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ABSTRACT

Recurrent neural network language models (RNNLMs) have become
an increasingly popular choice for speech and language processing
tasks including automatic speech recognition (ASR). As thegener-
alization patterns of RNNLMs andn-gram LMs are inherently dif-
ferent, RNNLMs are usually combined withn-gram LMs via a fixed
weighting based linear interpolation in state-of-the-artASR systems.
However, previous work doesn’t fully exploit the difference of mod-
elling power of the RNNLMs andn-gram LMs asn-gram level
changes. In order to fully exploit the detailedn-gram level comple-
mentary attributes between the two LMs, a back-off based compact
representation ofn-gram dependent interpolation weights is pro-
posed in this paper. This approach allows weight parametersto be
robustly estimated on limited data. Experimental results are reported
on the three tasks with varying amounts of training data. Small and
consistent improvements in both perplexity and WER were obtained
using the proposed interpolation approach over the baseline fixed
weighting based linear interpolation.

Index Terms— Speech recognition, perplexity, language model
interpolation, recurrent neural network

1. INTRODUCTION

Statistical language models (LMs) are vital components of speech
and language processing systems designed for tasks such as speech
recognition and machine translation. Back-offn-gram LMs are most
widely used form of language models during last several decades
due to their simple model structures, efficient parameter estimation
and discounting techniques. When large quantities of training data
are available, good generalization performance can be obtained us-
ing back-off n-gram LMs. A key part of the statistical language
modelling problem for many tasks including speech recognition is
to appropriately model the long-distance context dependencies. This
usually presents a severe data sparsity problem forn-gram LMs. In
order to address this issue, language modelling techniquesthat can
represent longer span preceding history contexts in a continuous and
lower dimensional vector space, for example, recurrent neural net-
work language models (RNNLMs) can be used. RNNLMs have
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been reported to yield consistent performance improvements over
back-offn-gram LMs across a range of tasks [1, 2, 3, 4, 5, 6, 7].

The intrinsic modelling characteristics and generalisation pat-
terns ofn-gram LMs and RNNLMs are different and complemen-
tary to each other. In order to draw strengths from both,n-gram
LMs and RNNLMs are usually combined using a context indepen-
dent, fixed weighting based linear interpolation in state-of-the-art
ASR systems [1, 2, 3, 6, 7]. The same approach was previously
used to combine multiplen-gram LMs trained, for example, on a
diverse collection of data sources. In order to reduce the mismatch
between the interpolated LM and the task of interest, interpolation
weights may be tuned by minimizing the perplexity on some held-
out data [8, 9, 10, 11, 12]. These interpolation weights indicate the
“usefulness” of individual component LMs for a particular task.

In order to fully exploit the locally varying complementaryat-
tributes among component LMs during interpolation, a more general
history context dependent form of interpolation can be usedto com-
binen-gram LMs [13]. A similar local variation of probabilistic con-
tribution fromn-gram LMs and RNNLMs across different contexts
during interpolation was also reported in previous research [14]. The
perplexity analysis overn-gram LMs and RNNLMs in [14] sug-
gests such variation is heavily correlated with the underlying con-
text resolution of componentn-gram LMs. For example, RNNLMs
assign higher probabilities when then-gram LMs’ context resolu-
tion is significantly reduced via the back-off recursion to alower
order, and reversely when a longer history context can be modelled
by then-gram LMs without using back-off. Inspired by these find-
ings, a back-off based compact representation ofn-gram dependent
interpolation weights is investigated in this paper. This approach
allows robust weight parameter estimation on limited data.Exper-
iments are conducted on the three tasks with varying amountsof
training data. Small and consistent improvements in both perplexity
and WER were obtained using the proposed interpolation approach
over the baseline fixed weighting based linear interpolation.

This paper is organized as follows. Section 2 gives a brief re-
view of n-gram LMs and RNNLMs. Section 3 presents the conven-
tional linear interpolation betweenn-gram LMs and RNNLMs. Sec-
tion 4 proposes a novel back-off based interpolation betweenn-gram
LMs and RNNLMs. Experimental results are reported on three tasks
with different amount of training data in Section 5. Conclusions are
drawn and possible future work is discussed in Section 6.

2. LANGUAGE MODELS

Statistical language models (LMs) assign a probability to agiven
sentenceW =<w1, w2, ..., wN>.

P (W) =
N
∏

i=1

P (wi|h
i−1
1 )



wherehi−1
1 =< w1, ..., wi−1 > denotes the history context for

wordwi. The probability distribution given any history contexthi−1
1

is required to satisfy a positive and sum-to-one constraint
∑

w

P (w|hi−1
1 ) = 1. (1)

In addition to extrinsic LM performance evaluation metricsthat are
based on, for example, word error rates for speech recognition tasks,
the generalization performance of language models can alsobe eval-
uated using the perplexity measure. This is defined as

PPL = exp

(

−
1

N

N
∑

i=1

lnP (wi|h
i−1
1 )

)

. (2)

In general, a language model with lower perplexity generalise better
when used to predict unseen data.

2.1. n-gram LMs

Back-off n-gram LMs have been the dominant form of statistical
language models (LMs) during the last few decades due to their sim-
ple model structures, efficient parameter estimation techniques and
discounting algorithms to improve robustness. Good generalization
performance can be obtained using back-offn-gram LMs when large
quantities of training data are available. Under a Markov chain as-
sumption, the probability of the current word being predicted only
depends on precedingN − 1 words. This is given by

P (wi|h
i−1
1 ) = PNG(wi|h

i−1
i−N+1). (3)

Then-gram LM probabilitiesPNG(wi|h
i−1
i−N+1) are computed

using the following back-off recursion

PNG(wi|h
i−1
i−N+1) =

{

PNG(wi|h
i−1
i−N+1) if C(wi, h

i−1
i−N+1)>CN

α(hi−1
i−N+1)PNG(wi|h

i−1
i−N+2) otherwise

(4)

WhereCN is theN th order count cut-off, andC(wi, h
i−1
i−N+1) is the

frequency count of a particularn-gram<wi, h
i−1
i−N+1> in the train-

ing corpus. The history dependent normalisation termα(hi−1
i−N+1)

ensuresPNG(wi|h
i−1
i−N+1) be a valid probability distribution.

A key part of the statistical language modelling problem for
many applications including speech recognition is to modelthe long-
distance context dependencies in natural languages. Directly mod-
elling long-span history contexts usingn-gram LMs can in general
lead to a severe data sparsity problem. In order to improve robust-
ness, in state-of-the-art speech recognition systems,n-grams LMs
are often constructed using sophisticated parameter smoothing tech-
niques represented by, for example, modified KN smoothing [15].

2.2. Recurrent Neural Network LMs

In contrast ton-gram LMs, recurrent neural network LMs [1] rep-
resent ine fixed weighting based linear interpolation. the full,
non-truncated historyhi−1

1 =< w1, . . ., wi−1 > for word wi us-
ing a 1-of-k encoding of the previous wordwi−1 and a continu-
ous vectorvi−2 for the remaining context. For an empty history,
this is initialised, for example, to a vector of all ones. An out-of-
vocabulary (OOV) input node can also be used to represent anyin-
put word not in the chosen recognition vocabulary. The topology
of the recurrent neural network used to compute LM probabilities
PRNN(wi|wi−1,vi−2) consists of three layers. The full history vec-
tor, obtained by concatenatingwi−1 andvi−2, is fed into the input

layer. The hidden layer compresses the information from these two
inputs and computes a new representationvi−1 using a sigmoid ac-
tivation to achieve non-linearity. This is then passed to the output
layer to produce normalized RNNLM probabilities using a softmax
activation, as well as recursively fed back into the input layer as the
“future” remaining history to compute the LM probability for the
following wordPRNN(wi+1|wi,vi−1). An example RNNLM archi-
tecture with an unclustered, full output layer is shown in Figure 1.
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Fig. 1. RNNLM with an full output layer and OOS nodes.

RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation throughtime
(BPTT) [16], where the error is propagated through recurrent con-
nections back for a specific number of time steps, for example, 4 or
5 [2]. This allows RNNLMs to keep information for several time
steps in the hidden layer. To reduce the computational cost,a short-
list [17, 18] based output layer vocabulary limited to the most fre-
quent words can be used. To reduce the bias to in-shortlist words
during RNNLM training and improve robustness, an additional node
is added at the output layer to model the probability mass of out-of-
shortlist (OOS) words [19, 20, 21].

RNNLM training is computationally expensive. This practical
issue limits the quantity of data and the number of possible appli-
cation areas for RNNLMs. In order to solve this problem, recently
there has increasing research interest in deriving efficient parallel
training algorithms for RNNLMs [22, 23, 24, 25]. In particular,
RNNLMs with a full output layer were efficiently trained on a graph-
ics processor unit (GPU) using a spliced sentence bunch based par-
allel training algorithm on large amounts of data in [25]. A modified
version of the RNNLM toolkit [26] supporting the above GPU based
parallel RNNLM training method and the full output RNNLM archi-
tecture shown in Figure 1 is used in this paper. RNNLM training is
more time-consuming compared ton-gram LMs. In order to im-
prove efficiency, for state-of-art ASR tasks,n-gram LMs are often
trained on a significantly larger quantities of data, while RNNLMs
are trained on smaller amounts of in-domain data. In this work, n-
gram LMs and RNNLMs are trained on the same data to allow a fair
comparison.



As RNNLMs use a vector representation of full histories, they
are mostly used for N-best list rescoring. For more efficientlat-
tice rescoring using RNNLMs, appropriate approximation schemes,
for example, based on clustering among complete histories proposed
in [21] can be used.

3. LANGUAGE MODEL INTERPOLATION

Methods to combine multiple language models had been studied and
compared in [27, 13, 28]. Most of these techniques are investigated
on n-gram LMs and their derivations, such as topic basedn-gram
LM and cached basedn-gram LM. RNNLMs are inherently different
from n-gram LMs in terms of their generalisation patterns. For this
reason, RNNLMs are usually linearly interpolated withn-gram LMs
to obtain both a good context coverage and strong generalisation [1,
3, 17, 18, 19, 20]. The interpolated LM probability is given by

P (wi|h
i−1
1 ) = λPNG(wi|h

i−1
1 ) + (1− λ)PRN(wi|h

i−1
1 ) (5)

λ is the global weight of then-gram LM distributionPNG(·), which
can be optimized using the EM algorithm on a held-out set.

4. BACK-OFF BASED LM INTERPOLATION

4.1. Generalized LM Interpolation Using Weight Clustering

As discussed in sections 1 and 3, in order to fully exploit thecom-
plementary attributes betweenn-gram LMs and RNNLMs that vary
among individualn-gram contexts, a more general form of linear
probability interpolation between the two based onn-gram depen-
dent weights can be considered. However, this approach requires a
large number of interpolation weight parameters to be robustly es-
timated and therefore leads to a severe data sparsity problem when
given limited data. A general solution to handle this problem to share
weights within groups of contexts where the contribution from n-
gram LMs and RNNLMs (represented by the interpolation weights)
are similar. Using this approach a more compact representation of
the n-gram dependent interpolation weights can be derived. This
allows weight parameters to be robustly estimated on limited data.
The fixed weighting based linear interpolation in equation (5) is thus
modified as

P (wi|h
i−1
1 ) =

1

Z(hi−1
1 )

(

λ
(NG)

Φ(wi,h
i−1

1 )
PNG(wi|h

i−1
1 ) (6)

+λ
(RN)

Φ(wi,h
i−1

1 )
PRN(wi|h

i−1
1 )

)

where then-gram dependent interpolation weightsλ
(NG)

Φ(wi,h
i−1

1
)

and

λ
(RN)

Φ(wi,h
i−1

1 )
are positive values and shared using ann-gram cluster-

ing functionΦ(·). A normalisation termZ(hi−1
1 ) is also required

to ensure the interpolated LM probabilities to be valid. This term is
computed as

Z(hi−1
1 ) =

∑

w′

(

λ
(NG)

Φ(w′,h
i−1

1
)
PNG(w

′|hi−1
1 ) (7)

+λ
(RN)

Φ(w′,h
i−1

1 )
PRN(w

′|hi−1
1 )

)

The above form of interpolation based onn-gram weight classing is
illustrated in Figure 2. Usually, the interpolation weights ofn-gram

LM and RNNLM satisfyλ(NG)

Φ(w′ ,h
i−1

1 )
+λ

(RN)

Φ(w′ ,h
i−1

1 )
= 1. By defini-

tion, the standard fixed weight based linear interpolation in equation
(5) is subsumed by the more general form of linear interpolation in
equation (6), and is equivalent to assigning alln-gram contexts to a
single class and fixed interpolation weights are used.

... ...
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i−1
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Fig. 2. n-gram dependent interpolation of n-gram LM and RNNLM.

4.2. Interpolation using back-off for weight clustering (n-gram
LM ⊕ RNNLM)

A central part of then-gram class dependent interpolation approach
given in equation (6) is to derive an appropriate form ofn-gram con-
text classingΦ(·). For the particular form of interpolation between
back-offn-gram LMs and RNNLMs considered in this paper, a suit-
able weight classing scheme is expected to reflect the variation of
the probabilistic contribution from these two component LMs. In
previous research it was found that such variation is heavily corre-
lated with then-gram LM’s underlying context resolution. This is
represented by the highest availablen-gram order obtained through
the back-off recursion inn-gram LM in equation (4).

Such correlation is analyzed again in this paper on the Penn
TreeBank (PTB) corpus. A detailed breakdown of the perplexity
performance of the baseline 5-gram LM, RNNLM and their linear
interpolation over differentn-gram context groups of varying back-
off orders on the PTB test data is shown in table 1. The 5-gram LM
outperformed the RNNLM in terms of the overall perplexity. As ex-
pected, significant perplexity reduction was further obtained using
standard optimized linear interpolation (3rd line in table1). A large
variation in the 5-gram LM’s contribution characterized bythe rank
ordering in perplexity against the RNNLM over different back-off
orders is also clearly shown in table 1). This is due to the fact thatn-
gram LMs and RNNLMs employ inherently different mechanism to
acquire generalization.n-gram LMs are more powerful in predicting
the probabilities of frequently occurringn-grams using higher order
context modelling, while RNNLMs’ strength lie in their ability to
predict rare events.

The above example analysis suggests back-off order can provide
a highly compact representation ofn-gram level varying probabilis-
tic contribution from the back-offn-gram LMs and RNNLMs. As
the interpolation weights are clustered into a small numberof classes
associated with the back-off orders, the weight parameterscan be ro-
bustly estimated on a small amount of held-out data. The associated



Table 1. Perplexity performance of baseline 5-gram LM, RNNLM
and their linear interpolation over varying back-offn-gram orders on
PTB test set.

n-gralm LM back-off level
LM 1g 2g 3g 4g 5g Overall

#words 15594 33646 19655 9502 4033 82430

5G 9157.3 198.0 26.4 8.3 2.5 141.5
RNN 4633.7 183.4 38.7 17.9 6.0 150.8

5G+RNNLM 4697.6 161.6 26.9 9.4 3.0 118.3

interpolation weight classing is thus computed as

Φ
(

wi, h
i−1
1

)

= ΦNG

(

wi, h
i−1
i−N+1

)

=

{

N if <wi, h
i−1
i−N+1>∈ GNG

ΦNG

(

wi, h
i−1
i−N+2

)

otherwise
(8)

whereGNG = {..., <w′, h′>, ...} contains all the unique observedn-
gram contexts that then-gram LM PNG(·) models. However, the
optimization of interpolation weights is not easy due to thenor-
malisation termZ(hi−1

1 ) in Equation 7. Stochastic gradient de-
scent is applied for optimization on a held-out set and the condition
λ
(NG)

ΦNG(wi,h
i−1

1
)
+ λ

(RN)

ΦNG(wi,h
i−1

1
)
= 1 is retained for each back-off

level during optimization. This form of interpolation willbe denoted
asn-gram LM⊕ RNNLM.

4.3. Back-off based interpolation with rescaling (n-gram LM ⊗
RNNLM)

Then-gram class dependent interpolation approach given in equa-
tion (6) requires a normalisation termZ(hi−1

1 ) to be computed for
each distinct history context over multiple weight classes. As such
term is also dependent on the interpolation weights, a direct opti-
mization of the weight parameters by maximising the interpolated
LM probabilities in equation (6) is a non-trivial problem. Computa-
tionally expensive numerical optimization methods are required.

In order to improve efficiency, an alternative novel form of
n-gram class dependent interpolation between back-off LMs and
RNNLMs is considered in this paper. This is given by

PBOInt(wi|h
i−1
1 ) = λ

Φ(wi,h
i−1

1
)PNG(wi|h

i−1
1 ) (9)

+
(

1− λ
Φ(wi,h

i−1

1
)

)

β
Φ(wi,h

i−1

1
),hi−1

1

PRN(wi|h
i−1
1 )

where then-gram context class and history dependent normalisa-
tion termβ

Φ(wi,h
i−1

1 ),hi−1

1

is independent of interpolation weight

parameters and computed as below.

β
Φ(wi,h

i−1

1
),hi−1

1

=

∑

w′,Φ(w′ ,h
i−1

1
)=Φ(wi,h

i−1

1 ) PNG(w
′|hi−1

1 )
∑

w′,Φ(w′,h
i−1

1
)=Φ(wi,h

i−1

1
) PRN(w′|hi−1

1 )
(10)

Recalling the general form of interpolation in Equation 6, Equa-
tion 9 is a specific case of it under the following conditions,

λ
(NG)

Φ(wi,h
i−1

1 )
= λ

Φ(wi,h
i−1

1 )

λ
(RN)

Φ(wi,h
i−1

1
)
=
(

1− λ
Φ(wi,h

i−1

1 )

)

β
Φ(wi,h

i−1

1 ),hi−1

1

Z(hi−1
1 ) = 1

As the above normalisation term is no longer dependent on the
interpolation weights, weight parameters associated withdifferent
classes can be optimized independently of each other using the con-
ventional EM algorithm on held-out data. During evaluation, this
normalisation term can be computed for each pairing of the under-
lying weight class and history context only once and cached for effi-
ciency. In common with the interpolation approach given in equation
(6), the form of interpolation in equation (9) also requiresa suit-
able form of interpolation weight class assignment among different
n-gram contexts. The back-off based interpolation weight classing
given in equation (8) is used.

The resulting back-off based interpolation given in equation (9)
retains the probability mass of alln-grams sharing a common history
and the same back-off based weight class. This probability mass is
then be redistributed using the RNNLM distribution during interpo-
lation. In this process, potential bias to then-gram LM distribution
may be introduced in the final interpolated LM probabilities. In or-
der to address this issue, it is possible to further improve generali-
sation performance by combining the interpolated LM probabilities
obtained using equation (9) with RNNLMs using the conventional
fixed weighting based interpolation.

P (wi|h
i−1
1 ) = λPBOInt(wi|h

i−1
1 ) + (1− λ)PRN(wi|h

i−1
1 ) (11)

The back-off class dependent interpolation weights
{

λ
Φ(wi,h

i−1

1 )

}

and the top level linear interpolation weightλ can be optimized it-
eratively using the EM algorithm on a held-out set. This formof
interpolation will be denoted asn-gram LM⊗RNNLM + RNNLM.

5. EXPERIMENTS

Experiments are conducted on three tasks with different amounts of
training data to show the effect of back-off based interpolation. First,
the Penn TreeBank (PTB) Corpus is used for experiment to validate
the previous findings reported in [14]. The 860k word PTB training
data and a 10k vocabulary were used. A development data set of70k
words was used parameter tuning. A separate 79k word test test was
used for performance evaluation. The perplexity (PPL) results of the
5-gram LM and RNNLM are shown in Table 2. The PPL scores
the two LMs over different context groups associated with varying
back-offn-gram orders are shown in the first two rows. These results
were previously presented and discussed in table 1 in Section 4.2.
The third line (5G+RNN) shows the PPL score breakdown of the
final linear interpolated LM. The linear interpolation weight λ was
perplexity optimized on the development set. According to these
results, the conventional form of linear interpolation gave good gen-
eralisation performance on each back-off order context groups via
a simple probability averaging. The overall PPL was reducedfrom
141.5 to 118.3. In particular, this standard fixed weightingbased in-
terpolated LM gave significant improvements in PPL for the group
of contexts where the 5-gram LM backed off to 1-gram.

The fourth line (5G⊕RNN) gives the results of the first back-off
based interpolation method introduced in Section 4.2, the interpo-
lation weighs were optimized with stochastic gradient descent. It
gave a slight overall PPL improvement. The fifth line (5G⊗RNN)
presents the results of the back-off based interpolation approach of
Section 4.3. As discussed, this form of back-off based interpolation
retains then-gram LM’s probability mass of alln-grams sharing a
common history and the same back-off order based weight class,
and re-distributes it using the RNNLM distribution during interpo-
lation. It could be seen from Table 2 that the PPL score was im-
proved on each back-off level compared to the baseline 5-gram LM.



Table 2. PPL results on test set of PTB corpus
n-gralm LM back-off level

LM 1 2 3 4 5 Overall

#words 15594 33646 19655 9502 4033 82430
5G 9157.3 198.0 26.4 8.3 2.5 141.5

RNN 4633.7 183.4 38.7 17.9 6.0 150.8
5G+RNNLM 4697.6 161.6 26.9 9.4 3.0 118.3

5G⊕RNN 4568.1 163.0 27.4 9.1 2.9 117.8
5G⊗RNN 5472.1 170.0 24.3 7.9 2.4 117.6

RNN⊗5G+RNN 5230.7 167.8 24.7 8.1 2.5 117.0

The interpolation weightλn on each back-off level was efficiently
optimized independently via the EM algorithm on the development
data. The optimal interpolation weights{λn} for the 5-gram LM
were{0.25, 0.4, 0.5, 0.55, 0.55} for varying back-off levels from 1
to 5. As expected, a general trend could be found that then-gram
weight increases with the back-off order. The back-off based inter-
polated LM probabilities could be further linearly interpolated with
the RNNLM (with a weighting 0.9:0.1) using equation (11). This
gave further small improvements in perplexity.

The next experiment was conducted on the BABEL corpus (i.e.
IARPA-babel202b-v1.0d) and used Full Language Pack (FLP) of the
Swahili language. A 3-gram LM (3glm) with slight pruning and
RNNLM were both trained on 290K words of text data1. The test
set includes 52K words. The vocabulary size is 24K. All vocabu-
lary words were used in RNNLM input and output word listst during
training. A total of 200 hidden units were used. RNNLMs were
trained on GPU as described in [25]. The PPL and WER results are
shown in Table 3. A pattern similar to that observed on the PTB
task in Table 2 was found. Standard linear interpolation reduced the
overall PPL score by 7% relative compared with the 3-gram LM.
A detailed analysis on each back-off level showed that linear in-
terpolation improved the PPL score by 25% relative on the words
where the 3-gram LM backs off to 1-gram, while no improvements
were obtained for the other two back off levels. The back-offbased
interpolation by simply clustering (3G⊕RNN) provided slight PPL
reduction and obtained the same WER as linear interpolation. The
back-off based interpolation (3G⊗RNN) reduced the PPL consis-
tently on each back-off level compared with the 3-gram LM. A small
overall PPL reduction was also obtained over the conventional fixed
weight based linear interpolation. The optimal interpolation weights
assigned to the 3-gram LM were (0.25, 0.6, 0.65) for the back-off
levels from 1-gram to 3-gram.

Table 3. PPL and WER results on Swahili for Babel
LM PPL WER

n-gram LM back-off level Overall
1 2 3

#words 19687 28355 7156 55198
3G 3510.4 107.1 19.0 297.2 47.3

RNN 2387.3 145.6 29.9 321.6 -
3G+RNNLM 2618.3 107.9 21.5 273.0 46.8

3G⊕RNN 2602.6 107.6 21.6 272.2 46.8
3G⊗RNN 2933.9 102.0 18.7 271.3 46.9

3G⊗RNN+RNN 2850.4 103.0 19.2 270.7 46.7

ASR experiments were then conducted on the same BABEL
task. The acoustic models were trained on 46 hours of speech.Tan-
dem and hybrid DNN systems were trained separately. A frame level

1A 4-gram LM gave no further improvements of ASR performance given
the small amount of training data

joint decoding was then applied to combine the acoustic scores of
the two systems [29]. The baseline 3-gram LM was used in the first
decoding stage for lattice generation. N-best (N=50) rescoring was
then applied using the interpolation between the RNNLM and 3-
gram LM. The word error rate (WER) results are shown in Table 3.
The baseline 4-gram gave a WER score of 47.3%. Standard linear
interpolation gave an absolute 0.5% WER reduction. the back-off
based interpolation gave a comparable WER score of 46.9%. A fur-
ther linear interpolation using equation (11) between the back-off
based interpolated LM and the RNNLM (with a weighting 0.9:0.1)
gave the lowest WER of 46.7% in the table.

The previous experiments were conducted on a relatively small
amount of training data. In the next experiment a much largertrain-
ing set based on the BBC Multi-Genre Broadcast (MGB) challenge
task was used2. 650M words of text data were used in the baseline
4-gram LM (4glm) and RNNLM training. The hybrid DNN acous-
tic model was trained on 700 hours of data. A 64K vocabulary was
used. A total of 500 hidden nodes were used in the RNNLM. A 46K
input shortlist and 40K output shortlist were used in RNNLM train-
ing. The results are shown in Table 4. The complementary attributes
of 4-gram LM (4glm) and the RNNLM on each back-off level were
consistent with the previous two tasks. There was only 3.6% of all
n-gram requests that back off to 1-gram due to the large amountof
training data being used and low pruning threshold. In common with
the previous two tasks, RNNLM was found to perform better than
4-gram LM when the latter backs off to 1-gram or 2-gram probabili-
ties, while vice versa when it retained a 3-gram or 4-gram modelling
resolution. The baseline linear interpolation gave a significant over-
all reduction in perplexity. On each back-off level, the reduction
in perplexity increases when the back-off level decreases.Again
the back-off based interpolation with simply clustering (4G⊕RNN)
gave slight PPL improvement and the same WER compared to lin-
ear interpolation. The back-off based interpolation with rescaling
(4G⊗RNN) slightly outperformed the conventional linear interpola-
tion. In terms of WER results, The linear interpolation reduce the
WER by 0.7% absolutely. 4G⊗RNN and 4G⊗RNN+RNN gave a
small further reduction of of 0.1% absolute and gave an overall im-
provement 0.8% absolute over the baseline 4-gram LM.

Table 4. PPL and WER results on MGB task
LM PPL WER

n-gram LM back-off level Overall
1 2 3 4

#words 7362 60578 78528 56291 202759
4G 18731.7 733.2 76.0 11.7 108.7 26.2

RNN 5868.1 564.3 79.0 21.8 116.2 -
4G+RNN 6782.0 560.3 68.2 13.4 96.3 25.5
4G⊕RNN 6440.7 563.0 68.7 12.7 95.1 25.5
4G⊗RNN 7145.7 593.5 70.0 11.5 94.9 25.4

4G⊗RNN+RNN 6800.4 584.2 69.5 11.8 94.7 25.4

6. CONCLUSIONS AND FUTURE WORK

In order to exploit the complementary features amongn-gram LMs
and RNNLMs, a standard form of linear interpolation based onfixed
weighs is widely used to combine them. Motivated by their inher-
ently different generalization patterns that are correlated with the
variation of the underlyingn-gram LM context resolution, a novel
back-off based compact representation ofn-gram dependent inter-
polation weights is proposed in this paper. The proposed technique

2The detail of MGB challenge could be found from http://www.mgb-
challenge.org/



allows the interpolation weights shared at each back-off level to
be estimated both efficiently and robustly. Experimental results on
three tasks of varying amounts of training data show that thepro-
posed back-off based linear interpolation betweenn-gram LMs and
RNNLMs provided a simple but powerful way to combine them.
Small but consistent improvements in terms of both perplexity and
WER reductions were obtained over the conventional fixed weight-
ing based linear interpolation. Alternative interpolation methods
to further improve the combination between RNNLMs andn-gram
LMs will be investigated in future research.
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