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ABSTRACT

In speech recognition systems language model (LMs) are often con-
structed by training and combining multiplen-gram models. They
can be either used to represent different genres or tasks found in
diverse text sources, or capture stochastic properties of differentlin-
guistic symbol sequences, for example, syllables and words. Un-
supervised LM adaptation may also be used to further improve ro-
bustness to varying styles or tasks. When using these techniques,
extensive software changes are often required. In this paper an al-
ternative and more general approach based on weighted finite state
transducers (WFSTs) is investigated for LM combination and adap-
tation. As it is entirely based on well-defined WFST operations,
minimum change to decoding tools is needed. A wide range of LM
combination configurations can be flexibly supported. An efficient
on-the-fly WFST decoding algorithm is also proposed. Significant
error rate gains of 7.3% relative were obtained on a state-of-the-art
broadcast audio recognition task using a history dependently adapted
multi-level LM modelling both syllable and word sequences.

1. INTRODUCTION

In current ASR systems language model (LMs) are often constructed
by training n-gram components models [7] on data from a set of
diverse sources representing different genre, epoch or other higher
level attributes. In order to incorporate more linguistic constraints, it
is also possible to train and combine LMs that model different unit
sequences, for example, syllables and words [4]. Interpolated LMs
with context free weighting are normally constructed using special
purpose tools, for example, the SRILM toolkit [12]. In order to cap-
ture local variation of modelling resolution, generalization, topics
and styles among component LMs, history context dependent LM
interpolation and adaptation can be used [8]. These techniques often
require extensive software changes. An alternative approach consid-
ered in this paper is to combine and adapt LMs usingsemi-ring based
weighted finite state transducers (WFSTs) [9, 10]. Unless otherwise
stated,tropical semi-ring based WFSTs are considered in this paper.

As this approach entirely based on well-defined WFST opera-
tions, minimum change to decoding tools is required. It is highly
flexible and can be used for a wide range of combination configu-
rations. It not only supports the use of global, context free weights
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in LM combination, but also a more general case when context de-
pendent weights are employed. Thus LM adaptation using history
context dependent interpolation can be conveniently implemented.

The rest of the paper is organised as follows. The use of WFST
based LM representation in current ASR systems is reviewed in sec-
tion 2. LM combination schemes using WFST operations are intro-
duced in section3. WFST based context dependent LM adaptation
are presented in section4. An efficient on-the-fly WFST decoding
approach using context dependent LM adaptation is proposed in sec-
tion 5. Experimental results on a state-of-the-art Mandarin broadcast
speech transcription task are presented in section6. Section7 gives
the conclusion and suggests possible future work.

2. WEIGHTED FINITE STATE TRANSDUCERS

A WFST is a finite state machine that associates weights such as
probabilities, durations, penalties, or any other quantity that accu-
mulates linearly along paths within a directed graph, to each pair of
input and output symbol sequences. A set of classic finite automata
operations to combine, optimize and compact WFSTs during search
are available. Many types of modelling information used in speech
recognition systems, such as HMM topology, lexicon andn-gram
LMs, involve a stochastic finite-state mappings between symbol se-
quences. WFSTs provide a generic and well-defined framework to
represent them. More precisely,n-gram LMs can be represented by
weighted finite state acceptors (WFSA). These are special cases of
WFSTs when the input and output symbol sequences are identical.
Take two simple back-off 2-gram LMs for a three word vocabulary
{A, B, C} as examples, their WFST representations,L

(1)
G

andL
(2)
G

,
are shown in figure1(a) and1(b). In both transducers,n-gram log
probabilities appear as the negated arc weights. The 1-gram back-off
weights are represented by non-emitting epsilon arcs without output
symbols, as marked with “<e>” in the figure.

3. LANGUAGE MODEL COMBINATION

Component LMs can be combined using linear, or log-linear model
interpolation. In machine learning, they are commonly referred to as
mixtures of experts (MoE) and products of experts (PoE) [5, 6].
Linear Model Combination: As a union of all the individual ex-
perts, it tends to to give a broader distribution than individual compo-
nents alone. Hence, this form of model combination may help over-
come the sparsity issue when training individual component models
and thus improve generalization. Letwi denote theith word of a
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Fig. 1. WFST representation of two simple 2-gram back-off LMs.

L word long sequenceW =< w1, w2, ..., wi, ..., wL >. The LM
log-probability for the complete word sequence is given by
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wherehn−1
i

represents theith word’s history ofn − 1 words max-
imum, < wi−n+1, ..., wi−1 >, andλm is the global, context free
weight for themth component under a positive and sum-to-one sub-
ject. These weights indicate the “usefulness” of each source for a
particular task. To reduce the mismatch against the target domain,
these weights may be perplexity tuned on held-out data.

Assuming component LMs model the same type of symbol se-
quences, for example, words, the WFST representation of the lin-
early combined LM can be derived using a component levelcompo-
sition between then-gram and interpolation weight transducers prior
to a finallog semi-ring based WFSTunion operation. Hence,
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whereL
(m)
G

is then-gram model transducer, andL(m)

φ
the interpo-

lation weight transducer for themth component. Take the compo-
nent LMs of figures1(a) and1(b) as examples, their context free
interpolation weights,λ1 = 0.3, λ2 = 0.7 (1.220 and 0.360 as
negated natural log) may be represented by the two transducers in
figure 2. They proportionately reflect the probability contribution
from the two component LMs on a context free basis, as the second
model has more 2-grams than the first one. It can be shown that
context free, global interpolation simply increases the costs of all
emitting arcs within each componentn-gram model sub-transducer
by its own weight in the bottom of figure2. The interpolated prob-
ability of anyn-gram is represented by the marginalization over the
probability of all partial paths in the union transducer that departs
from a state representing contexthn−1

i
and outputs word symbol

wi. In order to improve efficiency during search, aclosure opera-
tion can be used to create a single terminal state before being further
compressed viadeterminization andminimization operations.

It is also possible to linearly combine LMs modelling sequences
of different linguistic units, for example, syllables and words. In
order to have compatible transducer symbols during the union oper-
ation of equation (2), the syllable level component transducers must
be first composed with a lexicon transducer, which provides sub-
word to word mapping, and thenprojected onto word level.
Log-Linear Model Combination: In contrast, log-linear interpola-
tion provides anintersection of individual experts. It yields a high
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Fig. 2. The WFST representation of the context free linear interpo-
lation weights for component LMs of figures1(a) and1(b) and the
linearly interpolated LM derived using operations in equation (2).

likelihood only when all component models agree. For the exam-
ple above, the log-linearly interpolated LM probability on word se-
quence level, with the probability normalization term ignored, is

ln P (W) =

L
X

i=1

M
X

m=1

λm ln Pm(wi|h
n−1
i ) (3)

whereλm is the context free log-linear weight for themth com-
ponent. They are no longer subject to a positive and sum-to-one
constraint. They may be optimized under a discriminative frame-
work as inmaximum entropy models [3]. In this paper these weights
are fixed as equal. This form of model combination exploits the
consensus among product experts. Hypotheses with very different
log-likelihood ranking among component models will be penalized.

Assuming compatible symbols are used for all transducers, a
log-linear model combination may be efficiently implemented using
a sequence of WFSTcomposition operations between componentn-
gram model transducers after anarithmetic scaling of arc costs by
their respective log-linear weights. This is given by
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(4)

The precise nature of component language models determines
which of the two combination schemes is more appropriate. For ex-
ample, when building word level LMs, in order to improve context
coverage and generalization, a linear interpolation between compo-
nent LMs trained over a diverse set of text sources can be used.
When introducing additional sub-word level linguistic constraints to
increase discrimination, word and syllable level LMs can be log-
linearly combined [4]. In order to achieve a good balance between
generalization and discrimination, it is also possible to leverage from
both forms of combination using a product between mixtures of ex-
perts, or equivalently a composition between union-ed LMs.

4. LANGUAGE MODEL ADAPTATION

In order to improve robustness to varying styles or tasks, unsuper-
vised test-time LM adaptation to a particular broadcast show, for
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example, may be used. As directly adaptingn-gram probabilities is
impractical on limited amounts of data, standard adaptation schemes
only involve updating the context free, linear interpolation weights
of equation (1).

However, this approach can only adapt LMs to a particular
genre, epoch or other higher level attributes. Local factors that de-
termine the “usefulness” of sources on a context dependent basis,
such as modelling resolution, generalization, topics and styles, are
poorly modelled. Take 2-gram distributionP (C|B) in figure 1 as
an example, the first component LM of figure1(a) gives a 2-gram
log-probability of -8.5, while a lower score of -15.5 is assigned
by the second one via a back-off path in figure1(b). In this case
the probability contribution from the two component LMs clearly
contradicts the assignment of context free interpolation weights of
0.3 and 0.7 in figure2. To handle this issue, context dependent LM
interpolation and adaptation can be used [8]. A set of discrete con-
text dependent back-off weights are used to dynamically adjust the
contribution from component LMs. Thus equation (1) is extended to

ln P (W) =
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whereφ
m

(hn−1
i

) is themth component weight for contexthn−1
i

.
Both maximum likelihood and discriminative schemes are available
to robustly estimate context dependent interpolation weights [8].

The WFST representation of equation (2) also holds for LMs
constructed using context dependent interpolation weights. The dif-
ference between context free and dependent LM interpolation in
equations (1) and (5) lies in the precise nature of weight transduc-
ers. Again take the two component LMs of figures1(a) and1(b) as
examples, the WFST representation of their context dependent in-
terpolation weights are shown in figure3(a) and3(b). As is shown
in the figure, when the history varies, more flexibility is allowed to
component LM weighting than the context free case of figure2. For
2-gramP (C|B), a duly higher weight of 0.8 (0.219 as negated nat-
ural log) is now assigned to the first component LM.
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Fig. 3. WFST representation of context dependent linear interpola-
tion weights for component LMs of figures1(a) and1(b).

5. ON-THE-FLY WFST NETWORK EXPANSION

When using context dependent interpolation in decoding, there is a
flexible choice between a static, off-line application, and dynamic,
on-the-fly application of the weights. During test-time LM adap-
tation, every broadcast show or snippet, for example, may have its
own set of interpolation weights. When modelling a large number of
contexts using the transducer topology of figure3, the composition
between componentn-gram and their weight transducers can lead

to a significant network expansion. This is highly inefficient and
makes the subsequent network compression operations very expen-
sive. A similar issue exists during the composition between compo-
nentn-gram transducers in the log-linear combination of equation
(4). Hence, it is preferable to dynamically perform the composition,
union and compression operations of equation (2) in one single step
on-the-fly. Related approaches have been previously shown effective
for the composition between one single back-offn-gram LM and a
lexicon [1, 2]. The basic idea to only create a new path on request
during search, if and only if it carries context information different
from others. For context dependent adaptation, the LM state associ-
ated with context history isjointly determined by componentn-gram
models and interpolation weights in the form of a context doublet.
Using an on-the-fly lattice expansion algorithm, there are two ad-
vantages. First, under the lattice constraint, no dead-end state [1],
which has no successful path to the terminal state, will be created
during expansion. Secondly, redundant paths representing unused
lower order back-off distributions will be automatically filtered out.

6. EXPERIMENTS AND RESULTS

The CU-HTK Mandarin ASR system was used to evaluate perfor-
mance of multi-level combined and adapted LMs. The baseline sys-
tem of word level recognition units was used in an initial “P2” lattice
generation stage followed by a “P3” lattice rescoring stage using re-
adapted acoustic models. The overall structure of the system was
similar to that described in [11]. A 63k word list consisting a total of
52k multiple character Chinese words, 6k single character Chinese
words and 5k frequent English words was used. An interpolated 4-
gram word level baseline LM and adapted gender dependent cross-
word triphone MPE acoustic models with HLDA projected PLP and
pitch features trained on 1673 hours of broadcast speech were used
in decoding. A total of 4.3 billion characters from 27 text sources
were used in LM training. These account for 2.8 billion words af-
ter a longest first based character to word segmentation. Informa-
tion on corpus size, cut-off settings, smoothing schemes and compo-
nent weights for the top 10 heavily weighted text sources are given
in table1. Three GALE Mandarin broadcast speech development
sets were used: 2.6 hourdev07, 1 hourdev08 and 2.6 hourp2ns.
Manual audio segmentation was used. The word level baseline LM
component weights were perplexity tuned ondev07, dev08 and ad-
ditional held-out data.

Comp #Char #Word Train Intplt
LM (M) (M) Config Weight

bcm 14.26 9.21 kn/111(11) 0.260058
bnm 12.29 7.41 kn/111(11) 0.147834
gigaxin 483.65 362.74 kn/112(22) 0.132539
phoenix 144.57 91.38 kn/112(22) 0.107920
gigacna 891.13 604.98 gt/123(33) 0.072665
voarfa 63.54 35.31 kn/112(22) 0.072299
ibmsina2 382.34 253.59 kn/112(22) 0.055601
bbndata 301.39 186.3 kn/112(22) 0.046213
galeweb 556.41 390.8 kn/122(22) 0.045918
agilece 336.78 204.5 kn/112(22) 0.031497

Table 1. Text source size, cut-off settings, smoothing scheme used
and interpolation weights for top 10 heavily weighted text sources.

Confusion network (CN) decoding performance of the baseline
word level LM at P2 stage is shown in the first line of table2. In
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order to incorporate additional sub-word level constraints in LMs,
A character level LM was also constructed. This provided an indi-
rect way of modeling syllable sequences, as syllable segmented and
labelled Chinese texts are generally unavailable in large quantities.
Due to data sparsity, only 6-gram character level LMs were built and
linearly interpolated. Their cut-off settings are shown in bracket of
table1. On average the word based system produces approximately
1.5 characters per word. Hence, a 6-gram character level LM has
a comparable context span to word level 4-gram LMs. CN perfor-
mance of this system is shown in the second line of table2. As
expected, with a stronger constraint, the word level 4-gram base-
line significantly outperformed the character 6-gram LM by 0.4%-
1.2% absolute. When combining syllable and word constraints us-
ing an equal weighted log-linear interpolation of equation (3) and
the WFST representation of equation (4), consistent performance
improvements were obtained over the word level baseline. This is
shown in the 3rd line of table2. It gave statistically significant CER
reductions of 0.5% and 0.3% ondev08 andp2ns respectively.

P2 LM CER%
System Adapt dev07 dev08 p2ns
w.4g - 9.7 9.6 9.6
c.6g - 10.9 10.0 10.3
w.4g◦ c.6g - 9.5 9.1 9.3

w.4g CI 9.6 9.3 9.4
w.4g CD 9.5 9.2 9.3
w.4g◦ c.6g CD 9.4 8.9 9.1

Table 2. P2 CN performance of language models ondev07, dev08
andp2ns. “‘ ◦” denotes the WFST composition operation.

The second section of table2 shows performance of three
adapted LMs using the WFST representation in equation (2). The
1-best outputs from the un-adapted word level baseline system was
used as the supervision in perplexity based LM adaptation. Stan-
dard LM adaptation using context independent interpolation weights
gave CER reductions of 0.1%-0.3% absolute across three test sets
(4th line of table2). Using three word history based context depen-
dent adaptation of equation (5) with a hierarchical smoothing prior,
further CER improvements of 0.1% absolute were obtained for all
test sets (5th line of table2). Adapting both word and character
level LMs using context dependent weights before a final log-linear
combination gave the best performance in the table. Absolute CER
gains of 0.4% and 0.3% ondev08 and p2ns were obtained over
the baseline word level LM adapted using context free interpolation.
The total performance improvements over the unadapted word level
baseline are 0.3% ondev07, 0.7%dev08 (7.3% rel) and 0.5% on
p2ns (5.2% rel) respectively, all being statistically significant.

P3 LM CER%
System Adapt dev07 dev08 p2ns
w.4g - 9.3 8.7 9.1
w.4g CI 9.1 8.6 9.1
w.4g CD 9.0 8.5 8.8
w.4g◦ c.6g CD 8.8 8.4 8.6

Table 3. CN performance of P3 acoustic rescoring of P2 lattices
generated by various language models ondev07, dev08 andp2ns.

Table 2 shows the performance of multi-level combined and

adapted LMs at P2 lattice generation stage. Now it’s interesting to
examine if the performance improvements can be maintained at the
P3 stage where re-adapted acoustic models are used to rescoring P2
lattices generated by various LMs in table2. These are shown in
table3. Performance gains from the adapted multi-level combined
LM (last line of table3) over the word level baseline (first line of
table3) were largely maintained. Statistically significant CER re-
ductions 0.3%-0.5% absolute were obtained over all test sets, in par-
ticular, 0.5% absolute (5.5% rel) fordev07 andp2ns.

7. CONCLUSION

Flexible LM combination and adaptation using weighted finite state
transducers have been investigated in this paper. A wide range of
model combination configuration are supported. An efficient on-
the-fly WFST decoding algorithm was also proposed. Experimental
results on a state-of-the-art large vocabulary speech recognition task
suggest the proposed methods may be useful for speech recognition.
Future research will focus on using efficient WFST representation
for language models of more complicated forms. Transducer based
acoustic model combination will also be considered.
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