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Abstract
Handling variable ambient noise is a challenging task for au-
tomatic speech recognition (ASR) systems. To address this is-
sue, multi-style training using speech data collected in diverse
noise environments, noise adaptive training or uncertainty de-
coding techniques can be used. An alternative approach is to
explicitly approximate the continuous trajectory of Gaussian
component or model space linear transform parameters against
the varying noise, for example, using generalized variable pa-
rameter HMMs (GVP-HMM). In order to reduce the computa-
tional cost of conventional GVP-HMMs when model parameter
update against the varying noise condition is required, this pa-
per investigates a novel and more efficient extension of GVP-
HMMs that can also model the trajectories of feature space lin-
ear transforms. Significant error rate reductions of 9.3% and
18.5% relative were obtained over the multi-style training base-
line system on Aurora 2 and a medium vocabulary Mandarin
Chinese speech recognition task respectively.
Index Terms: feature transform trajectory, generalized variable
parameter HMM, variable noise, robust speech recognition

1. Introduction
The presence of environmental noise often leads to severe
degradation of automatic speech recognition (ASR) perfor-
mance. When the noise condition is of time varying nature,
this problem becomes even more challenging. To handle this
issue, a range of model based techniques can be used: multi-
style training uses speech data collected in a wide range of di-
verse noise environments [16], and exploits the implicit mod-
elling ability of mixture models, and more recently deep neu-
ral networks [19], to obtain a good generalization to unseen
noise conditions; noise adaptive training [11, 8, 12] structurally
models the variability introduced to the observed speech signals
by environment noise and other factors; uncertainty decoding
(UD) [6, 17, 7, 14, 20, 21], rather than using a point estimate
of the corrupted features, propagate the uncertainty that varies
with the noise represented by, for example, a conditional dis-
tribution of the corrupted speech, into the recognizer. In ad-
dition to the above approaches, it is also possible to explicitly
approximate the continuous trajectories of optimal model pa-
rameters against the varying noise condition using a polynomial
function [9, 4, 25, 15], for example, as in multiple regression
HMMs (MR-HMM) [9] and variable parameter HMMs (VP-
HMM) [4, 23, 24, 25].
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In order to reduce the interpolation cost incurred at Gaus-
sian component level when mean or variance trajectory mod-
elling are used, an extension to both MR-HMMs and VP-
HMMs, the generalized variable parameter HMM (GVP-
HMM), was proposed in [2, 3]. In addition to Gaussian means
and variances, GVP-HMMs can also provide a more compact
trajectory modelling for model space tied linear transforma-
tions, and thus provide a flexible form of parameter trajectory
modelling. For example, when only limited amounts of noisy
training data is available, to ensure all polynomial coefficients
are robustly estimated, only the trajectories associated with the
elements of a globally tied mean transform can be considered.
When large amounts of noisy training data is used, a more re-
fined modelling resolution can also be obtained by increasing
the number of tied transformations, or modelling the trajecto-
ries of multiple parameter types simultaneously. However, as
the underlying noise condition varies frequently against time,
applying the resulting updated linear transforms to all Gaussian
mean parameters becomes highly expensive.

To address this issue, this paper investigates a novel and
more efficient extension of GVP-HMMs that can also model the
trajectories of feature space linear transform parameters against
the varying noise. As the updated transforms are directly ap-
plied to the acoustic features, rather than Gaussian component
means, the computational cost when using GVP-HMMs are
thus expected to be significantly reduced. The rest of the pa-
per is organized as follows. The GVP-HMM framework is re-
viewed in section 2. Feature space GVP-HMMs are proposed in
section 3. A range of GVP-HMM systems using various mod-
elling configurations are described in section 4. In section 5
various model and feature space GVP-HMM based noise com-
pensation schemes are evaluated on Aurora 2 and a medium vo-
cabulary Mandarin Chinese speech recognition task. Section 6
is the conclusion and future research.

2. Generalized Variable Parameter HMMs

Generalized variable parameter HMMs (GVP-HMMs) [2, 3]
explicitly model the trajectory of optimal acoustic parameters
that vary with respect to the underlying noise condition. The
type of parameter trajectories are not restricted to those of
means and covariances of conventional tied mixture HMMs.
Other more compact forms of parameters, such as model or fea-
ture space linear transformations [13, 10], may also be consid-
ered. In previous research, only trajectories of Gaussian mean
transforms were modelled [2, 3]. For a D dimensional observa-
tion ot emitted from Gaussian mixture component m, assuming



P th order polynomials are used, this is given by
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where c(·) is a (P +1) dimensional polynomial coefficient vec-
tor such that c(·)p = c

(·)
p−1, and c

(·)
p−1 the (p − 1)th order poly-

nomial coefficient of the parameter trajectory being considered.
σ̌
(m)
i,i is the clean speech based variance estimate. By defini-

tion, the mean transform polynomials are modelled on top of
the component mean trajectories, thus the final updated mean
vector of component m at time instance t is computed as

µ̂(m)(vt) = W (rm)(vt)ζ
(m)
t (3)

where the (D+1) dimensional extended mean vector trajectory
ζ
(m)
t = [µ(m)(vt), 1]

�.
GVP-HMMs share the same instantaneous adaptation

power as standard MR-HMMs and VP-HMMs. For any noise
condition, present or unseen in the training data, GVP-HMMs
can instantly produce the matching Gaussian component and
mean transform parameters by-design without requiring any
multi-pass decoding and adaptation process.

3. Feature Space GVP-HMMs
As discussed in section 1, when using mean transform based
GVP-HMMs, as the underlying noise condition varies fre-
quently in time, for example, at segment or frame level, apply-
ing the resulting updated linear transforms to Gaussian compo-
nent means, which often can be in a large number for complex
systems, become highly expensive. The solution considered in
this paper is to extend the GVP-HMM framework presented in
section 2 to also model the trajectories of feature space linear
transform parameters against the varying noise condition. Ap-
plying the resulting updated linear transforms to the acoustic
features, rather than component means, is expected to signifi-
cantly reduce the computational cost in recognition. Hence, the
form of GVP-HMMs in equation (1) is modified as
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where W̃
(rm)

(vt) is a (D + 1) × D feature space transform
that component m is assigned to at frame t. The polynomial
trajectory of the transform element in row i and column j is

w̃
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The updated observation vector for component m at time in-
stance t is computed as

ô(t,rm) = W̃
(rm)

(vt)ζ̃t (6)

where the (D + 1) dimensional extended observation vector
ζ̃t = [o(t), 1]�.

In common with conventional MR-HMMs, VP-HMMs
and GVP-HMMs, the feature transform polynomial coeffi-

cients c(w̃
(rm)
i,j ) can also be estimated using multi-style train-

ing [16, 2, 3] on diverse speech data that covers a range of ob-
served noise conditions. The associated maximum likelihood
(ML) auxiliary function is given by [5],
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where γm(t) is the posterior probability of frame ot at compo-
nent m.

Combining the above with equations (4), (5) and (6), set-
ting the gradient against the polynomial coefficient vectors as-
sociated with the feature transform elements to zero, and also
assuming there are a total of Q observed noise conditions,
{v1, ..., vq, ..., vQ}, found in the training data, the following
row-by-row update formula can be derived,
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where cof(w̃(rm)
i,j (vt)) is the extended cofactor of feature space

transform element w̃(rm)
i,j (vt).

For each observed noise condition q, the scaling factor αq

used in the update formula of equation (8) can be found by solv-
ing the quadratic equation below
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and choosing the solution that maximizes the auxiliary equation
of equation (7), where the noise condition dependent sufficient
statistics are accumulated as
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The update formula given in equation (8) are performed itera-
tively until the auxiliary function in equation (7) is converging.

4. Variants of GVP-HMM Systems
As discussed in sections 1 and 2, in order to adjust the trade-
off between modelling resolution, robustness in estimation and
computational efficiency, a wide rage of GVP-HMM configu-
rations may be considered to suit different purposes. Descrip-
tion of these GVP-HMM variant systems’ configurations and
the number of polynomial coefficients used in a Mandarin Chi-
nese acoustic model that contains 29k Gaussian components us-
ing 42 dimensional PLP and pitch features, are shown in table 1.

Parameter Polynomials #Poly
GVP System mean var tran ftran Coef

mean
√ × × × 3.66M

mv
√ √ × × 7.32M

tran2 × × √ × 10.8K
tran8 × × √ × 43.2k
tran256 × × √ × 1.39M

ftran2 × × × √
10.8K

ftran8 × × × √
43.2k

ftran256 × × × √
1.39M

ftran8-tran8 × × √ √
86.4k

ftran256-tran256 × × √ √
2.79M

mv-tran2
√ √ √ × 7.32M

mv-ftran2
√ √ × √

7.32M
mv-ftran2-tran2

√ √ √ √
7.32M

Table 1: Description of various GVP-HMMs: parameter poly-
nomial types and the number of polynomial coefficients.

Two standard VP-HMM configurations, which allow tra-
jectory modelling of Gaussian component means, and option-
ally variances, are shown in the first two lines of the table, as
“mean” and “mv” respectively. In the 2nd section (line 3 to
5) of table 1, three GVP-HMM systems modelling the polyno-
mial trajectories of 2, 8 or 256 mean transforms are shown as
“tran2”, “tran8” and “tran256”. In the 3rd section (line 7 to 9) of
the table, three comparable GVP-HMM systems modelling the
polynomial trajectories of feature space transforms are shown
as “ftran2”, “ftran8” and “ftran256” respectively. Two GVP-
HMMs systems that model the trajectories of both mean and
feature transforms are shown as “ftran8-tran8” and “ftran256-
tran256” in the 4th section (line 9 to 10) of table 1. Finally, three
more complex GVP-HMMs systems that use trajectory mod-
elling for Gaussian means and variances, plus 2 model or(and)
feature space transforms are shown as “mv-tran2”, “mv-ftran2”
and “mv-ftran2-tran2” in the bottom section of the table.

5. Experimental Results
In this section, feature GVP-HMM systems are evaluated on
two tasks: Aurora 2 and a medium vocabulary Mandarin Chi-

nese In-car navigation command recognition task. All GVP-
HMM system used second order polynomials for trajectory
modelling in the experiments.

5.1. Experiments on Aurora 2

The Aurora2 speaker independent digit sequence recognition
database contains 4 noisy conditions: subway, babble, car and
exhibition. A total of 420 utterances from four different SNR
conditions (-5dB, 5dB, 15dB, 25dB) were used to train both the
baseline multi-style HMMs and various GVP-HMM systems.
A total of 1000 utterances selected from the car noise environ-
ment at 0dB, 5dB, 10dB, 15dB and 20dB SNR were used for
word error rate (WER) evaluation.

Performance of the multi-style baseline and various GVP-
HMM systems, as described in table 1 are shown in table 2.
Modelling both Gaussian mean and variance trajectories gave
the best performance for standard VP-HMMs, as shown in the
3rd and 4th lines of table 2. Using the “mv” system, average
WER reductions of 0.56%-0.58% absolute (6.3%-6.5% rela-
tive) across all SNR conditions were obtained over the “mcond”
multi-style baseline, and the mean only VP-HMM/GVP-HMM
system shown as “mean” in table 2.

System 0dB 5dB 10dB 15dB 20dB Ave

clean baseline 75.33 41.42 15.63 6.14 3.14 28.34
mcond baseline 22.88 9.42 4.29 3.58 2.78 8.95

mean 25.63 9.52 4.32 3.10 2.26 8.97
mv 23.16 9.12 4.30 3.09 2.28 8.39

tran2 30.22 9.47 4.98 3.21 2.28 10.09
tran8 22.58 9.02 4.27 3.07 2.23 8.23
mv-tran2 22.34 8.96 4.18 3.04 2.29 8.16

ftran2 30.73 9.77 4.95 3.20 2.48 10.23
ftran8 22.75 9.05 4.28 3.10 2.46 8.33
mv-ftran2 22.84 9.01 4.20 3.07 2.32 8.29

ftran8-tran8 22.42 8.99 4.23 3.06 2.23 8.19
mv-ftran2-tran2 22.15 8.89 4.22 3.04 2.30 8.12

Table 2: WER performance of baseline and various GVP-HMM
systems on Aurora 2

Feature space GVP-HMM systems were found to give error
rates similar to the comparable model transform based GVP-
HMM systems, as are shown in the 3rd and 4th sections of ta-
ble 2. For example, the mean transform based GVP-HMM sys-
tem “tran8”, and the comparable feature space GVP-HMM sys-
tem “ftran8”, both outperformed the “mv” system and reduced
the average WER to 8.23% and 8.33% respectively. The use of
feature space GVP-HMMs were also found to incur lower com-
putational when applying the updated linear transforms to the
observations than mean transform based GVP-HMM systems,
by 21.8% on average across different test SNR conditions, as
are shown Fig 1 for the “tran8” and “ftran8” GVP-HMMs.

A more complex GVP-HMM system, “ftran8-tran8”, that
used both model and feature space transform trajectory mod-
elling, further reduced error rate to 8.19%. When both Gaussian
component and transform parameter trajectories are modelled,
small further improvements were obtained. The “mv-ftran2-
tran2” system outperformed the “mv” system by 0.23%-1.01%
absolute on the 0dB and 5db data, and on average across all
test SNR conditions, by 0.83% absolute (9.3% relative) over the
multi-style trained baseline “mcond” model. It gave the lowest
WER among all systems in table 2.
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Figure 1: Computational cost of applying GVP-HMMs model-
space transform/feature space transform (8 transform classes)

5.2. Experiments on Mandarin In-Car Recognition Task

The medium vocabulary Mandarin In-car navigation command
recognition system was developed using 25 hours of clean train-
ing data. A multi-style training data set was constructed by ar-
tificially corrupting the clean speech data with added car en-
gine noise. Noise corrupted speech data generated under six
sentence level SNR conditions: 0dB, 4dB, 8dB, 12dB, 16dB
and 20dB, were used in training, while a corrupted 5 hour test
set consists of five sentence level SNR conditions: 2dB, 6dB,
10dB, 14dB, and 18dB, was used for character error rate (CER)
evaluation. The baseline acoustic models were ML trained us-
ing HTK [22] on 42-dimensional HLDA projected PLP features
further augmented with smoothed pitch parameters. Phonetic
decision tree clustered cross-word tonal triphones HMMs were
used. A total of 2.4k distinct tied states with 12 components per
state were used. A 5k word list and an associated n-gram model
was used in decoding.

System 2dB 6dB 10dB 14dB 18dB Ave

mcond baseline 44.15 27.56 20.08 17.76 17.51 25.41

tran2 51.68 31.94 23.77 18.99 17.24 28.72
tran256 40.89 27.29 21.45 17.71 16.35 24.74
mv-tran2 31.05 21.87 17.88 17.31 16.62 20.95

ftran2 51.72 33.09 23.40 22.20 17.34 29.55
ftran256 41.07 27.43 21.48 17.74 16.61 24.87
mv-ftran2 33.18 24.53 17.92 17.71 16.84 22.04

ftran256-tran256 30.75 21.42 17.70 17.54 16.11 20.70
mv-ftran2-tran2 30.29 21.80 17.91 17.26 16.32 20.72

Table 3: WER performance of baseline and GVP-HMM sys-
tems on a Mandarin in car command recognition task.

A set of experiments similar to those for Aurora 2 presented
in table 2 were conducted on the In-car data. Performance of
the multi-style baseline and various GVP-HMM systems, are
shown in table 3. Consistent with the trend previously found
in table 2, feature and model space GVP-HMM systems gave
comparable error rates. The model and feature transform based
GVP-HMM system, “ftran256-tran256”, gave an average CER
reduction of 4.71% absolute (18.5% relative) over the base-
line multi-style trained “mcond” system, and the lowest aver-
age CER among all systems in the table. As shown previously
in table 1, this compact “ftran256-tran256” system, (shown in
the 10th line of table 1 and 8th line of table 3) used 62% fewer

polynomial coefficients than the most complex GVP-HMM sys-
tem, “mv-ftran2-tran2”, (shown in the last line of tables 1 and 3)
which simultaneously models Gaussian component, mean and
feature space transform parameter trajectories. These results
confirm that transform based GVP-HMMs can provide a more
compact form of trajectory modelling than conventional mean
and variance based VP-HMMs.

6. Conclusion
Feature space generalized variable parameter HMMs (GVP-
HMM) is investigated in this paper. In addition to Gaussian
means and variances and model space linear transforms, it can
also compactly model the optimal trajectories of tied feature
space transforms that can vary with respect to ambient noise
level, with improved computational efficiency during recogni-
tion time compared with conventional MR-HMMs, VP-HMMs
and mean transform based GVP-HMMs. Experimental results
on Aurora 2 and a medium vocabulary Mandarin speech recog-
nition task suggest the proposed method may be useful for noise
robust speech recognition. Future research will focus on dis-
criminative training and noise adaptive training of GVP-HMMs,
and modelling multiple sources of acoustic variability.
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