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Abstract

This paper describes recent improvements to the Cambridge
Arabic Large Vocabulary Continuous Speech Recognition
(LVCSR) Speech-to-Text (STT) system. It is shown that word-
boundary context markers provide a powerful method to enhance
graphemic systems by implicit phonetic information, improving
the modelling capability of graphemic systems. In addition, a
robust technique for full covariance Gaussian modelling inthe
Minimum Phone Error (MPE) training framework is introduced.
This reduces the full covariance training to a diagonal covariance
training problem, thereby solving related robustness problems.
The full system results show that the combined use of these and
other techniques within a multi-branch combination framework
reduces the Word Error Rate (WER) of the complete system by
up to 5.9% relative.

Index Terms: Arabic, STT, Context, Covariances

1. Introduction

In recent years, Arabic-based Automatic Speech Recognition
(ASR) systems have improved considerably [1, 2, 3]. The Ara-
bic language is a member of the Semitic language family and it
poses many problems for ASR systems since it is morphologi-
cally complex and its dialects differ significantly. In addition,
Modern Standard Arabic (MSA) is usually written without short
vowels. Consequently, graphemic and phonetic Arabic STT sys-
tems are widely used: the former use unvowelised transcriptions,
while the later use vowelised transcriptions. The complementary
phonetic and graphemic output is combined in a system combi-
nation framework [2].

This paper describes recent improvements to the Cambridge
Arabic STT systems. The techniques discussed improve both
the individual branches and the gains obtained by system com-
bination. Section 2 describes the use of word-boundary con-
text models. Such models distinguish between phonemes which
appear at different positions in a word (i.e., word-initial, word-
medial, word-final). The emphasis falls primarily on graphemic
systems, since word-boundary information can help to alleviate
the modelling limitations caused by the absence of short vowel
information. In section 3, the use of full covariance matrices
for acoustic modelling is discussed. The complementarity of the
full covariance models compared to other acoustic models isex-
plored, as is their use in a system combination framework. An
effective implementation of full covariance models is proposed
and its advantages for discriminative acoustic model training are
highlighted. Section 4 describes the experimental setup, while
section 5 gives detailed results and analysis for the Cambridge
Arabic STT systems.

2. Word-boundary context modelling
In MSA, the short vowels (fatha /a/,kasra /i/, anddamma /u/) as
well as the corresponding word-final nunations (fathatan /an/,
kasratan /in/, and dammatan /un/) are not marked in written
text. For phonetic systems, this complicates the design of the
dictionary since the short vowels present in the spoken utter-
ance need to be inferred. In the work discussed here, vowelised
forms are obtained using the Buckwalter Morphological Anal-
yser (version 2.0; henceforth ‘Buckwalter’).1 However, a mor-
phological analyser such as Buckwalter cannot produce analy-
ses for all the words in the ASR dictionary. For instance, for
a 350k word dictionary, Buckwalter provided only 260k vow-
elised word forms [4]. A further problem is caused by the result-
ing dictionary size: although Buckwalter cannot produce vow-
elised word forms for every entry, it typically generates 4.3 vow-
elised word forms per graphemic word form [4], and this creates
a significant processing overhead during decoding and discrim-
inative training. Graphemic systems overcome these difficulties
since they rely on a one-to-one mapping between graphemes and
phonemes, thereby simplifying the dictionary generation task.
The drawback is that acoustic models used in graphemic sys-
tems only model the short vowelsimplicitly. Modelling a short
vowel together with its associated consonants results in less pre-
cise acoustic units [4].

Consequently, graphemic models are faster in decoding and
more robust to changes in the acoustic environment and speaking
styles, but they are outperformed by phonetic models [4]. Some
of the shortcomings of graphemic models can be overcome by
using word-boundary context information [5]. This information
is added to the system by marking the phonetic units of a word
in the dictionary as word-initial,I , word-medial,M , and word-
final, F . For the wordktAb2, the transcription changes as fol-
lows:

ktAb /k/ /t/ /A/ /b/
→ /I k/ /M t/ /M A/ /F b

Word-boundary markers distinguish phonemic pronunciation
variants due to word position. They also provide indirect infor-
mation about short vowels and nunation. As mentioned above,
nunations may appear at the end of a noun or an adjective but are
commonly not marked in written texts. Marking a given word-
final acoustic unit byF indicates a possible nunation which dis-
tinguishes it from a word-medial version of the same unit. Inthis
way, word-boundary markers provide graphemic systems with
more finely granulated information. For phonetic systems, the
modelling advantages are smaller since the short vowels areex-
plicitly marked in the dictionary.

1Available from the Linguistic Data Consortium (LDC),
http://www.ldc.upenn.edu.

2Buckwalter transliteration.



The setup described in section 4.1 was used for all tests dis-
cussed in this section. Traditionally, one decision tree isbuilt for
each phonetic base unit and state position. However, three times
more base units are needed when word-boundaries are marked,
which leads to an over fragmentation of the states space. There-
fore, the word-initial, word-medial, and word-final phone vari-
ants of a given phoneme were clustered within one decision tree
for this phoneme. Consequently, ‘central phone questions’were
introduced, in addition to questions asking for one of the three
possible word-boundary context variants. Polythetic questions
asking for a particular phoneme in one of the three possible con-
texts were also used.3 Table 1 contrasts the use of word-boundary
information for a graphemic (‘Gra’) and a phonetic (‘Pho’) sys-
tem. The subscriptcontext indicates the use of word-boundary
markers.

System Testset
d07 d08 d09sub

Gra 21.2 24.5 27.0
Gracontext 18.5 21.6 24.2

Pho 16.3 19.2 23.0
Phocontext 15.9 19.0 22.2

Table 1: Contrast of graphemic and phonetic models with and
without word-boundary information. ML trained acoustic mod-
els, 12k tied states, unadapted decoding results, WER in%.

In the phonetic case, reductions in WER of 1.0-3.5% relativeare
observed. This confirms the hypothesis that position-dependent
pronunciation variations for acoustic units can be captured by
word-boundary markers. In the graphemic case, the WER reduc-
tions of 10.4-12.7% relative are much larger than in the phonetic
case. This confirms the hypothesis that short vowel informa-
tion is at least partly recovered by the word-boundary markers.
A similar pattern of an approximate reduction in WER of 10%
relative was also found in case of a MADA morpheme based
graphemic system.

3. Full Covariance Modelling
For reasons of efficiency and robustness, STT systems usually
use diagonal covariances for the individual Gaussian compo-
nents. Spectral (intra-frame) correlations are taken intoaccount
by applying a mixture of Gaussians for each state. This mod-
elling approach has the virtue of being efficient in terms of mem-
ory and CPU consumption, but it lacks the modelling capabil-
ity of applying full covariance matrices. A well-known problem
with full covariance models is the large number of parameters
which needs to be estimated. For a 39-dimensional feature vec-
tor (as used for this work), the number of model parameters re-
quired compared to the diagonal case is increased by a factor
of 10 when keeping the number of Gaussian components fixed.
For model training, the related data sparsity problem is a cen-
tral issue. Thus, for Maximum Likelihood (ML) training, the
covariances are smoothed by the diagonal elements. When cal-
culating the diagonal elements of the covariance matrices,their
component occupation countsγjm (for thejth state and themth

component) are increased by a prior countτ to

γ
′

jm = γjm + τ (1)

3For Chinese ASR systems, polythetic questions give slight perfor-
mance gains.

whereas the occupation counts for the off-diagonal elements are
kept unchanged. In this work a value ofτ = 100 resulted in a
stable reestimation procedure.

System Testset
Cov #Comp d07 d08 d09sub
diag 36 21.3 24.8 27.1
diag 72 20.1 23.3 25.7
diag 144 19.5 22.2 24.8
full 4 23.3 26.1 28.8
full 8 20.9 24.1 26.3
full 16 19.6 22.7 25.5
full 36 18.5 21.6 23.9

Table 2: Contrast of diagonal versus full-covariance modelling
for different number of Gaussian components. ML trained
acoustic models, 9k tied states, unadapted decoding results,
WER in%.

Table 2 compares three ML-trained systems with diagonal
covariance modelling with four corresponding full covariance
systems. In the diagonal and the full covariance cases, the system
performance is increased when the number of Gaussian compo-
nents is incremented. However, the decrements in WER tend to
be larger in the full covariance case and the best system perfor-
mance is obtained for the full covariance system with 36 com-
ponents per state. This confirms the potential of the proposed
smoothing procedure. Though the number of model parameters
in the 36 component full covariance case is increased by more
than a factor of 2.5 compared to the 144 component diagonal co-
variance case, the full covariance system copes well with data
sparsity. It outperforms the best diagonal covariance system by
0.6-1.0% WER absolute.

It is well known that, in the case of MPE training, the data
sparsity issue is even more critical than in the ML case. To
cope with this problem, I-smoothing was introduced in [6]. I-
smoothing can be regarded as the use of a prior over the parame-
ters of a Gaussian, with the prior being based on the statistics of
a more robust estimation procedure. For the CUED MPE train-
ing, I-smoothing is a two stage process where the MPE statistics
are I-smoothed by MMI statistics which are again I-smoothedby
corresponding ML statistics. In the full covariance case, this pro-
cedure has the disadvantage that, in addition to the MPE statis-
tics, full covariance MMI and ML statistics also need to be esti-
mated and stored. This requires considerable CPU time, as well
as disc space to store the intermediate statistics. In case of full
covariance models and a large amounts of acoustic training data,
this procedure is impractical.

To overcome these problems, MPE training in transformed
feature spaces can be implemented. With the full covariancema-
trix Σjm, an observationo is modelled at the component level
by a Gaussian aso ∼ N (µjm,Σjm). When introducing the
decorrelating feature transform

o
′

= A
T
jmo (2)

which diagonalises the covariance matrixΣjm to

Σ
′

jm = A
T
jmΣjmAjm (3)

the transformed feature space observationo
′

is modelled by

o
′ ∼ N (µ

′

jm,Σ
′

jm) (4)



whereµ
′

jm = AT
jmµjm is the transformed mean. Principle

Component Analysis (PCA) is used for feature decorrelation.
The elements of the diagonal covariance matrixΣ

′

jm in the
transformed space are therefore the eigenvalues of the original
covariance matrixΣjm. Parameter reestimation, including I-
smoothing, is then performed in the transformed, decorrelated
domain. Consequently, MPE training involves a few additional
steps. The starting point is an ML-trained full covariance model
where for each of its Gaussian component PCA is applied and the
transformationsAjm are calculated. Next, the transformations
are applied to the model and the observationso, and MPE train-
ing is carried out in the decorrelated parameter space. Finally, the
reestimated model parameters are transformed back to the orig-
inal parameter space which gives the resulting full covariance
model. The proposed method of implementing an MPE-trained
full covariance system solves two problems. In terms of mem-
ory and CPU demand, it is comparable to the training of a stan-
dard diagonal covariance model. In addition, the data sparsity
problem is solved as standard I-soothing techniques are applied.
These advantages come with the drawback that only a fractionof
all model parameters are trained discriminatively.

Table 3 compares three MPE-trained diagonal covariance
systems with a MPE-trained 36-component full covariance sys-
tem. Increasing the number of components for the diagonal co-
variance systems results in consistent performance gains.Com-
paring the best 144-component diagonal covariance system with
the 36-component full covariance system, similar performance
is observed. However, in the full covariance case, the number of
MPE-trained parameters constitutes only a fourth of the MPE-
trained parameters in the diagonal covariance case. This con-
firms the potential of the proposed approach for full covariance
modelling.

System Testset
Cov #Comp d07 d08 d09sub
diag 36 15.7 18.3 21.6
diag 72 15.4 17.8 21.2
diag 144 15.0 17.5 20.6
full 36 15.1 17.4 20.4

Table 3: Contrast of diagonal versus full covariance modelling
for different number of Gaussian components. MPE-trained
acoustic models, unadapted decoding results, WER in%.

4. System description
4.1. Development Systems

For system development, ML- and MPE-trained acoustic models
were built. All systems applied PLP-based front-ends with a39-
dimensional feature vector after a HLDA transform. Cross-word
decision-tree state-clustered triphones were built usingapproxi-
mately 1850 hours of acoustic training data. All systems referred
to in section 2 ‘word-boundary context modelling’ used 12k tied
states, while the systems refered to in section 3 ‘full covariance
modelling’ use 9k tied states. The larger number of tied states
used in the former systems account for the increased logicalstate
space (by a factor of33 = 27) due to 3 times more phonetic base
units in the case of the word-boundary context models. It was
found that increasing the number of tied states from 9k to 12k
typically reduced the absolute WER by 0.5%.

For development purposes, an unadapted decoding configu-

ration was chosen. For the graphemic systems, a two-pass de-
coding setup was used which involves lattice-generation with
a bi-gram Language Model (LM) followed by lattice rescoring
with a tri-gram LM. All LMs and associated dictionaries were
based on a 350k wordlist and 1.2G tokens LM training material.
For the phonetic systems, acoustic rescoring was used rescor-
ing the lattices of the graphemic system which were not apply-
ing word-boundary markers. For phonetic dictionary genera-
tion, Buckwalter provided 310k vowelised pronunciations for the
350k words. For the remaining words, pronunciations based on
the G2P-method described in [7] were used. On the average this
gave 6.7 pronunciations per word. The system performance was
evaluated on three development test sets: d07 (2.58 hours),d08
(3.04 hours), and d09sub (2.93 hours) for which the OOV rates
were in the range 1-2%.4

4.2. Evaluation Systems

The final assessment of the word-boundary context markers and
the proposed full covariance modelling was performed usingthe
CUED ASR system developed for the GALE phase 5 system
evaluation.5 This system consists of five branches providing five
hypothesises which are combined by ROVER [8]. All branches
use the same multi-pass adaptation framework as described in
[2], but apply branch specific front-ends, LMs, and acoustic
models. For the front-ends, PLP features and TANDEM con-
nected [9] PLP-MLP (Multi-Layer Perceptron), features [10] are
used. The MLP applies phonetic targets providing implicit short
vowel information to graphemic systems [11]. In addition to
standard word-based systems, MADA morpheme-based systems
[12] are also used. To further increase the diversity between the
system branches, this is combined with graphemic and phonetic
modelling, and MPE and boosted MMI (BMMI) [13] training.

The three-stage decoding process consists of a P1-stage
which is a fast decoding run with gender-independent (GI) PLP
graphemic models. The P2-stage uses speaker-adapted gender-
dependent (GD) graphemic models based on the P1 supervision.
It generates trigram lattices which are expanded using a 4-gram
LM. This is followed by LM rescoring applying a class-based
LM and a Neural Network LM (NN-LM) which were both inter-
polated with the 4-gram [2]. The training material, wordlists, and
build procedure used for the n-gram LMs and class-based LMs
(1000 classes) are equivalent to the ones described in section 4.1.
The NN-LMs follow the build procedure described in [12].

The P3-stage serves for acoustic rescoring and applies dif-
ferent GD models which were adapted using 1-best CMLLR and
lattice-MLLR as discussed in [14]. Confusion network decoding
was then performed on this output and ROVER [8] was used for
system combination. For PLP-system adaptation, full CMLLR
and lattice-MLLR transforms were used. For the PLP+MLP-
systems, block diagonal transforms were deployed, one block
for the PLP features, and one for the MLP features. To reduce
the computational cost for the full covariance modelling, the es-
timation of the linear transformations was based on the leading
diagonal of the covariance statistics.

For the P1+P2 stage, three different acoustic models were
used. The ‘G1’ graphemic word-based model, and the two ‘G2’
and ‘G3’ graphemic morpheme-based models. G2 and G3 differ
in the MADA version used. G2 uses MADA version 2.3, while
G3 uses MADA version 1.8. All three models feature 9k tied

4d07, d08, d09sub, as well as d10c, and d10d denote the dev07,
dev08, dev09sub, dev10c, and dev10d, respectively, development test-
sets used for system development within the GALE project.

5See: http://projects.ldc.upenn.edu/gale/



states, MPE acoustic training, diagonal covariances, PLP fea-
tures and a dictionary without word-boundary context markers.

For the P3 stage, two more morpheme-based models and two
more word-based models were used. The ‘V1’ phonetic model
(‘V’ for vowelised) uses MADA version 2.3, the PLP+MLP fron-
tend, 12k states, word-boundary context markers and BMMI
acoustic training. The ‘V2’ is similar to V1 though using MADA
version 1.8, 9k states, and no word-boundary markers. The V2
model is the best acoustic model developed for the GALE phase
4 evaluation. The remaining models are word-based and MPE-
trained. The graphemic G1 model applies the PLP+MLP fron-
tend, 12k states and word-boundary markers, whereas the pho-
netic V3 model is based upon the standard PLP front-end. Model
V3 features 9k states without word-boundary markers and is the
only model with full covariance matrices.

For the evaluation systems, the development test sets d10c
(6.38 hours), and d10d (18.46 hours) were used along with
d09sub. d10c is comparable to d09sub in complexity. By con-
trast, d10d features acoustic data which is more challenging.
This is indicated by the ‘d’ extension which stands for ‘difficult’.

5. Experiments and Results
Table 4 shows the individual branch results and the ROVER out-
come for the systems. When comparing the best individual phase
5 and phase 4 systems (i.e. V1 versus V2) improvements of
0.4-0.8% in absolute WER are observed. Most gains are due
to the word-boundary context modelling incorporated into the
phase 5 model. The graphemic word-based G1 system performs
nearly as well as the phonetic morpheme-based V2 system. This
emphasises the importance of word-boundary context modelling
and the use of MLP features with phonetic targets in grahemic
model. Both techniques help to overcome the graphemic sys-
tem’s implicit modelling of short vowels.

Comparing the V1 and V2 branch with the V3 branch, it
is clear that the full covariance modelling can not compensate
for the lack of TANDEM PLP+MLP features, morphological
decomposition, or the use of MPE instead of BMMI for model
training. However, even a simple full covariance model suchas
V3 is more complementary in system combination than any other
word-based phonetic system.

Finally, comparing the ROVER result for the GALE phase
5 evaluation with the GALE phase 4 evaluation, a reduction of
0.6-0.9% WER absolute is observed. These improvements are
mainly due to the improved acoustic modelling which comes
from word-boundary markers and the full covariance modelling
in the V3 system. However, other factors include the increased
state space for the word-boundary context models, dedicated dic-
tionaries and LMs developed for the phase 5 evaluation, and ap-
proximately 300 hours of additional acoustic training data.

6. Conclusion
This paper has described recent improvements to the Cambridge
Arabic STT systems. It has been shown that word-boundary
context markers provide an efficient way to incorporate phonetic
information into graphemic systems. This results in graphemic
systems which are closer in performance to phonetic systems, but
which feature the reduced complexity associated with graphemic
system. Further, a novel approach for full covariance MPE train-
ing was introduced. It was shown that it solves the robustness
problem of discriminative full covariance modelling. Similar
performance to a diagonal covariance system with four times
more discriminatively trained model parameters was obtained.

System Configuration Testset
Ctx Full MLP Mada BMMI d09sub d10c d10d

V1
√

-
√ √ √

14.8 13.8 25.0
V2 - -

√ √ √
15.4 14.5 25.8

G1
√

-
√

- - 15.5 14.6 25.9
V3 -

√
- - - 16.4 15.7 27.3

G2 - - -
√

- 17.3 16.3 28.2

ROVER GALE phase 5 (V1⊕V2⊕G3⊕G2⊕V4) 13.7 12.8 23.8
ROVER GALE phase 4 14.3 13.6 24.7

Table 4: Individual branch results and ROVER results from
the GALE phase 5 and phase 4 system evaluation, WER in %.
Nomenclature: ‘Ctx’→ use of word boundary markers and 12k
states; ‘Full’→ use of full covariances; ‘MLP’→ use of TAN-
DEM PLP+MLP features; ‘Mada’→ use of MADA morpholog-
ical decomposition; ‘BMMI’→ use of BMMI trained models. If
no ‘tick’ is present, the standard configuration applies: noword-
boundary markers, 9k states, diagonal covariances, PLP features,
word based tokens and MPE trained models.

Finally, the proposed techniques were investigated withina state-
of-the-art 5-way LVCSR system. The combined use of these
techniques give WER reductions of 3.6-5.9% relative.
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