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Abstract
Handling variable ambient noise is a challenging task for au-
tomatic speech recognition (ASR) systems. To address this is-
sue, multi-style, noise condition independent (CI) model train-
ing using speech data collected in diverse noise environments,
or uncertainty decoding techniques can be used. An alternative
approach is to explicitly approximate the continuous trajectory
of Gaussian component mean and variance parameters against
the varying noise level, for example, using variable parameter
HMMs (VP-HMM). This paper investigates a more generalized
form of variable parameter HMMs (GVP-HMM). In addition to
Gaussian component means and variances, it can also provide
a more compact trajectory modelling for tied linear transforma-
tions. An alternative noise condition dependent (CD) training
algorithm is also proposed to handle the bias to training noise
condition distribution. Consistent error rate gains were obtained
over conventional VP-HMM mean and variance only trajectory
modelling on a medium vocabulary Mandarin Chinese in-car
navigation command recognition task.
Index Terms: variable noise, generalized variable parameter
HMM, noise robust speech recognition

1. Introduction
The presence of environmental noise often leads to severe
degradation of automatic speech recognition (ASR) perfor-
mance. In particular, when the ambient noise is of variable,
non-stationary nature, this problem becomes even more chal-
lenging. To handle this issue, three major categories of tech-
niques are often used. The first involves training a multi-style,
or noise condition independent (CI) system on speech data col-
lected in a wide range of diverse noise environments [11]. This
exploits the implicit modelling ability of the underlying statis-
tical models to achieve a good generalization to unseen noise
conditions. The second category is based on uncertainty decod-
ing (UD) [1, 5, 12, 6, 10]. Rather than using a point estimate
of the corrupted features, the uncertainty that varies with the
noise represented by, for example, a conditional distribution of
the corrupted speech, is propagated into the recognizer. The
third category explicitly approximate the continuous trajecto-
ries of optimal model parameters with respect to noise condi-
tion [7, 3, 15, 16, 17]. Due to their well understood mathemat-
ical properties and stability, lower order polynomial functions
are commonly, for example, in variable parameter HMMs (VP-
HMM) [3, 15, 16, 17].
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Under the VP-HMM framework, Gaussian means and vari-
ances are dynamically re-computed during recognition for each
noise condition detected in the test data using their associated
polynomial functions. Their coefficients are trained on in a
multi-style, or CI fashion using speech data collected in dif-
ferent noise environments. There are two issues associated with
this approach. First, a Gaussian component level polynomial
modelling of mean and variance trajectories are very expensive
to use in recognition time. Hence, more compact forms of tra-
jectory modelling are preferred. Second, by implicitly weight-
ing data of different noise level, CI training can not only learn,
but also incur a potentially undue bias, to the noise condition
distribution found in the training data. For example, when the
training data is a dominated by one single noise condition, a
good generalization to a variety of unknown noise conditions in
the test set can be problematic. Hence, alternative estimation
methods without introducing such a bias are preferred.

To address these issues, this paper investigates a more gen-
eralized form of variable parameter HMMs (GVP-HMM). In
addition to Gaussian means and variances, it can also provide
a more compact trajectory modelling for tied linear transfor-
mations. An alternative noise condition dependent (CD) train-
ing algorithm is also proposed to handle the bias to training
data noise condition distribution. The rest of the paper is or-
ganized as follows. The GVP-HMM framework is proposed in
section 2. Noise condition independent and dependent training
of GVP-HMMs are presented in sections 3 and 4 In section 5
GVP-HMM based noise compensation schemes are evaluated
on a medium vocabulary Mandarin Chinese speech recognition
task. Section 6 is the conclusion and future research.

2. Generalized Variable Parameter HMMs

Generalized variable parameter HMMs (GVP-HMMs) explic-
itly model the trajectory of optimal acoustic parameters that can
vary with respect to the underlying noise condition. The type of
parameter trajectories are not restricted to those of means and
covariances of conventional tied mixture HMMs. Other more
compact forms of parameters, such as model or feature space
linear transformations [9, 8], may also be considered. In this pa-
per, trajectories of Gaussian mean MLLR transforms are mod-
elled. For a D dimensional observation ot emitted from Gaus-
sian mixture component m, assuming P th order polynomials
are used, this is given by

o(t) ∼ N
(
o(t);µ(m)(vt),Σ

(m)(vt),W
(rm)(vt)

)
(1)



where v�
t is a (P + 1) dimensional Vandermonde vector [2],

such that vt,p = vp−1
t . vt is an auxiliary feature, and in this pa-

per, the speech-noise-ratio (SNR) condition at frame t. W (rm)

the (D+1)×D mean transform that component m is assigned
to. µ(m)(·), Σ(m)(·) and W (rm)(·) are the P th order mean,
covariance and MLLR transform trajectory polynomials respec-
tively. Assuming diagonal covariances are used, then the trajec-
tories of the ith dimension of the mean and variance, as well the
transform element on i row and column j, are
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where c(·) is a (P +1) dimensional polynomial coefficient vec-
tor such that c(·)p = c

(·)
p−1, and c

(·)
p−1 the (p − 1)th order poly-

nomial coefficient of the parameter trajectory being considered.
σ̌
(m)
i,i is the clean speech based variance estimate.

If the training set has no data in a given SNR, stan-
dard HMMs will not know the optimal distribution parame-
ters, whereas GVP-HMMs can instantly obtain both Gaussian
component and linear transformation parameters for the match-
ing condition by-design without requiring any multi-pass noise
adaptation process, in common with VP-HMMs. Another major
advantage of the GVP-HMM framework is that a more compact,
and flexible form of parameter trajectory modelling is possible.
For example, when only limited amounts of noisy training data
is available, to ensure all polynomial coefficients are robustly
estimated, only the trajectories associated with the elements of
a globally tied mean MLLR transform are be considered. On
the other hand, when large amounts of noisy training data is
used, a more refined modelling resolution can also be obtained
by increasing the number of tied transformations, or modelling
the trajectories of multiple parameter types simultaneously.

3. CI Training of GVP-HMMs
Condition independent (CI) training aims to find the optimal
parameter trajectory polynomial functions using a mixed set of
training data that contains a range of observed noise conditions
in a multi-style fashion [11]. The associated maximum likeli-
hood (ML) auxiliary function is given by [4],

QCI(λ, λ̃) =
∑
m,t

γm(t) logN
(
o(t);µ(m)(vt),

Σ(m)(vt),W
(rm)(vt)

)
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where γm(t) is the posterior probability of frame ot at compo-
nent m. Combining the above with equations (1) and (2) and
setting the gradient against the polynomial coefficient vectors
associated with the mean, variance and MLLR transform ele-
ment trajectories respectively to zero, the following solutions of
their coefficients can be derived.
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where c(w
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i ) is a (D+1)× (P +1) dimensional meta poly-

nomial coefficient vector spanning across all elements of row i

of transform W (rm), and the sufficient statistics are
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meta Vandermonde matrix, and k(w
(rm)
i ) a (D+ 1)× (P + 1)

dimensional meta regression target vector. The sub-matrices
and sub-vectors associated with transform element w(rm)
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where the (D+1) dimensional extended mean vector trajectory
is given by ζ

(m)
t = [µ(m)(vt), 1]

�.

4. CD Training of GVP-HMMs
As discussed in section 1, CI estimation may introduce an un-
due bias to the underlying noise condition distribution in the
training data. To handle this issue, an alternative noise con-
dition dependent (CD) approach may be used. Statistics are
separately accumulated over each observed noise condition in
the training data, before being used to derive the coefficients
of various trajectory polynomials via a regression estimation.
This approach explicitly uses the fitting ability of polynomial
functions to model the underlying parameter trajectory that vary
against noise level. When sufficient amounts of training data is
available for each noise condition, this approach may provide a
more impartial and accurate approximation of the “true” model
parameter trajectory than CI training. For a total of Q,Q > P
discretely quantized noise conditions found in the training data,
{v1, ..., vq, ..., vQ}, the associated ML auxiliary function for
the qth condition is,

Q(q)
CD (λ, λ̃) =

∑
m,t,vt=vq

γm(t) logN
(
o(t);µ(m)(vt),

Σ(m)(vt),W
(rm)(vt)

)
(7)

Combining the above with equations (1) and (2) and for
each noise condition separately setting the gradient against the
polynomial coefficient vectors associated with the mean, vari-
ance and MLLR transform element trajectories respectively to
zero, the following solutions of their coefficients in a similar



form to those in equation (4) can be derived,
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5. Experiments and Results
GVP-HMM based noise compensation schemes are evaluated
on a medium vocabulary Mandarin Chinese in-car navigation
command recognition task designed at CAS-SIAT. A total of 25
hours of clean training data and 1 hour of clean test data were
used. A multi-style training data set was constructed by artifi-
cially corrupting the clean speech data with added car engine
noise. Noise corrupted speech data generated under six sen-
tence level SNR conditions: 0dB, 4dB, 8dB, 12dB, 16dB and
20dB, were used in training, while the corrupted test data set
consists of five sentence level SNR conditions: 2dB, 6dB, 10dB,
14dB, and 18dB [13]. The baseline HMM based acoustic mod-
els were ML trained using HTK [14] on 42-dimensional HLDA
projected PLP features further augmented with smoothed pitch
parameters. Phonetic decision tree clustered cross-word tonal

triphones HMMs with a left-to-right topology and three emis-
sion states were used. A total of 2416 distinct state level
tied Gaussian mixture models with 12 components per state
were used. The baseline character error rate (CER) perfor-
mance of clean speech data, and multi-style trained conven-
tional HMM systems on various SNR levels are shown as
“clean” and “mcond” respectively in the first two rows of ta-
ble 1. A separate set of HMM models trained using speech data
corrupted at each matching SNR condition in the test set were
also evaluated, and shown as “match” in the 3rd line of table 1.

System 2db 6db 10db 14db 18db Avg

clean 72.27 49.12 28.83 17.57 12.36 36.03
mcond 55.77 31.04 17.84 12.16 9.89 25.34
match 41.42 28.88 19.51 14.04 11.57 23.08

Table 1: CER performance of baseline clean speech, multi-style
and matching condition trained systems on various SNR levels.

As discussed in section 1, an important issue when us-
ing VP-HMM and GVP-HMM based noise compensation tech-
niques is the appropriate order of polynomials to choose. As
higher order polynomials are prone to Runge effect related in-
stability, lower order polynomials are often used. In practice,
1st, 2nd and 3rd order polynomials are found to give compa-
rable recognition performance. For example, the recognition
performance of three different systems using CI trained polyno-
mials of 1st, 2nd and 3rd order respectively for Gaussian com-
ponent mean trajectories are shown in table 2. As is shown in
the table, these three gave very close CER performance. As 2nd
order polynomials also marginally outperform the simpler 1st
order, and the more complicated 3rd order ones, they are used
for all experiments in the rest of this paper.

Order 2db 6db 10db 14db 18db Avg

1 48.81 29.40 18.16 12.74 10.52 23.93
2 49.29 29.08 18.01 12.64 10.35 23.87
3 49.24 29.02 18.01 12.72 10.40 23.88

Table 2: CER performance of CI trained polynomials of varying
order for Gaussian component mean parameter trajectories.

A range of GVP-HMM based models were then evaluated
using CI and CD training methods presented in sections 3 and
4. A detailed description of their configurations and the num-
ber of polynomial coefficients to train are shown in table 3.
Both standard VP-HMMs and GVP-HMMs allow trajectory
modelling of either, or both, of Gaussian component means
and variances, shown as “mean”, “var” and “mv” in the table.
Two GVP-HMM systems modelling the trajectories of 2 or 256
MLLR mean transforms are shown as “tran2” and “tran256”.
Two GVP-HMMs systems that model the trajectories of all
three parameter types using 2 or 256 transforms are shown as
“mvt2” and “mvt256” in the bottom section of the table.

Performance of CI trained GVP-HMM systems are shown
in table 4. Modelling both Gaussian mean and variance tra-
jectories gave the best performance for standard VP-HMMs, as
shown in the first three lines of table 4. Using this CI trained
“mv” system, average CER gains of 5.35% (21.1% rel.) and
3.88% (16.3% rel.) absolute across all SNR conditions were
obtained over the “mcond” HMM baseline shown in table 1,
and the mean only “mean” system of table 4. The 2 transform



Trajectory Modelling #Poly
System mean var tran2 tran256 Coef

mean
√ × × × 3.66M

var × √ × × 3.66M
mv

√ √ × × 7.32M

tran2 × × √ × 10.8K
tran256 × × × √

1.39M

mvt2
√ √ √ × 7.32M

mvt256
√ √ × √

8.71M

Table 3: Description of baseline and 2nd order GVP-HMMs:
parameter types and the number of polynomial coefficients.

“tran2” system with only 10.8k coefficients to estimate, gave an
average error rate of 27.17%. Increasing the number of mean
transforms to 256, the “tran256” system with 62% fewer co-
efficients than the “mean” system, gave a comparable average
CER performance of 24.95%. This suggests transform based
GVP-HMMs can provide a more compact form of trajectory
modelling than VP-HMMs. When all three types of parameter
trajectories are modelled, the “mvt2” system gave CER gains of
0.01%-0.49% absolute over the “mv” system on all SRN levels
except 2db. The “mvt256” outperformed the “mv” system by
0.33%-1.07% absolute on 2, 6 and 10db data. It gave the best
average CER performance among all systems in table 4.

CI Sys 2db 6db 10db 14db 18db Avg

mean 49.29 29.08 18.01 12.64 10.35 23.87
var 54.12 33.31 20.32 13.31 11.01 26.41
mv 39.63 23.67 15.43 11.31 9.93 19.99

tran2 57.79 33.91 19.95 13.52 10.66 27.17
tran256 51.06 30.36 18.86 13.36 11.12 24.95

mvt2 41.13 23.18 15.15 11.14 9.92 20.16
mvt256 39.05 22.60 15.10 12.06 10.68 19.90

Table 4: CER performance of CI trained polynomials modelling
Gaussian mean, variance and transforms trajectories.

Performance of CD trained GVP-HMM systems are shown
in table 5. The “mean”, “tran2” and “tran256” systems out-
performed their respective CI baselines in table 4 by 0.21%-
0.50% absolute on average. Again performance of the more
compact “tran256” system is close to the “mean” system in ta-
ble 5. When modelling all three types of parameter trajectories,
the “mvt2” system outperformed the “mv” system by 0.19% ab-
solute (1.68% on 2db and 0.51% on 18db). However, increas-
ing the number of transforms to 256 gave no further gains. It is
possible that insufficient condition dependent training data was
used in equations (8) and (10) to estimate transform trajectories.

CD Sys 2db 6db 10db 14db 18db Avg

mean 48.81 29.28 17.96 11.96 10.27 23.66
var 60.37 37.54 23.03 15.09 12.23 29.65
mv 44.81 25.70 15.20 11.08 10.22 21.40

tran2 57.05 33.31 19.59 13.20 10.71 26.77
tran256 49.08 30.22 18.34 13.48 11.15 24.45

mvt2 43.13 26.06 15.71 11.46 9.71 21.21
mvt256 43.01 25.90 16.29 12.61 12.61 21.82

Table 5: CER performance of CD trained polynomials model-
ing Gaussian mean, variance and transform trajectories.

6. Conclusion
Generalized variable parameter HMMs (GVP-HMM) is inves-
tigated in this paper. In addition to Gaussian means and vari-
ances, it can also compactly model the optimal trajectories
of tied linear transforms that can vary with respect to ambi-
ent noise level. Experimental results on a medium vocabulary
recognition task suggest the proposed method may be useful for
noise robust speech recognition. Future research will focus on
modelling the trajectories of feature space transforms, discrim-
inative and adaptive training of polynomial coefficients.
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