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FIGURE 4.14. A toy example with two classes separable by a hyperplane. The
orange line is the least squares solution, which misclassifies one of the training
points. Also shown are two blue separating hyperplanes found by the perceptron
learning algorithm with different random starts.

4.5 Separating Hyperplanes

We have seen that linear discriminant analysis and logistic regression both
estimate linear decision boundaries in similar but slightly different ways.
For the rest of this chapter we describe separating hyperplane classifiers.
These procedures construct linear decision boundaries that explicitly try
to separate the data into different classes as well as possible. They provide
the basis for support vector classifiers, discussed in Chapter 12. The math-
ematical level of this section is somewhat higher than that of the previous
sections.
Figure 4.14 shows 20 data points in two classes in IR2. These data can be

separated by a linear boundary. Included in the figure (blue lines) are two
of the infinitely many possible separating hyperplanes. The orange line is
the least squares solution to the problem, obtained by regressing the −1/1
response Y on X (with intercept); the line is given by

{x : β̂0 + β̂1x1 + β̂2x2 = 0}. (4.39)

This least squares solution does not do a perfect job in separating the
points, and makes one error. This is the same boundary found by LDA,
in light of its equivalence with linear regression in the two-class case (Sec-
tion 4.3 and Exercise 4.2).
Classifiers such as (4.39), that compute a linear combination of the input

features and return the sign, were called perceptrons in the engineering liter-
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FIGURE 4.15. The linear algebra of a hyperplane (affine set).

ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.
Before we continue, let us digress slightly and review some vector algebra.

Figure 4.15 depicts a hyperplane or affine set L defined by the equation
f(x) = β0 + βTx = 0; since we are in IR2 this is a line.
Here we list some properties:

1. For any two points x1 and x2 lying in L, βT (x1− x2) = 0, and hence
β∗ = β/||β|| is the vector normal to the surface of L.

2. For any point x0 in L, βTx0 = −β0.

3. The signed distance of any point x to L is given by

β∗T (x− x0) =
1

‖β‖ (β
Tx+ β0)

=
1

||f ′(x)||f(x). (4.40)

Hence f(x) is proportional to the signed distance from x to the hyperplane
defined by f(x) = 0.

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If
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a response yi = 1 is misclassified, then xT
i β + β0 < 0, and the opposite for

a misclassified response with yi = −1. The goal is to minimize

D(β, β0) = −
∑
i∈M

yi(x
T
i β + β0), (4.41)

where M indexes the set of misclassified points. The quantity is non-
negative and proportional to the distance of the misclassified points to
the decision boundary defined by βTx + β0 = 0. The gradient (assuming
M is fixed) is given by

∂
D(β, β0)

∂β
= −

∑
i∈M

yixi, (4.42)

∂
D(β, β0)

∂β0
= −

∑
i∈M

yi. (4.43)

The algorithm in fact uses stochastic gradient descent to minimize this
piecewise linear criterion. This means that rather than computing the sum
of the gradient contributions of each observation followed by a step in the
negative gradient direction, a step is taken after each observation is visited.
Hence the misclassified observations are visited in some sequence, and the
parameters β are updated via

(
β
β0

)
←

(
β
β0

)
+ ρ

(
yixi

yi

)
. (4.44)

Here ρ is the learning rate, which in this case can be taken to be 1 without
loss in generality. If the classes are linearly separable, it can be shown that
the algorithm converges to a separating hyperplane in a finite number of
steps (Exercise 4.6). Figure 4.14 shows two solutions to a toy problem, each
started at a different random guess.
There are a number of problems with this algorithm, summarized in

Ripley (1996):

• When the data are separable, there are many solutions, and which
one is found depends on the starting values.

• The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.

• When the data are not separable, the algorithm will not converge,
and cycles develop. The cycles can be long and therefore hard to
detect.

The second problem can often be eliminated by seeking a hyperplane not
in the original space, but in a much enlarged space obtained by creating
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many basis-function transformations of the original variables. This is anal-
ogous to driving the residuals in a polynomial regression problem down
to zero by making the degree sufficiently large. Perfect separation cannot
always be achieved: for example, if observations from two different classes
share the same input. It may not be desirable either, since the resulting
model is likely to be overfit and will not generalize well. We return to this
point at the end of the next section.
A rather elegant solution to the first problem is to add additional con-

straints to the separating hyperplane.

4.5.2 Optimal Separating Hyperplanes

The optimal separating hyperplane separates the two classes and maximizes
the distance to the closest point from either class (Vapnik, 1996). Not only
does this provide a unique solution to the separating hyperplane problem,
but by maximizing the margin between the two classes on the training data,
this leads to better classification performance on test data.
We need to generalize criterion (4.41). Consider the optimization problem

max
β,β0,||β||=1

M

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , N.

(4.45)

The set of conditions ensure that all the points are at least a signed
distance M from the decision boundary defined by β and β0, and we seek
the largest such M and associated parameters. We can get rid of the ||β|| =
1 constraint by replacing the conditions with

1

||β||yi(x
T
i β + β0) ≥M, (4.46)

(which redefines β0) or equivalently

yi(x
T
i β + β0) ≥M ||β||. (4.47)

Since for any β and β0 satisfying these inequalities, any positively scaled
multiple satisfies them too, we can arbitrarily set ||β|| = 1/M . Thus (4.45)
is equivalent to

min
β,β0

1

2
||β||2

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N.

(4.48)

In light of (4.40), the constraints define an empty slab or margin around the
linear decision boundary of thickness 1/||β||. Hence we choose β and β0 to
maximize its thickness. This is a convex optimization problem (quadratic
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criterion with linear inequality constraints). The Lagrange (primal) func-
tion, to be minimized w.r.t. β and β0, is

LP =
1

2
||β||2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1]. (4.49)

Setting the derivatives to zero, we obtain:

β =

N∑
i=1

αiyixi, (4.50)

0 =

N∑
i=1

αiyi, (4.51)

and substituting these in (4.49) we obtain the so-called Wolfe dual

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0 and
N∑
i=1

αiyi = 0. (4.52)

The solution is obtained by maximizing LD in the positive orthant, a sim-
pler convex optimization problem, for which standard software can be used.
In addition the solution must satisfy the Karush–Kuhn–Tucker conditions,
which include (4.50), (4.51), (4.52) and

αi[yi(x
T
i β + β0)− 1] = 0 ∀i. (4.53)

From these we can see that

• if αi > 0, then yi(x
T
i β + β0) = 1, or in other words, xi is on the

boundary of the slab;

• if yi(x
T
i β+β0) > 1, xi is not on the boundary of the slab, and αi = 0.

From (4.50) we see that the solution vector β is defined in terms of a linear
combination of the support points xi—those points defined to be on the
boundary of the slab via αi > 0. Figure 4.16 shows the optimal separating
hyperplane for our toy example; there are three support points. Likewise,
β0 is obtained by solving (4.53) for any of the support points.

The optimal separating hyperplane produces a function f̂(x) = xT β̂+ β̂0

for classifying new observations:

Ĝ(x) = signf̂(x). (4.54)

Although none of the training observations fall in the margin (by con-
struction), this will not necessarily be the case for test observations. The



134 4. Linear Methods for Classification

FIGURE 4.16. The same data as in Figure 4.14. The shaded region delineates
the maximum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).

intuition is that a large margin on the training data will lead to good
separation on the test data.
The description of the solution in terms of support points seems to sug-

gest that the optimal hyperplane focuses more on the points that count,
and is more robust to model misspecification. The LDA solution, on the
other hand, depends on all of the data, even points far away from the de-
cision boundary. Note, however, that the identification of these support
points required the use of all the data. Of course, if the classes are really
Gaussian, then LDA is optimal, and separating hyperplanes will pay a price
for focusing on the (noisier) data at the boundaries of the classes.
Included in Figure 4.16 is the logistic regression solution to this prob-

lem, fit by maximum likelihood. Both solutions are similar in this case.
When a separating hyperplane exists, logistic regression will always find
it, since the log-likelihood can be driven to 0 in this case (Exercise 4.5).
The logistic regression solution shares some other qualitative features with
the separating hyperplane solution. The coefficient vector is defined by a
weighted least squares fit of a zero-mean linearized response on the input
features, and the weights are larger for points near the decision boundary
than for those further away.
When the data are not separable, there will be no feasible solution to

this problem, and an alternative formulation is needed. Again one can en-
large the space using basis transformations, but this can lead to artificial
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separation through over-fitting. In Chapter 12 we discuss a more attractive
alternative known as the support vector machine, which allows for overlap,
but minimizes a measure of the extent of this overlap.
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Exercises

Ex. 4.1 Show how to solve the generalized eigenvalue problem max aTBa
subject to aTWa = 1 by transforming to a standard eigenvalue problem.

Ex. 4.2 Suppose we have features x ∈ IRp, a two-class response, with class
sizes N1, N2, and the target coded as −N/N1, N/N2.

(a) Show that the LDA rule classifies to class 2 if

xT Σ̂
−1

(μ̂2 − μ̂1) >
1

2
(μ̂2 + μ̂1)

T Σ̂
−1

(μ̂2 − μ̂1)− log(N2/N1),

and class 1 otherwise.

(b) Consider minimization of the least squares criterion

N∑
i=1

(yi − β0 − xT
i β)

2. (4.55)

Show that the solution β̂ satisfies[
(N − 2)Σ̂+NΣ̂B

]
β = N(μ̂2 − μ̂1) (4.56)

(after simplification), where Σ̂B = N1N2

N2 (μ̂2 − μ̂1)(μ̂2 − μ̂1)
T .

(c) Hence show that Σ̂Bβ is in the direction (μ̂2 − μ̂1) and thus

β̂ ∝ Σ̂
−1

(μ̂2 − μ̂1). (4.57)

Therefore the least-squares regression coefficient is identical to the
LDA coefficient, up to a scalar multiple.


