1∆

∥∥ · ∥G∗∥F , the desired bound then follows
from (35).

5.4 Entropic Spectral Initialization

In order for our non-convex approach to enjoy the theoretical guarantee offered by the mas-
ter theorem, we need to initialize GPM by a point that has a sufficiently small estimation
error. As it turns out, the geometry of the closed subgroup G contains much information
that can be used to guide our construction of such a point. Specifically, by considering the
error-bound geometry of G as encapsulated in Condition 2 and the classic notion of met-
ric entropy of the quotient O(d)/G of the orthogonal group O(d) by the closed subgroup
G,4 we design a novel initialization procedure for GPM that produces a point satisfying
condition (iv) in the master theorem. Before we present our proposed procedure, let us
introduce some basic results concerning the metric entropy of the quotient O(d)/G.

4Note that the quotient O(d)/G may not be a group in general as we do not require the subgroup G to
be normal.
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5.4.1 The Quotient O(d)/G and Its Metric Entropy

Given any closed subgroup G of O(d) and any orthogonal matrix Q ∈ O(d), the (left-)
coset [Q] of G in O(d) is defined by

[Q] :=
{
O ∈ O(d) : O = QQ′ for some Q′ ∈ G

}
.

The quotient O(d)/G is then defined as the set of all cosets of G in O(d). We can define a
natural distance on O(d)/G by

dist([Q1], [Q2]) = min
Q′∈G

∥∥Q1 −Q2Q
′∥∥

F
.

It can be easily seen that this distance is independent of the choice of the class representa-
tives Q1 and Q2 of the cosets [Q1] and [Q2], respectively. Moreover, it turns O(d)/G into
a compact (under the quotient topology) metric space.

We next introduce the concepts of net and covering number, see, e.g., [44].

Definition 3 (Net and Covering Number). Let (S, ν) be a compact metric space and ϵ > 0
be a parameter. A subset N ⊆ S is said to be an ϵ-net of S if for any point x ∈ S, there
exists a point y ∈ N such that ν(x, y) ≤ ϵ. The cardinality of the smallest ϵ-net is called
the ϵ-covering number, denoted by N(S, ϵ).

The compactness of S implies that N(S, ϵ) is finite for any ϵ > 0. The following
proposition offers an explicit and efficient construction of an ϵ-net of the quotient O(d)/G.

Proposition 4. Let ϵ > 0 and Q1, . . . , QK be random orthogonal matrices that are inde-
pendently and uniformly distributed on O(d). Then, for any O ∈ O(d), with probability at

least 1 −
(
1 −N(O(d)/G, ϵ2)−1

)K
, we have

min
k∈[K]

dist([O], [Qk]) ≤ ϵ.

Proof. Consider any (ϵ/2)-net N =
{

[Q̄1], . . . , [Q̄|N |]
}

of the quotient O(d)/G and fix an
arbitrary O ∈ O(d). Since the matrices Q1, . . . , QK are independently and uniformly
distributed on O(d), the cosets [Q1], . . . , [QK ] are independently and uniformly distributed
on O(d)/G. Therefore, for any k ∈ [K] and ℓ ∈ [|N |],

1 = Pr

[Qk] ∈
|N |⋃
ℓ=1

B([Q̄ℓ],
ϵ
2)

 ≤
|N |∑
ℓ=1

Pr
(
[Qk] ∈ B([Q̄ℓ],

ϵ
2)
)

= |N | ·Pr
(
[Qk] ∈ B([Q̄ℓ],

ϵ
2)
)
,

where B
(
[Q̄ℓ],

ϵ
2

)
:=
{

[Q] : dist([Q̄ℓ], [Q]) ≤ ϵ
2

}
and the last equality follows from the fact

that the distribution of Qk is invariant under multiplication by any fixed orthogonal matrix.
This gives

Pr
(
[Qk] ∈ B([Q̄ℓ],

ϵ
2)
)
≥ |N |−1, k = 1, . . . ,K; ℓ = 1, . . . , |N |. (36)
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Next, there exists some ℓ̄ ∈ [|N |] such that [O] ∈ B([Q̄ℓ̄],
ϵ
2). Hence, by (36), we have

Pr ([O] ∈ B([Qk], ϵ) for some k ∈ [K]) = 1 −
K∏
k=1

(1 − Pr ([O] ∈ B([Qk], ϵ)))

≥ 1 −
K∏
k=1

(
1 − Pr

(
[Qk] ∈ B([Q̄ℓ̄],

ϵ
2)
))

≥ 1 − (1 − |N |−1)K .

Optimizing the lower bound over all possible (ϵ/2)-nets N of O(d)/G completes the proof.

In view of Proposition 4, we are naturally interested in determining the covering number
of the quotient O(d)/G, particularly when G is one of the four subgroups (i.e., O(d), SO(d),
P(d), and Zm) we considered earlier. For G = O(d), the quotient O(d)/O(d) is the trivial
group that contains only one element. Therefore, its ϵ-covering number is 1 for any ϵ > 0.
For G = SO(d), the quotient O(d)/SO(d) is isomorphic to the Boolean group, which
implies that its ϵ-covering number is at most 2 for any ϵ > 0. In what follows, we provide
an estimate of the covering number of the quotient O(d)/G when G is a discrete subgroup
of O(d). In particular, such an estimate applies to the cases of G = P(d) and G = Zm.

5.4.2 Covering Number of the Quotient O(d)/G for Discrete G

To begin, let us introduce the concepts of packing and packing number, which are closely
related to the concepts of net and covering number, respectively.

Definition 4 (Packing and Packing Number). Let (S, ν) be a compact metric space and
ϵ > 0 be a parameter. A subset P ⊆ S is said to be an ϵ-packing of S if any two points
x, y ∈ P satisfy ν(x, y) > ϵ. The cardinality of the largest ϵ-packing is called the ϵ-packing
number, denoted by P (S, ϵ).

Given a compact metric space (S, ν) and a parameter ϵ > 0, we have the following
relationship between the covering and packing numbers, see, e.g., [70, Inequality (3)]:

N(S, ϵ) ≤ P (S, ϵ) ≤ N(S, ϵ2). (37)

This inequality can then be used to establish the following result:

Proposition 5. Let G be a discrete subgroup of O(d) and ϵ > 0 be a given parameter.
Then, we have

N(O(d)/G, ϵ) ≤ |G|−1
(c
ϵ

) d(d−1)
2

for some constant c > 0.
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Proof. It suffices to consider the case where ϵ < τ . Let P̃ be a maximal ϵ-packing of the
quotient O(d)/G, i.e., |P̃| = P (O(d)/G, ϵ). Then, for any distinct cosets [Q1], [Q2] ∈ P̃, we
have

dist([Q1], [Q2]) = min
Q′∈G

∥Q1 −Q2Q
′∥F > ϵ. (38)

Consider the set P := {Q ∈ O(d) : [Q] ∈ P̃}. We claim that P is an ϵ-packing of O(d). To
prove this, let Q1, Q2 ∈ P be two distinct points. If [Q1] ̸= [Q2], then we have

∥Q1 −Q2∥F ≥ min
Q′∈G

∥Q1 −Q2Q
′∥F > ϵ

by (38). If [Q1] = [Q2], then Q1 = Q2Q
′ for some Q′ ∈ G\{Id}. It follows from Definition 1

that
∥Q1 −Q2∥F = ∥Id −Q′∥F > ϵ.

Thus, the claim is established. Now, it is elementary to show that (i) for any Q ∈ O(d), we
have |[Q]| = |G|; (ii) for any two cosets [Q1], [Q2] ∈ O(d)/G, we either have [Q1] = [Q2] or
[Q1]∩ [Q2] = ∅. In particular, we see that |P| = |P̃| · |G| = P (O(d)/G, ϵ) · |G|. Consequently,
there exists a constant c > 0 such that

N(O(d)/G, ϵ) · |G| ≤ P (O(d)/G, ϵ) · |G| = |P| ≤ P (O(d), ϵ) ≤ N(O(d), ϵ2) ≤
(c
ϵ

) d(d−1)
2

,

where the first and third inequalities follow from (37), the second inequality follows the
fact that P is an ϵ-packing, and the last inequality follows from [70, Theorem 7]. This
completes the proof.

5.4.3 Entropic Spectral Estimator

We are now ready to develop our advertised initialization procedure for GPM. We will make
use of the results in the previous subsection and the following variant of the Davis-Kahan
Theorem [80].

Theorem 5. Let Z,Z∗ ∈ RM×M be symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λM
and λ∗1 ≥ · · · ≥ λ∗M , respectively. For any integers k, ℓ such that 1 ≤ k ≤ ℓ ≤ M , let
V, V ∗ ∈ RM×(ℓ−k+1) be the matrices defined by

V =

 | |
vk · · · vℓ
| |

 and V ∗ =

 | |
v∗k · · · v∗ℓ
| |

 ,
where vi and v

∗
i are the eigenvectors of Z and Z∗ corresponding to the eigenvalues λi and

λ∗i , respectively, for i ∈ [M ]. Suppose that min{λ∗k−1−λ∗k, λ
∗
ℓ −λ∗ℓ+1} > 0, where λ0 = +∞

and λM+1 = −∞ by convention. Then, there exists an orthogonal matrix Q∗ ∈ O(ℓ−k+1)
such that

∥V Q∗ − V ∗∥F ≤
2
√

2 min{
√
ℓ− k + 1 ∥Z − Z∗∥ , ∥Z − Z∗∥F }

min{λ∗k−1 − λ∗k, λ
∗
ℓ − λ∗ℓ+1}

.
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To begin, let G ⊆ O(d) be the closed subgroup of interest and η > 0 be a given
parameter. Consider taking Z = C, Z∗ = η · G∗G∗⊤, k = 1, ℓ = d in Theorem 5, where,
as before, C ∈ Rnd×nd is the matrix defined in (4) and G∗ ∈ Gn is the ground truth. Note
that each of the d columns of 1√

n
G∗ is an eigenvector of η · G∗G∗⊤ with eigenvalue ηn.

The remaining (n − 1)d eigenvalues of η · G∗G∗⊤ are all equal to 0. Hence, by letting
VC ∈ Rnd×d to be the matrix whose j-th column is the eigenvector associated with the
j-th largest eigenvalue of C for j = 1, . . . , d, we deduce from Theorem 5 the existence of a
Q∗ ∈ O(d) that satisfies

∥∥∥∥VCQ∗ − 1√
n
G∗
∥∥∥∥
F

≤
2
√

2 min
{√

d
∥∥∥C − η ·G∗G∗⊤

∥∥∥ ,∥∥∥C − η ·G∗G∗⊤
∥∥∥
F

}
min{λ∗k−1 − λ∗k, λ

∗
ℓ − λ∗ℓ+1}

≤
2
√

2d
∥∥∥C − η ·G∗G∗⊤

∥∥∥
ηn

.

(39)

This, together with the definition of ε in (2), Lemma 1, inequality (11) and inequality (39),
implies that Πn(VCQ

∗) enjoys the estimation error bound

ε(Πn(VCQ
∗)) ≤ ∥Πn(VCQ

∗) −G∗∥F =
∥∥Πn(

√
n · VCQ∗) −G∗∥∥

F

≤ 2
∥∥√n · VCQ∗ −G∗∥∥

F
≤ 4

√
2d

η
√
n

∥∥∥C − η ·G∗G∗⊤
∥∥∥ . (40)

Unfortunately, the estimator Πn(VC Q
∗) is not implementable as we do not know Q∗ in

general. To work around this, let us construct an approximation Q̃ of the unknown Q∗ as
follows. Suppose that we have a finite subset Q ⊆ O(d)/G satisfying

min
[Q]∈Q

dist([Q], [Q∗]) = min
[Q]∈Q

min
Q′∈G

∥Q−Q∗Q′∥F ≤ ϵ. (41)

By definition, there must exist [Q̃] ∈ Q and Q′ ∈ G such that∥∥∥Q̃−Q∗Q′
∥∥∥
F
≤ ϵ. (42)

We therefore consider the estimator

G̃ = Πn(VCQ̃). (43)

Let us now study the estimation performance of G̃.

Proposition 6. Let η > 0, ϵ ≥ 0 be given parameters and Q ⊆ O(d)/G be a finite subset
of equivalent classes satisfying (41). Consider the estimator G̃ defined in (43). Then,

ε(G̃) ≤ 2
√
nϵ+

4
√

2d

η
√
n

∥∥∥C − η ·G∗G∗⊤
∥∥∥ .
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Proof. We have

ε(G̃) = min
Q∈G

∥∥∥G̃−G∗Q
∥∥∥
F
≤
∥∥∥Πn(VCQ̃) −G∗Q′

∥∥∥
F
≤ 2

√
n

∥∥∥∥VCQ̃− 1√
n
G∗Q′

∥∥∥∥
F

≤ 2
√
n

(∥∥∥VCQ̃− VCQ
∗Q′
∥∥∥
F

+

∥∥∥∥VCQ∗Q′ − 1√
n
G∗Q′

∥∥∥∥
F

)
≤ 2

√
n

(
∥VC∥ ·

∥∥∥Q̃−Q∗Q′
∥∥∥
F

+

∥∥∥∥VCQ∗ − 1√
n
G∗
∥∥∥∥
F

)
≤ 2

√
nϵ+

4
√

2d

η
√
n

∥∥∥C − η ·G∗G∗⊤
∥∥∥ ,

where the first inequality follows from (43); the second inequality follows from Lemma 1
and inequality (11); the last inequality follows from (39), (42), and the fact that ∥VC∥ ≤ 1.
This completes the proof.

Compared with the bound (40) on ε(Πn(VCQ
∗)), we see that the bound on ε(G̃) has an

extra term that is on the order of
√
nϵ. This can be attributed to the error incurred when

using an element of an ϵ-net of the quotient O(d)/G to approximate the unknown element
[Q∗]. However, since the estimator G̃ relies on an element Q̃ that validates inequality (42),
which involves the unknown orthogonal matrix Q∗, it is still not implementable. Neverthe-
less, the above idea can be further developed to construct another estimator that not only
is implementable but also enjoys a good estimation error bound. Specifically, motivated
by the objective function of the least squares formulation (3), let us consider the function
ψ : O(d)/G → R defined by

ψ([Q]) := ⟨CΠn(VCQ),Πn(VCQ)⟩.

Since Πn(VCQQ
′) = Πn(VCQ)Q′ for any Q′ ∈ G, the function ψ is independent of the choice

of the representative Q of the equivalent class [Q]. This shows that ψ is a well-defined
function on O(d)/G. Partly inspired by the work [78], in which a randomized rounding
scheme for approximating the optimal solution to certain robust non-convex quadratic
optimization problem is analyzed using an ϵ-net of the sphere, we propose the following
estimator:

Algorithm 2 Entropic Spectral Estimator

1: Input: the matrix C and a finite subset Q ⊆ O(d)/G satisfying (41) for some ϵ ≥ 0
2: find the maximizer [Q̂] of the problem

max
[Q]∈Q

ψ([Q])

3: Output: the matrix Ĝ = Πn(VCQ̂)
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A key difference between the estimators G̃ and Ĝ is that the former requires the knowl-
edge of an element Q̃ satisfying inequality (42), whereas the latter works as long as there
exists one and we do not need to know which element it is.

Let us discuss how to construct a subset Q ⊆ O(d)/G satisfying (41). When G = O(d),
there is only one equivalent class, viz., the orthogonal group O(d) itself. In this case, the
entropic spectral estimator Ĝ reduces to the spectral estimator in the works [14] and [57].
Therefore, the entropic spectral estimator can be seen as a generalization of these spectral
estimators. When G = SO(d), there are two equivalent classes: One formed by the set of
orthogonal matrices with determinant +1 and the other with determinant −1. Taking the
representatives Id and Diag(−1, 1, . . . , 1) for these two equivalent classes, respectively, the
entropic estimator is either Πn(VC) or Πn(V ′

C) with V ′
C = VC ·Diag(−1, 1, . . . , 1), depending

on whether ⟨CΠn(VC),Πn(VC)⟩ ≥ ⟨CΠn(V ′
C),Πn(V ′

C)⟩. If G is a discrete subgroup of O(d),
then we can find a desired subset Q by invoking Propositions 4 and 5. Specifically, these
two propositions imply that there exists a constant c > 0 such that given any ρ ∈ (0, 1), if
we generate

K ≥ log ρ

log
(

1 − |G| (cϵ)
d(d−1)

2

) (44)

random orthogonal matrices Q1, . . . , QK that are independently and uniformly distributed
on O(d), then with probability at least 1 − ρ, the set Q = {[Q1], . . . , [QK ]} satisfies in-
equality (41).

Interestingly, Proposition 4 reveals an intimate relation between our proposed estimator
and the notion of metric entropy (the logarithm of covering number): The smaller the met-
ric entropy of the quotient O(d)/G, the fewer independent copies of uniformly distributed
random orthogonal matrices we need to construct the subset Q. This explains why we
name our estimator Ĝ the entropic spectral estimator.

The main result of this subsection is the following theorem, which concerns the estima-
tion performance of the entropic spectral estimator.

Theorem 6. Suppose that the group G satisfies Condition 2 with parameter β ∈ (0, 1]. Let
η > 0 and ϵ ≥ 0 be given parameters. Then, the entropic spectral estimator Ĝ returned by
Algorithm 2 satisfies

ε(Ĝ) ≤ 2

√
2n

β
ϵ+

12
√
d

βη
√
n

∥∥∥C − η ·G∗G∗⊤
∥∥∥ .

Theorem 6 shows that even though we do not have access to the element [Q̃] ∈ Q defined
in (42) and hence cannot construct the estimator G̃ in (43), we can get hold of another
element [Q̂] ∈ Q by maximizing the least squares-based function ψ over Q and use it to
construct the estimator Ĝ, whose estimation error bound is worse than that of the estimator
G̃ by roughly a factor of 1√

β
(recall that the parameter β ∈ (0, 1] is related to the geometry

of the subgroup G, see Condition 2). As shown in Theorem 2, for many groups of interest

38



(such as the orthogonal group O(d), the special orthogonal group SO(d), and the cyclic
group Zm), the parameter β is a constant, which implies that the bounds on ε(G̃) and
ε(Ĝ) differ by at most a constant factor.

Proof of Theorem 6. Let G̃ be defined as in (43). By definition of the entropic spectral
estimator Ĝ,

Tr
(
Ĝ⊤CĜ

)
≥ Tr

(
G̃⊤CG̃

)
. (45)

Upon letting ∆η = C − η ·G∗G∗⊤, for any Q ∈ G, we have

Tr
(
Ĝ⊤∆ηĜ

)
− Tr

(
G∗⊤∆ηG

∗
)

= Tr
(

(ĜQ−G∗)⊤∆η(ĜQ+G∗)
)

≤
∥∥∥ĜQ−G∗

∥∥∥
F
· ∥∆η∥ ·

(∥∥∥ĜQ∥∥∥
F

+ ∥G∗∥F
)
≤ 2

√
nd · ∥∆η∥ ·

∥∥∥ĜQ−G∗
∥∥∥
F
.

This implies that

Tr
(
Ĝ⊤CĜ

)
= η ·

∥∥∥G∗⊤Ĝ
∥∥∥2
F

+ Tr
(
Ĝ⊤∆ηĜ

)
≤ η ·

∥∥∥G∗⊤Ĝ
∥∥∥2
F

+ Tr
(
G∗⊤∆ηG

∗
)

+ 2
√
nd · ∥∆η∥ · ε(Ĝ).

(46)

Similarly, we can get

Tr
(
G̃⊤CG̃

)
= η ·

∥∥∥G∗⊤G̃
∥∥∥2
F

+ Tr
(
G̃⊤∆ηG̃

)
≥ η ·

∥∥∥G∗⊤G̃
∥∥∥2
F

+ Tr
(
G∗⊤∆ηG

∗
)
− 2

√
nd · ∥∆η∥ · ε(G̃).

(47)

Now, for any G ∈ Gn, we have the identity

ε(G)2 = ∥G−G∗QG∥2F = 2 Tr
(
n · Id −Q⊤

GG
∗⊤G

)
, (48)

where QG ∈ G ⊆ O(d) is defined in (7). This yields∥∥∥G∗⊤G̃
∥∥∥2
F

=
∥∥∥Q⊤

G̃
G∗⊤G̃

∥∥∥2
F
≥ 1

d

(
Tr
(
Q⊤

G̃
G∗⊤G̃

))2
=

(
n
√
d− 1

2
√
d
ε(G̃)2

)2

,

where the inequality follows from the Cauchy-Schwarz inequality. Upon substituting the
above into (47), we obtain

Tr
(
G̃⊤CG̃

)
≥ η

(
n
√
d− 1

2
√
d
ε(G̃)2

)2

+ Tr
(
G∗⊤∆ηG

∗
)
− 2

√
nd · ∥∆η∥ · ε(G̃)

≥ ηn2d− ηn · ε(G̃)2 + Tr
(
G∗⊤∆ηG

∗
)
− 2

√
nd · ∥∆η∥ · ε(G̃).

(49)
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It follows from (45), (46), and (49) that

η
∥∥∥G∗⊤Ĝ

∥∥∥2
F
≥ Tr

(
Ĝ⊤CĜ

)
− Tr

(
G∗⊤∆ηG

∗
)
− 2

√
nd · ∥∆η∥ · ε(Ĝ)

≥ Tr
(
G̃⊤CG̃

)
− Tr

(
G∗⊤∆ηG

∗
)
− 2

√
nd · ∥∆η∥ · ε(Ĝ)

≥ ηn2d− ηn · ε(G̃)2 − 2
√
nd · ∥∆η∥ ·

(
ε(Ĝ) + ε(G̃)

)
.

(50)

Next, using the definition of Q
Ĝ

(see (7)), identity (48), Condition 2 (with X = 1
nG

∗⊤Ĝ),
and inequality (50), we have

β

2
ε(Ĝ)2 = β Tr

(
n · Id −Q⊤

Ĝ
G∗⊤Ĝ

)
≤ nd− 1

n

∥∥∥G∗⊤Ĝ
∥∥∥2
F

≤ ε(G̃)2 +
2
√
d · ∥∆η∥
η
√
n

(
ε(G̃) + ε(Ĝ)

)
.

This, together with the fact that β ∈ (0, 1], gives(
β

2
ε(Ĝ) −

√
d · ∥∆η∥
η
√
n

)2

=
β2

4
ε(Ĝ)2 − β

√
d · ∥∆η∥
η
√
n

ε(Ĝ) +

(√
d · ∥∆η∥
η
√
n

)2

≤ β

2
ε(G̃)2 +

β
√
d · ∥∆η∥
η
√
n

ε(G̃) +

(√
d · ∥∆η∥
η
√
n

)2

≤

(√
β

2
ε(G̃) +

√
d · ∥∆η∥
η
√
n

)2

.

It follows that

ε(Ĝ) ≤
√

2

β
ε(G̃) +

4
√
d

βη
√
n
∥∆η∥ ≤

√
2

β

(
2ϵ
√
n+

4
√

2d

η
√
n

∥∆η∥

)
+

4
√
d

βη
√
n
∥∆η∥

≤ 2

√
2n

β
ϵ+

4
√
d

η
√
n

(
2

√
1

β
+

1

β

)
∥∆η∥ ≤ 2

√
2n

β
ϵ+

12
√
d

βη
√
n
∥∆η∥,

where the second inequality follows from Proposition 6. This completes the proof.

Armed with Theorem 6, we now show that when the measurement graph and additive
noise follow the settings in Sections 5.2 and 5.3, respectively, condition (iv) in the master
theorem will be satisfied with high probability.

Theorem 7. Suppose that (i) the group G satisfies Conditions 1 and 2 with parameters
α ≥ 1 and β ∈ (0, 1], respectively; (ii) the measurement graph is an Erdős-Rényi ran-
dom graph with observation rate p ∈ (0, 1]; (iii) the noise matrices {Θij : 1 ≤ i < j ≤
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n} are independent of each other and of the measurement graph, and whose entries are
i.i.d. sub-Gaussian random variables with parameter σ > 0. Then, there exist constants

c0, c1, c2, c3 > 0 such that when p ≥ c0 · max
{

α2d
β2n

, (logn)
2

n

}
and σ ≤ c1β

√
pn

αd , the entropic

spectral estimator Ĝ generated by Algorithm 2 with ϵ ≤ c2
√
β

α will satisfy

Pr

(
ε(Ĝ) ≤

√
n

2α

)
≥ 1 − c3

n
.

If the sub-Gaussian entries {Θij : 1 ≤ i < j ≤ n} are zero-mean Gaussian with standard
deviation σ > 0, then the same inequality holds under the weaker requirement p ≥ c0 ·
max

{
α2d
β2n

, lognn

}
.

Proof. Let C∗ ∈ Rnd×nd be the block matrix defined by [C∗]ij = wijG
∗
iG

∗
j
⊤, i, j = 1, . . . , n

and ∆∗ := C∗ − p ·G∗G∗⊤. Using the definition of ∆ in (6), we can write

C − p ·G∗G∗⊤ = ∆∗ + C − C∗ = ∆∗ + ∆.

Thus, by invoking Theorem 6 with η = p and ϵ ≤
√
β

8
√
2α

, we have

ε(Ĝ) ≤ 2

√
2n

β
ϵ+

12
√
d

βp
√
n

∥∥∥C − p ·G∗G∗⊤
∥∥∥ ≤

√
n

4α
+

12
√
d

βp
√
n

(∥∆∗∥ + ∥∆∥). (51)

Let us now bound ∥∆∗∥ and ∥∆∥ separately.

By Proposition 3, there exist constants c0, c1, c2 > 0 such that for any p ≥ c0(logn)2

n

(p ≥ c0 logn
n in the Gaussian case), we have

Pr
(
∥∆∥ ≥ c1σ

√
pnd

)
≤ c2
n
.

On the other hand, observe that

∆∗ =
(
W̄ − p · ee⊤

)
⊠
(
G∗G∗⊤

)
,

where W̄ ∈ Rn×n is the matrix defined in Section 4 and ⊠ denotes the block Kronecker
product introduced in [38, Definition 2.5]. Since G∗G∗⊤ is positive semidefinite with[
G∗G∗⊤

]
ii

= Id for i = 1, . . . , n, by [38, Corollary 4.5(b)] and the identity W̄ − p · ee⊤ =

W̄ − E[W̄ ] + (1 − p)In, we have

∥∆∗∥ ≤
∥∥∥W̄ − p · ee⊤

∥∥∥ ≤ 1 +
∥∥W̄ − E[W̄ ]

∥∥ .
This, together with (28), implies that for any p ≥ logn

n ,

Pr (∥∆∗∥ ≥ 173
√
pn) ≤ exp

(
−pn

8

)
.
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The above calculations yield the existence of constants c3, c4, c5 > 0 such that whenever

p ≥ c3 max

{
α2d

β2n
,

log n

n

}
, σ ≤

c4β
√
pn

αd
,

we will have
12
√
d

βp
√
n
∥∆∗∥ ≤

√
n

8α
and

12
√
d

βp
√
n
∥∆∥ ≤

√
n

8α

with probability at least 1 − c5
n . Upon substituting these bounds into (51), we obtain

ε(Ĝ) ≤
√
n

2α .

We remark that there are works studying the estimation performance of various spectral
estimators for O(d)-sync [48], SO(2)-sync [14], and P(d)-sync [4, 48, 57, 63], and it is worth
comparing the results for these estimators with that for our entropic spectral estimator.
For O(d)-sync, the work [48] establishes a bound on the estimation error, measured in
the operator norm, of each block [Ĝ]1, . . . , [Ĝ]n of its proposed spectral estimator Ĝ. By
contrast, our work establishes a bound on the estimation error, measured in the Frobenius
norm, of the proposed entropic spectral estimator in its entirety. Although for O(d)-sync
the blockwise error bound in [48, Theorem 3.1] is generally sharper than the error bound
in Theorem 7 of our work, the former applies only to the setting of complete measurement
graph and additive Gaussian noise, while the latter applies to the more general setting of
additive sub-Gaussian noise and Erdős-Rényi measurement graph with observation rate p

that can go down to the order of (logn)2

n (if we fix the group G and hence the parameters
d, α, and β). For SO(2)-sync, the work [14] studies the estimation error of a spectral
estimator under the additive noise model with a complete measurement graph. Since such
a setting is covered by that of Theorem 6, we can compare the corresponding estimation
error bounds. Recall from our discussion immediately following Theorem 7 that we may
take ϵ = 0. Moreover, we have β = 1

2 by Theorem 2. Thus, Theorem 6 (with ϵ = 0, d = 2,
β = 1

2 , η = 1) and the definition of ∆ in (6) imply that the estimation error of the entropic

spectral estimator is at most on the order of ∥∆∥√
n

, which is the same as that of the spectral

estimator in [14]; see [14, Lemma 6]. Lastly, for P(d)-sync, the works [4, 48, 57, 63] consider
an outlier noise model, which is different from the additive noise model considered in our
work. As such, the corresponding estimation error bounds cannot be compared directly.

6 Estimation Error Bound

The purpose of this section is to show that our approach enjoys near-optimal estimation
error. We start by proving a bound on the normalized deviation [D−1∆G∗]i, where i ∈ [n],
for a general measurement graph (not necessarily the Erdős-Rényi random graph).

42



Lemma 5. Let {Θij : 1 ≤ i < j ≤ n} be independent noise matrices whose entries are
i.i.d. sub-Gaussian random variables with parameter σ > 0. Then, for any s ≥ d and
i ∈ [n],

Pr

(∥∥[D−1∆G∗]i
∥∥
F
>

σs
√
ri

)
≤ exp

(
−s

2

2

)
.

Proof. Consider a fixed i ∈ [n]. Note that

[D−1∆G∗]i =
1

ri

n∑
j=1

wijΘijG
∗
j .

Therefore, we have

∥∥[D−1∆G∗]i
∥∥
F
≤ 1

ri

n∑
j=1

wij

∥∥ΘijG
∗
j

∥∥
F

=
1

ri

n∑
j=1

wij

∥∥(Id ⊗G∗
j ) vec(Θij)

∥∥
F
,

where vec(Θij) ∈ Rd2 denotes the d2-dimensional vector obtained by stacking the columns
of Θij . Since the entries of vec(Θij) are zero-mean i.i.d. sub-Gaussian random variables
with parameter σ > 0 and

(Id ⊗G∗
j )

⊤(Id ⊗G∗
j ) = (Id ⊗G∗

j
⊤)(Id ⊗G∗

j ) = I2d ⊗ (G∗
j
⊤G∗

j ) = Id2 ,

it follows from [39, Theorem 2.1] that

Pr
(∥∥(Id ⊗G∗

j ) vec(Θij)
∥∥2
F
> σ2(d2 + 2d

√
t+ 2t)

)
≤ exp(−t).

In particular, the above inequality implies that if s ≥ d, then

Pr
(∥∥(Id ⊗G∗

j ) vec(Θij)
∥∥2
F
> σ2s2

)
≤ exp

(
−s

2

2

)
,

which, upon using ri =
∑n

j=1wij , yields

Pr

(∥∥[D−1∆G∗]i
∥∥
F
>

σs
√
ri

)
≤ exp

(
−s

2

2

)
.

This completes the proof.

The following proposition provides an upper bound on the estimation error of our
approach for discrete subgroups of the orthogonal group.
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Proposition 7. Suppose that G is a discrete subgroup of O(d) with minimum separation
τ and that the measurement graph is an Erdős-Rényi random graph with observation rate
p ∈ (0, 1]. Let {Θij : 1 ≤ i < j ≤ n} be independent noise matrices that are independent
of the measurement graph and whose entries are i.i.d. sub-Gaussian random variables
with parameter σ > 0. Then, there exist constants c0, c1, c2, c3, c4 > 0 such that whenever

σ ≤ c0τ
√
pn

d and p ≤ c1 logn
n , we have∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥2

F

≤ c3 min

{
dn exp

(
−c2τ

2pn

σ2

)
+ d log n, dn2 log n exp

(
−c2τ

2pn

σ2

)}
,

with probability at least 1 − c4
n .

Very recently, minimax rates for synchronization problems over discrete groups have
been obtained in [27] and [28, Section 8]. Their results imply that for the Boolean or
permutation group with p = 1, if the sub-Gaussian parameter σ = σn in the noise satisfies
n
σ2
n
→ ∞ as n→ ∞, then the estimation error of any estimator G is lower bounded by

ε2(G) ≥ n exp

(
−n(1 + o(1))

2σ2

)
.

Moreover, in [28, Section 8], an iterative algorithm achieving a matching upper bound on
the estimation error has been developed. Proposition 7 implies that the estimator G∞

output by Algorithm 1 achieves near-optimal estimation error. Indeed, for any discrete
subgroup of O(d), using Theorems 1, 2, 3, 4, 7 and the second bound in Proposition 7, we
see that our estimator G∞ will satisfy the estimation error bound

ε2(G∞) ≤ c0n exp

(
−c1τ

2pn(1 − o(log(nd)))

σ2

)
with probability converging to 1, where c0, c1 > 0 are some constants. This shows that our
approach enjoys not only great flexibility but also near-optimal estimation error.

Proof of Proposition 7. By the union bound and Chernoff’s inequality for the lower tail [73,
Exercise 2.3.2], there exist some constants c0, c1, c2 > 0 such that whenever p ≥ c0 logn

n , we
have

Pr

(
min
i∈[n]

ri ≥ c1pn

)
≥ 1 − c2

n
. (52)

Also, if σ2 ≤ c1τ2pn
16d2

, then by Lemma 5, we have

Pr

(∥∥[D−1∆G∗]i
∥∥
F
>
τ

4

∣∣∣∣∣ min
i∈[n]

ri ≥ c1pn

)
≤ exp

(
−c1τ

2pn

32σ2

)
.
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Since τ is the minimum separation, by the definition of the projection map Π and using
the above inequality, we have

Pr

(∥∥Π
(
G∗

i + 2[D−1∆G∗]i
)
−G∗

i

∥∥
F
> 0

∣∣∣∣∣ min
i∈[n]

ri ≥ c1pn

)
≤ exp

(
−c1τ

2pn

32σ2

)
. (53)

Moreover, we have
∥∥Π
(
G∗

i + 2[D−1∆G∗]i
)
−G∗

i

∥∥
F
≤ 2

√
d. Hence, by conditioning on the

event mini∈[n] ri ≥ c1pn, the random variable

1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F

is upper bounded5 by a binomial random variable with n trials and success probability

p′ = exp

(
−c1τ

2pn

32σ2

)
.

By Chernoff’s inequality for the upper tail [73, Theorem 2.3.1], for any t > 0,

Pr

(
1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
≥ p′n+ t

∣∣∣∣∣ min
i∈[n]

ri ≥ c1pn

)
≤ exp

(
− t2

2(p′n+ t
3)

)
.

Taking t = 2p′n+ log n and using (52), we get

Pr

(
1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
≥ 3n exp

(
−c1τ

2pn

32σ2

)
+ log n

)
≤ c3
n

for some constant c3 > 0. This proves the first bound.
For the second bound, we note that if p′ ≤ 1

n2 , then by using (53) and the union bound,
we have

Pr

(
1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
= 0

∣∣∣∣∣ min
i∈[n]

ri ≥ c1pn

)
≥ 1 − 1

n
.

This, together with (52), implies that

Pr

(
1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
= 0

)
≥ 1 − c2 + 1

n
.

If p′ ≥ 1
n2 , then 3p′n2 log n ≥ 2p′n+ log n. In this case, similar to the first bound, we get

Pr

(
1

4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
≥ 3n2 log n exp

(
−c1τ

2pn

32σ2

))
≤ c3
n
.

Combining the last two inequalities yields the second bound.

5One can construct a binomial random variable B on the same probability space as the random vari-

able 1
4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
so that

(
1
4d

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F

)
(ω) ≤ B(ω) for every

outcome ω in the sample space.
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Under a slightly stronger assumption on the noise, we can even show that Algorithm 1
will converge to the ground truth with high probability.

Proposition 8. Consider the setting of Proposition 7. Then, there exist constants c0, c1, c2 >

0 such that whenever σ ≤ c0τ
√
pn

d
√
logn

and p ≥ c1 logn
n , Algorithm 1 will converge to the ground

truth (i.e., G∞ = G∗Q for some Q ∈ G) with probability at least 1 − c2
n .

Proof. It suffices to prove that
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
= 0 with high probability.

Using (53) and the union bound, there exist some constants c0 > 0 such that if σ2 ≤ c0τ2pn
16d2

,
then

Pr

(∥∥Π
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
> 0

∣∣∣∣∣ min
i∈[n]

ri ≥ c0pn

)
≤ n exp

(
−c0τ

2pn

32σ2

)
.

Combining this inequality with (52), there exists a constant c1 > 0 such that whenever

σ2 ≤ c1τ2pn
d2 logn

, we have

Pr
(∥∥Π

(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
> 0
)
≤ c2
n

for some constant c2 > 0. This completes the proof.

We then present a bound that is weaker than the one in Proposition 7 but applies to
both continuous and discrete subgroups of the orthogonal group.

Proposition 9. Suppose that the measurement graph is an Erdős-Rényi random graph
with observation rate p ∈ (0, 1]. Let {Θij : 1 ≤ i < j ≤ n} be independent noise matrices
that are independent of the measurement graph and whose entries are i.i.d. sub-Gaussian
random variables with parameter σ > 0. Then, there exist constants c0, c1, c2 > 0 such that

whenever p ≥ c0(logn)2

n , we will have

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥2

F
≤ c1d

2σ2

p
,

with probability at least 1 − c2
n . If the sub-Gaussian entries {Θij : 1 ≤ i < j ≤ n} are

zero-mean Gaussian with standard deviation σ > 0, then the same inequality holds under
the weaker requirement p ≥ c0 logn

n .

In the recent paper [29], it has been shown that for O(d)-sync and SO(d)-sync under the
setting of Erdős-Rényi measurement graph and additive Gaussian noise, if the standard
deviation σ = σn and the observation rate p = pn satisfy pn

σ2 → ∞ and pn
logn → ∞ as

n→ ∞, then the estimation error of any estimator G is lower bounded by

ε2(G) ≥ (1 − o(1))
d(d− 1)σ2

2p
.
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In addition, it has been shown that an iterative polar decomposition algorithm achieves
the estimation error

ε2(G) ≤ (1 + o(1))
d(d− 1)σ2

2p
,

which matches with the lower bound asymptotically. Under the same measurement graph
and noise setting, Theorems 1, 2, 3, 4, 7 and Proposition 9 imply that for any subgroup of
O(d), the estimator G∞ output by Algorithm 1 will satisfy the estimation error bound

ε2(G∞) ≤ c1d
2σ2

p

with probability converging to 1, where c1 > 0 is some constant. This once again shows
the near-optimality of our approach.

Proof of Proposition 9. Using inequality (11), it suffices to bound
∥∥D−1∆G∗∥∥2

F
. Since each

of the d columns of G∗ has length
√
n, we have

∥∥D−1∆G∗∥∥2
F

=

d∑
i=1

∥∥(D−1∆G∗):,i
∥∥2
F
≤ ∥∆∥2 n

mini∈[n] r
2
i

.

The desired inequality then follows from inequality (52) and Proposition 3.

6.1 Summary of Results

Now, let us summarize our technical developments so far. By combining the results in
Theorems 2, 3, 4, and 7, we see that under the setting of Theorem 7 and with G being
either the orthogonal group O(d), the special orthogonal group SO(d), the permutation
group P(d), or the cyclic group Zm, all four conditions (i)–(iv) in the master theorem
(Theorem 1) will be satisfied with high probability. Consequently, the estimator output by
GPM will satisfy the estimation error bound in Proposition 7 for discrete subgroups and
that in Proposition 9 for continuous subgroups of the orthogonal group. To the best of our
knowledge, this is the first time an estimation performance guarantee of such generality is
obtained for GPM.

As is evident from Theorems 2, 3, 4, and 7, the aforementioned guarantee requires the

observation rate p to be at least on the order of max
{

α2d
β2n

, lognn

}
and the noise level σ to

be at most on the order of
β
√
pn

αd , where α ≥ 1 and β ∈ (0, 1] are related to the error-bound
geometry of the subgroup G (see Conditions 1 and 2). When G = O(d) and p = 1, our
bound on σ has a more favorable order than that in [47, Theorem 3.2]. Nevertheless, we
should point out that our result pertains to the estimation performance of GPM, while
that in [47] pertains to the optimization performance (i.e., convergence behavior) of GPM.
In particular, as detailed in the discussion following Theorem 1, our master theorem guar-
antees that the estimation error of the iterates generated by the suitably initialized GPM
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decreases at least geometrically to some threshold, while [47, Theorem 3.2] establishes the
linear convergence of the iterates, albeit only for the setting of complete measurement
graph and additive Gaussian noise.

To put our results in context, in Table 1, we compare the estimation error bounds
achieved by our approach with the best estimation error bounds achieved by non-convex
approaches in the literature, under the setting of Erdős-Rényi measurement graph and
additive Gaussian noise. We should point out that our results are more general than the
other ones listed in the table, in the sense that the former also apply to general subgroups
satisfying Conditions 1 and 2 and to the setting of additive sub-Gaussian noise. We should
point out that the estimation error bounds from [28] and [29] listed in Table 1 are under the
asymptotics n→ ∞, where as ours are non-asymptotic that hold for finite n. Nevertheless,
in [29], non-asymptotic estimation error bounds with a more explicit expression for the
term o(1) are also derived for O(d) and SO(d), which are omitted here.

G Reference p σ2 ε2(G)

O(1)
[28] 1 o(n) n exp

(
−n(1+o(1))

2σ2

)
Ours Ω( lognn ) O(pn) n exp

(
− cpn(1−o(logn))

σ2

)
Zm

[28] 1 o( n
m7 ) n exp

(
−n(1+o(1))

8σ2

)
Ours Ω(max{dm6

n , lognn }) O( pn
m6 ) n exp

(
− cτ2pn(1−o(logn))

σ2

)
P(d)

[28] 1 o( n
d2

) n exp
(
−n(1+o(1))

2σ2

)
Ours Ω(max{d3

n ,
logn
n }) O(pn

d4
) n exp

(
− cpn(1−o(log(nd)))

σ2

)
O(d), SO(d)

[29] (d = Θ(1)) ω( lognn ) o(pn) (1 + o(1))d(d−1)σ2

2p

Ours Ω(max{ d
n ,

logn
n }) O(pn

d2
) O(d

2σ2

p )

Table 1: Comparison of the estimation error bounds ε2(G) achieved by various non-convex
approaches under the setting of Erdős-Rényi measurement graph with observation rate at
least p and additive Gaussian noise with standard deviation at most σ. Bounds in [28] and
[29] are asymptotic (as n→ ∞), whereas ours are non-asymptotic.

Let us briefly explain how we obtain the bounds in the p- and σ2-columns of Table 1.
For the continuous subgroups O(d) and SO(d), by Theorem 2, the parameters α and β are
both constants. From Theorem 1, Section 5, and Proposition 9, our non-convex approach
requires that

p = Ω

(
max

{
α2d

β2n
,

log n

n

})
= Ω

(
max

{
d

n
,

log n

n

})
and σ2 = O

(
β2pn

α2d2

)
= O

(pn
d2

)
.
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For discrete subgroups, by Proposition 1, we can take β = τ2

2d . Therefore, from Theorem 1,
Section 5, and Proposition 7, our non-convex approach requires that

p = Ω

(
max

{
α2d

β2n
,

log n

n

})
and

σ2 = O

(
min

{
β2pn

α2d2
,
τ2pn

d2

})
= O

(
min

{
β2pn

α2d2
,
βpn

d

})
= O

(
β2pn

α2d2

)
.

For the Boolean group O(1), the parameters α and β are both constants. For the cyclic
group Zm, we have

α2

β2
= O

(
1

sin6
π
m

)
= O

(
1

m6

)
for large m, while for the permutation group, we have

α2

β2
= O(d2).

To compare the bounds, note that our estimation error bounds for the subgroups O(1),
Zm and Z(d) are slightly worse than those in [28]. However, we have an advantage in
terms of the assumptions. Indeed, our estimation error bounds apply to synchronization
problems with incomplete observations, i.e., p < 1, but those in [28] do not. Moreover,
when p = 1, m = Θ(1) and d = Θ(1), our requirements on the noise variance σ2 for
the subgroups O(1), Zm and P(d) are all O(n), whereas those in [28] are o(n). For the
subgroups O(d) and SO(d), the estimation error bound obtained in [29] is slightly worse
than ours. In terms of the assumptions, we manage to explicitly quantify the dependence
on the group dimension d, whereas [29] focuses only on the case d = Θ(1).

7 Numerical Results

We have conducted numerical experiments to compare the computational speed, scalabil-
ity, and estimation performance of our proposed entropic spectral estimator and the GPM-
based non-convex approach with those of existing methods. In our experiments, we have
considered noise models that go beyond the additive one covered by our theoretical devel-
opment so as to test the viability of our proposed approach. All our codes are implemented
using MATLAB and tested on a desktop with Intel Core i7-10700 CUP (2.90GHz×8). As
will be seen from the results, our approach demonstrates superior performance in many
different experiment settings.

7.1 Special Orthogonal Synchronization

We first present numerical results on SO(d)-sync.
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7.1.1 Setting

We focus on the case where d = 3, which is most relevant to real-world applications. The
experiment setting, which is the same as that in [74], is as follows. We take an Erdős-
Rényi random graph with observation rate p ∈ (0, 1] as the measurement graph ([n], E).
We consider a multiplicative noise model with two layers of multiplicative noise. More
precisely, the observations are given by

Cij = G∗
iG

∗
j
⊤Θout

ij ΘLan
ij , (i, j) ∈ E,

where Θout
ij is the so-called outlier noise defined by

Θout
ij =

{
I3, with probability q,

Qij ∼ Uniform(SO(3)), with probability 1 − q

with q ∈ (0, 1] being the non-corruption rate, Uniform(SO(3)) being the uniform distribu-
tion on SO(3), and ΘLan

ij ∈ SO(3) being generated according to the Langevin distribution
(also called the von Mises-Fisher distribution) [21, 74] on SO(3) with mean I3 and con-
centration parameter γ ≥ 0, i.e., the density function of each ΘLan

ij is given by

c(γ) exp
(
γ Tr(ΘLan

ij )
)

for some normalization constant c(γ) > 0. The parameter γ ≥ 0 controls the concentration
of the random matrix ΘLan

ij around the mean I3 — the larger the parameter γ, the more

concentrated around the mean I3 the random matrix ΘLan
ij is. In particular, it is the

uniform distribution Uniform(SO(3)) when γ = 0. As γ → +∞, the distribution behaves
like a Gaussian distribution with mean I3 and variance 1

γ .

7.1.2 Results

We compare our proposed entropic spectral estimator for SO(d)-sync and the GPM-based
non-convex approach with the least unsquared deviation approach in [74] and the low-rank-
sparse decomposition approach in [3]. We also include the standard spectral estimator
in the comparison as baseline. The codes for the least unsquared deviation approach are
provided by the authors of [74], while those for the low-rank-sparse decomposition approach
are available online.6 In our experiments, we use the default choice for all the parameters
in their codes. Since the two competing methods are known to perform well against outlier
noise, we mainly study the recovery performance and computational time by varying the
proportion of outliers 1− q. For ease of comparison, we measure the recovery performance
using the normalized estimation error ϵ(G)√

2nd
, whose value always lies between 0 and 1.

Figures 2 and 3 show the experiment results in the low noise (γ = 1) and high noise

6https://fusiello.github.io/demo/gmf/index.html
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(c) d = 3, n = 300, γ = 1, p = 0.8
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(d) d = 3, n = 300, γ = 1, p = 1

Figure 2: Estimation error and computational time of the standard spectral estimator
(labeled as Spectral), the entropic spectral estimator (labeled as Espec), the non-convex
approach initialized by the entropic spectral estimator (labeled as GPM), the least un-
squared deviation approach (labeled as LUD), and the low-rank-sparse decomposition ap-
proach (labeled as LRS) under the setting d = 3, n = 300, γ = 1, and p ∈ {0.2, 0.5, 0.8, 1}.

(γ = 0.4) regimes, respectively. The reported time for our non-convex approach includes
the time for computing the entropic spectral estimator, as the former is initialized by the
latter. All the points in the figures are obtained by averaging over 30 independent random
instances.

From Figure 2, we see that the estimation performance of the proposed entropic spectral
estimator is significantly better than that of the standard spectral estimator. Moreover,
when GPM is initialized by the entropic spectral estimator, it yields an estimator whose
performance further improves upon that of the entropic spectral estimator. We also note
that in the low noise regime, the non-convex approach performs generally on par with
the low-rank-sparse decomposition approach in terms of estimation error. This suggests

51



0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Spectral

Espec

GPM

LUD

LRS

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Spectral

Espec

GPM

LUD

LRS

(a) d = 3, n = 300, γ = 0.4, p = 0.2

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spectral
Espec
GPM
LUD
LRS

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Spectral
Espec
GPM
LUD
LRS

(b) d = 3, n = 300, γ = 0.4, p = 0.5

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spectral
Espec
GPM
LUD
LRS

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Spectral
Espec
GPM
LUD
LRS

(c) d = 3, n = 300, γ = 0.4, p = 0.8
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Figure 3: Estimation error and computational time of the standard spectral estimator (la-
beled as Spectral), the entropic spectral estimator (labeled as Espec), the non-convex ap-
proach initialized by the entropic spectral estimator (labeled as GPM), the least unsquared
deviation approach (labeled as LUD), and the low-rank-sparse decomposition approach (la-
beled as LRS) under the setting d = 3, n = 300, γ = 0.4, and p ∈ {0.2, 0.5, 0.8, 1}.

that our approach is fairly robust to multiplicative and outlier noise, given that the low-
rank-sparse decomposition approach was shown empirically to possess such a desirable
property [3]. As for the computation time, both our entropic spectral estimator and the
GPM-based non-convex approach are considerably faster than the low-rank-sparse decom-
position approach. We also notice that the curves associated with the standard spectral
estimator are less smooth and have large variance. This could be explained as follows.
Recall that the block matrix VC is formed by the eigenvectors of C (see Section 5.4.3)
and contains much useful information for our estimation problem. If a certain block of VC
lies close to SO(d), then the standard spectral estimator directly projects it onto SO(d).
In this case, the projection retains the useful information and hence serves as a good
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estimation of the corresponding block of the ground truth. But if this is not the case
(i.e., the block is close to the opposite disconnected component associated with −1 de-
terminant), then the direct projection onto SO(d) would be a bad estimation. By the
symmetry in our random instances, there is a half chance that the block would lie close
to SO(d). This introduces extra variance to the standard spectral estimator. We should
also point out that for SO(d)-sync, the proposed entropic spectral estimator has a differ-
ent projection mechanism for the blocks. Roughly speaking, it first projects the block to
the closest disconnected component, irrespective of the determinant. Then, if the projec-
tion has determinant −1, it further “flips” it to the counterpart element on SO(d). As
another observation, quite surprisingly, the least unsquared deviation approach performs
worse than the spectral estimator in terms of estimation error. The optimization problem
associated with the least unsquared deviation approach is a nonlinear convex semidefinite
program obtained via the relaxation technique and solved by the alternating direction aug-
mented Lagrangian method [77]. We suspect that the unsatisfactory performance of the
least unsquared deviation approach might be due to the fact that the alternating direc-
tion augmented Lagrangian method can only achieve low to medium accuracy and/or is
sensitive to the choice of the penalty parameter in the augmented Lagrangian term.

The experiment results in the high noise regime are shown in Figure 3. The behavior
of the algorithms is mostly similar to that in the low noise case, except that the estimation
performance of our GPM-based non-convex approach is fairly better than that of the low-
rank-sparse decomposition approach.

7.2 Permutation Synchronization

Next, we present numerical results on P(d)-sync.

7.2.1 Setting

Again, we take an Erdős-Rényi random graph with observation rate p ∈ (0, 1) as the
measurement graph ([n], E). We consider an adversarial measurement model that contains
both additive and multiplicative noise. Specifically, the observations are given by

Cij = ΠP(d)(G
∗
iG

∗
j
⊤Ξout

ij + σWij), (i, j) ∈ E,

where Ξout
ij is the outlier noise defined by

Ξout
ij =

{
Id, with probability q,

Pij ∼ Uniform(P(d)), with probability 1 − q

with q ∈ (0, 1] being the non-corruption rate, Uniform(P(d)) being the uniform distribution
on P(d), {Wij : (i, j) ∈ E} being independent random matrices with i.i.d. standard
Gaussian entries, and σ ≥ 0 being a parameter controlling the magnitude of the additive
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Figure 4: Recovery rate and computational time of the proposed entropic spectral esti-
mator (labeled as Espec) and the non-convex approach initialized by the entropic spectral
estimator (labeled as GPM) under the setting n = 200, p = 0.5, q = 0.8, σ = 1, and
K ∈ {1, 10, 20, 40, 80}.

noise. Due to the discrete nature of the signals (permutation matrices), instead of the
estimation error ε( · ), we quantify the estimation performance by the recovery rate, which
is defined as

Recovery Rate =
number of correctly recovered group elements

n
. (54)

7.2.2 Results

Recall that the entropic spectral estimator for P(d)-sync requires as input a finite sub-
set Q ⊆ O(d)/P(d) (see Algorithm 2). Following the approach discussed after Algo-
rithm 2, such a subset can be found with high probability by generating K independent,
uniformly distributed random orthogonal matrices, where K is sufficiently large (see (44)).
In our first experiment, we investigate the performance of the entropic spectral estimator
and the GPM-based non-convex approach as K varies. Figure 4 shows the results for
K ∈ {1, 10, 20, 40, 80}. The algorithm we used to generate uniformly distributed random
orthogonal matrices is based on the paper [25], see also [56] for more details. Note that
when K = 1, the entropic spectral estimator reduces to the standard spectral estimator.
From the figure, we see that the recovery performance of both the entropic spectral es-
timator and the non-convex approach improves as K increases, but the marginal benefit
becomes smaller and smaller. Furthermore, we see that the computational time does not
increase significantly as K increases. The abrupt drop in the computational time of GPM
after d ≈ 32 is due the fact that GPM stops making progress and activates one of the
stopping conditions in our implementation quite early. Therefore, for those values of d, the
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Figure 5: Recovery rate and computational time of the entropic spectral estimator with
K = 40 (labeled as Espec), the non-convex approach initialized by the entropic spectral
estimator (labeled as GPM), and the QR factorization-based approach initialized by the
entropic spectral estimator (labeled as QR) as the parameters n and d vary.

curves are not informative.
In our second experiment, we compare the performance of our entropic spectral estima-

tor (with K = 40) and GPM-based non-convex approach with that of the QR factorization-
based iterative approach developed in [63] as the parameters n and d vary. The results
are summarized in Figure 5. All the points in the figure are obtained by averaging over
30 independent random instances. As we can see from Figure 5, the recovery performance
of our GPM-based non-convex approach is significantly better than that of the entropic
spectral estimator and the QR factorization-based approach. Furthermore, we see that
our GPM-based non-convex approach is slightly faster than the QR factorization-based
approach. Of course, the computational time of the entropic spectral estimator is the
shortest among the three tested methods, since both the GPM-based non-convex approach
and the QR factorization-based approach are initialized by the entropic spectral estimator.

7.3 Cyclic Synchronization (Joint Alignment Problem)

Finally, we present our numerical results on Zm-sync. We remark that Zm-sync is equivalent
to the joint alignment problem considered in [20].

7.3.1 Setting

We adopt the same experiment setting as in [20]. Specifically, we take an Erdős-Rényi
random graph with observation rate p ∈ (0, 1) as the measurement graph ([n], E). We
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consider a multiplicative noise model, in which the observations are given by

Cij = G∗
iG

∗
j
⊤Θout

ij , (i, j) ∈ E.

Here,

Θout
ij =

{
I2, with probability q,

Qk, with probability 1 − q

with q ∈ (0, 1] being the non-corruption rate, Qk being defined in (21), and k ∼ Uniform([m])
being uniformly distributed on [m]. To quantify the estimation performance, we again use
the recovery rate7 defined in (54).

7.3.2 Results

We compare the performance of the proposed entropic spectral estimator and GPM-based
non-convex approach with that of another non-convex approach named projected power
method, which is developed in [20]. The standard spectral estimator for Zm-sync is once
again included in the experiments as a baseline. We focus on how the recovery rate and
computational time of these approaches depend on the order m of the cyclic group. The
results are plotted in Figure 6. All the points in the figure are obtained by averaging over
30 independent random instances.

As Figure 6 shows, our proposed entropic spectral estimator with K = 10 significantly
outperforms the standard spectral estimator, and the non-convex approach can further im-
prove the recovery rate, albeit by a small margin. The projected power method has the best
recovery rate, especially when the group order m is large. Nevertheless, in terms of compu-
tational time, the proposed GPM-based non-convex approach is substantially faster than
the projected power method. This is because each step of the projected power method relies
on the projection onto an m-dimensional simplex, which is essentially an m-dimensional
linear programming problem, but our method relies on the closed-form projection formula
in Proposition 2, whose computational cost is independent of m. Therefore, for cyclic
synchronization problems, the projected power method is the way to go if recovery perfor-
mance is the main concern. However, if speed and scalability are of great concern, then
our results suggest that the proposed GPM-based non-convex approach would be a better
alternative.

7.4 Necessity and Tightness of Initial Estimation Error Bound

From Theorem 1, a requirement for GPM to enjoy the theoretical guarantee on the esti-

mation error is that the initial estimation error has to be bounded by
√
n

8α . We now study
the necessity of such a requirement through numerical experiments.

7In [20], the misclassification rate is used to quantify the estimation performance, which is equal to
1− Recovery Rate.
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Figure 6: Recovery rate and computational time of the standard spectral estimator (labeled
as Spectral), the proposed entropic spectral estimator with K = 10 (labeled as Espec),
the non-convex approach initialized by the entropic spectral estimator (labeled as GPM),
and the projected power method (labeled as PPM) under the setting p ∈ {0.3, 0.7} and
q ∈ {0.3, 0.7}.

We consider SO(d)-sync under the same setting as that in Section 7.1.1 and use the
family of initial points {G(r)}r∈[0,1] defined by

[G(r)]i =

{
G∗

i , with probability 1 − r,

Q ∼ Uniform(SO(3)), with probability r

for i ∈ [n]. For simplicity, we introduce the following notation. We denote by εr,∞ the

normalized estimation error ε(G∞)√
nd

of the GPM initialized by G(r). In particular, ε0,∞ is

the normalized estimation error ε(G∞)√
nd

of the GPM initialized by the ground truth G∗. We

also denote by εr,0 the normalized estimation error of the random initialization G(r), i.e.,

57



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPM-True

GPM-Rand

Init. Est. Err.

(a) n = 400, d = 3, p = 0.4, q = 0.4, γ = 0.4

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GPM-True

GPM-Rand

Init. Est. Err.

(b) n = 1000, d = 3, p = 0.16, q = 0.4, γ = 0.4

Figure 7: Normalized estimation error εr,∞ of GPM initialized by G(r) (labeled as GPM-
Rand), normalized estimation error ε0,∞ of GPM initialized by the ground truth (labeled
as GPM-True), and normalized estimation error εr,0 of random initialization G(r) (labeled
as Init. Est. Err.).

εr,0 = ε(G(r))√
nd

. Note that the initial error εr,0 increases as r increases. Therefore, we are

interested in how εr,∞ scales with r (green line). The results for the cases (n, d, p, q, γ) =
(400, 3, 0.4, 0.4, 0.4) and (n, d, p, q, γ) = (1000, 3, 0.16, 0.4, 0.4) are plotted in Figure 7. To
aid intuition, we include two other quantities: The initial error εr,0 (yellow line) and the
error ε0,∞ of GPM initialized by the ground truth (red line). From Figure 7, we can see
that εr,∞ coincides with ε0,∞ for small r and starts to deviate at about r = 0.5, which
corresponds to an initial error εr,0 of roughly 0.7. The GPM error εr,∞ grows sharply for
r > 0.5. The results suggest that a bound on the initial estimation error is necessary for
GPM to enjoy a theoretical guarantee on the final estimation error.

To investigate how tight our requirement ε(G0) ≤
√
n

8α is, we repeat the above experiment
for different n (but keep the value pn constant) and record the initial error εr,0 when εr,∞

starts to deviate from ε0,∞. More precisely, we choose n = 300, 350, . . . , 1000, p = 160
n and

record the smallest initial error εr,0 such that εr,∞ ≥ 1.02 ε0,∞. The results are plotted in
Figure 8, which show that εr,0 ≈ 0.75 stays roughly constant across different values of n.

This empirically confirms the optimality of the requirement ε(G0) ≤
√
n

8α .
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7.5 Estimation Error of GPM Initialized by Entropic Spectral Estimator

Lastly, we empirically study how tightly the noise term
∥∥Πn

(
G∗ + 2D−1∆G∗)−G∗∥∥

F
in

Theorem 1 characterizes the estimation error of GPM.
Consider SO(3) under the same setting as that in Section 7.1.1. We investigate how

the estimation error of GPM (initialized by the entropic spectral estimator) relates to the
term

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥

F
by varying the noise parameter γ. Here, we recall that

Section 7.1.1 makes use of the Langevin noise, which is parametrized by γ. The results
are plotted in Figure 9. From the figure, we see that the normalized estimation error
of GPM coincides with

∥∥Πn
(
G∗ + 2D−1∆G∗)−G∗∥∥

F
when the noise level is low, which

corroborates Theorem 1. The former starts to deviate from the latter when γ−1 becomes
larger, which corresponds to a higher noise level. A natural guess for the cause of the
deviation is that the requirement on

∥∥D−1∆
∥∥ in Theorem 1 is more likely to be violated

if γ−1 becomes larger. Therefore, we also plotted this quantity in Figure 9. If the guess is
correct, according to Figure 9, the bound on the term

∥∥D−1∆
∥∥ should be approximately

0.8, instead of 1
32 as in Theorem 1.

Next, we conduct a similar experiment for P(d)-sync under the same setting as that in
Section 7.2.1. We vary the standard deviation σ of the additive Gaussian noise. Also, for
the y-axis, we use the recovery rate as defined in (54). The results are plotted in Figure 10.
We observe a similar phenomenon as that in the experiment for SO(3).

The findings in the above two experiments suggest that the estimation error of GPM is
fairly accurately predicted by Theorem 1, at least before the noise level reaches a certain
threshold.
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Figure 9: Normalized estimation error of GPM initialized by the entropic spectral estimator

(labeled as GPM) and the normalized noise term
∥Πn(G∗+D−1∆G∗)−G∗∥

F√
2nd

.
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Figure 10: Recovery error rate of GPM initialized by the entropic spectral estimator (la-

beled as GPM) and the normalized noise term
∥Πn(G∗+D−1∆G∗)−G∗∥
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8 Conclusion

In this paper, we proposed a unified approach for tackling a class of synchronization prob-
lems over closed subgroups of the orthogonal group. The approach consists of a suitable
initialization step and an iterative refinement step based on GPM. We then proved a
master theorem, which shows that the estimation error of the iterates produced by GPM
decreases geometrically under certain assumptions on the subgroup, measurement graph,
noise, and initialization. We verified these assumptions for various practically relevant sub-
groups under standard random measurement graph and noise models. In the process, we
formulated two conditions concerning the geometry of subgroups of the orthogonal group
and developed a novel spectral-type estimator called the entropic spectral estimator based
on the notion of metric entropy. These can be of independent interest. Our experiment
results showed that the proposed approach outperforms existing approaches in terms of
computational speed, scalability, and/or estimation error.

Besides Conjecture 1, there are two other research questions concerning non-convex
approaches for solving group synchronization problems that are worth investigating. First,
although the theory in Section 5.3 covers only additive noise models, our experiments
showed that the proposed approach is also effective under various multiplicative noise
models. Thus, it would be interesting to see whether our analysis can be extended to
cover more general noise models. Second, an important example of group synchronization
problems is SE(d)-sync [61], where SE(d) is the group of d-dimensional Euclidean motions.
Such a problem arises in areas such as robotics and computer vision. The group SE(d) is
not a subgroup of the orthogonal group. It would be interesting to develop a non-convex
approach similar to ours for solving SE(d)-sync.
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