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Abstract

Recurrent neural network language models (RNNLMs) are be-
coming increasingly popular for a range of applications includ-
ing speech recognition. However, an important issue that limits
the quantity of data, and hence their possible application ar-
eas, is the computational cost in training. A standard approach
to handle this problem is to use class-based outputs, allowing
systems to be trained on CPUs. This paper describes an alter-
native approach that allows RNNLMs to be efficiently trained
on GPUs. This enables larger quantities of data to be used, and
networks with an unclustered, full output layer to be trained. To
improve efficiency on GPUs, multiple sentences are “spliced”
together for each mini-batch or “bunch” in training. On a large
vocabulary conversational telephone speech recognition task,
the training time was reduced by a factor of 27 over the stan-
dard CPU-based RNNLM toolkit. The use of an unclustered,
full output layer also improves perplexity and recognitionper-
formance over class-based RNNLMs.
Index Terms: language models, recurrent neural network,
speech recognition, GPU

1. Introduction
Statistical language models are crucial components in automatic
speech recognition (ASR) systems. In order to handle the data
sparsity problem associated with conventional back-offn-gram
language models (LMs), language modelling techniques that
represent history contexts in a continuous vector space, such
as neural network language models (NNLMs) [1, 2, 3, 4, 5, 6],
can be used. Depending on the underlying network architec-
ture being used, they can be categorised into two major cate-
gories: feedforward NNLMs [1, 2, 3, 6], which use a vector rep-
resentation of preceding contexts of a finite number of words,
and recurrent NNLMs (RNNLMs) [4, 7], which use a recurrent
vector representation of longer and potentially variable length
histories. In recent years RNNLMs have been shown to give
significant improvements over back-offn-gram LMs and feed-
forward NNLMs, thus becoming an increasingly popular choice
for state-of-the-art ASR systems [4, 7, 8, 9, 5, 10, 11, 12].

One important practical issue associated with RNNLMs
is the computational cost incurred in model training. As a
major part of the computation is required at the output layer,
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most of existing techniques use an RNNLM architecture with
a class based factorized output layer [7], known as class based
RNNLMs (C-RNNLM). In common with a similar architecture
based feedforward NNLMs [13], as the number of classes is
normally significantly smaller than the full output layer size,
training time speed-ups can be achieved [7]. Combined with
further parallelized model training [14] and multi-stage class-
ing at the output layer [15], training time speed-ups up to 10
fold were reported in previous research for C-RNNLMs. How-
ever, there are several issues associated with these approaches.
First, the use of class base output layer limits the potential speed
up from bunch1 mode parallelization [11]. Second, the underly-
ing word to class assignment scheme at the output layer can also
affect the resulting C-RNNLM’s performance [7, 18]. Finally,
CPU based speed up implementations were studied in previous
research [7, 14, 15, 11]. Hence, it is preferrable to also exploit
the parallelization power of GPUs.

To address these issues, a modified RNNLM architecture
with a non-class based, full output layer structure (F-RNNLM)
is used in this paper. This F-RNNLM architecture not only re-
moves the performance sensitivity to word classing, but also fa-
cilitates a novel spliced sentence bunch mode parallelization of
F-RNNLM training. This efficient parallelization algorithm is
implemented on GPUs to fully exploit their parallel computing
power. Experimental results on a large vocabulary conversa-
tional telephone speech transcription task show that a 27 fold
training speed-up was obtained over the standard CPU based
C-RNNLM training using the RNNLM toolkit [19]. Consistent
improvements in both recognition accuracy and perplexity were
also obtained.

The rest of this paper is organized as follows. In Sec-
tion 2 recurrent neural network LMs are reviewed and the two
RNNLM architectures are presented. A novel spliced sentence
bunch mode parallelization algorithm for F-RNNLM training
is proposed in Section 3. Details of a GPU implementation of
this algorithm in Section 4. In Section 5 the proposed RNNLM
training parallelization method is evaluated on a state-of-the-art
conversational telephone speech transcription task. Section 6
draws the conclusions and discusses possible future work.

2. Recurrent Neural Network LMs
In contrast to feedforward NNLMs, recurrent NNLMs [4] rep-
resent the full, non-truncated historyhi−1

1 =< wi−1, . . ., w1 >

for word wi using the 1-of-k encoding of the most recent
preceding wordwi−1 and a continuous vectorvi−2 for the
remaining context. For an empty history, this is initialized,

1It is also sometimes referred as minibatch in literature [16, 17]. For
clarity, the term “bunch” is used throughout this paper.



for example, to a vector of all ones. The topology of the
recurrent neural network used to compute LM probabilities
PRNN(wi|wi−1, vi−2) consists of three layers. The full his-
tory vector, obtained by concatenatingwi−1 andvi−2, is fed
into the input layer. The hidden layer compresses the infor-
mation of these two inputs and computes a new representa-
tion vi−1 using a sigmoid activation to achieve non-linearity.
This is then passed to the output layer to produce normalized
RNNLM probabilities using a softmax activation, as well as re-
cursively fed back into the input layer as the “future” remaining
history to compute the LM probability for the following word
PRNN(wi+1|wi, vi−1). As RNNLMs use a vector representa-
tion of full histories, they are mostly used for N-best list rescor-
ing. For more efficient lattice rescoring using RNNLMs, appro-
priate approximation schemes, for example, based on clustering
among complete histories [20] can be used.

2.1. Full output layer based RNNLMs (F-RNNLMs)
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Figure 1:A full output layer RNNLM with OOS nodes.

A traditional RNNLM architecture with an unclustered, full
output layer (F-RNNLM) is shown in Figure 1. RNNLMs can
be trained using an extended form of the standard back propa-
gation algorithm, back propagation through time (BPTT) [21],
where the error is propagated through recurrent connections
back in time for a specific number of time steps, for example, 4
or 5 [7]. This allows the recurrent network to record information
for several time steps in the hidden layer. To reduce the com-
putational cost, a shortlist [2, 22] based output layer vocabulary
limited to the most frequent words can also be used for class
based RNNLMs. A similar approach may also be used at the in-
put layer when a large vocabulary is used. To reduce the bias to
in-shortlist words during NNLM training and improve robust-
ness, an additional node is added at the output layer to model
the probability mass of out-of-shortlist (OOS) words [3, 6,20].

2.2. Class Based RNNLMs (C-RNNLMs)

Training F-RNNLMs is computationally expensive. As a major
part of the cost is incurred at the output layer, existing tech-
niques have been centered around class based RNNLMs (C-
RNNLMs), an RNNLM architecture with a class based factor-
ized output layer [7]. An example C-RNNLM is illustrated in
Figure 2. Each word in the output layer vocabulary is attributed

to a unique class based on frequency counts. The LM probabil-
ity assigned to a word is factorized into two individual terms

PRNN(wi|wi−1, vi−2) = P (wi|ci, vi−1)P (ci|vi−1). (1)

The calculation of word probability is based on a small sub-
set of words from the same class, and the number of classes
is normally significantly smaller than the full output layersize.
Hence, training time speed-ups can be achieved. A special case
of C-RNNLM using a single class is equavalent to a traditional,
full output layer based F-RNNLM introduced in Section 2.1.
A modified version of the RNNLM toolkit [19] supporting the
above architecture is used.
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Figure 2:A class based RNNLM with OOS nodes.

In state-of-the-art ASR systems, NNLMs are often linearly
interpolated withn-gram LMs to obtain both a good context
coverage and strong generalisation [2, 22, 3, 4, 11, 6]. The in-
terpolated LM probability is given by

P (wi|h
i−1
1 ) = λPNG(wi|h

i−1
1 )+(1−λ)PRNN(wi|h

i−1
1 ) (2)

λ is the weight assigned to then-gram LM distributionPNG(·),
and kept fixed as 0.5 in all experiments of this paper for all
RNNLMs. In the above interpolation, the probability mass of
OOS words assigned by the RNNLM component needs to be
re-distributed among all OOS words [3, 6].

3. Efficient Recurrent Neural Network LM
Training Using Spliced Sentence Bunch

In order to reduce the computational cost in model training,a
bunch mode parallelization can be applied to RNNLMs. This
technique was previously proposed for feedforward NNLMs [2,
23]. A fixed number ofn-grams from the training data is propa-
gated through the network without updating its weights to inde-
pendently generate intermediate gradient statistics. These were
then accumulated and used for updating the weight parameters.
As RNNLMs use a vector representation of full history con-
texts, a necessary modification of the data structure used bythis
algorithm is required. Instead of operating at then-gram level, a
sentence level bunch should be used [24, 11]. By definition, this
form of parallelization requires each sentence to be regarded as
independent in RNNLM training by re-initializing the hidden
history vector at the start of every sentence.

The basic idea of bunch mode training is shown in Figure 3.
For aN size bunch, a total ofN sentences are aligned from
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Figure 3:Bunched RNNLM training without sentence splicing

left to right. During parallelization, a regular structured input
matrix is formed. The element at theith row andtth column
in the input matrix, associated with timet + 1 and an output
word w

(i)
t+1, represents a vector[w(i)

t
, v

(i)
t−1]

⊤, wherew(i)
t

and

v
(i)
t−1 are the 1-of-k vector encoding of thetth word of theith

sentence in the bunch, and the corresponding recurrent history
vector at wordw(i)

t
respectively.

Two issues arise when directly using the above sentence
bunch mode training. First, the variation of sentence length
in the training data requires setting the number of columns of
the input matrix to the maximum sentence length in the train-
ing corpus.NULL words are then inserted at the end of other
shorter sentences in the bunch, as is shown in Figure 3. These
redundantNULL words are ignored during BPTT. As the ra-
tio between the maximum and average sentence length of the
training data increases, and moreNULL tokens are inserted, the
potential speed up from parallelization is increasingly limited.
Second, the standard sentence bunch mode training also inter-
acts with the use of class based RNNLMs [7, 11]. As words
aligned at the same position across different sentences canbe-
long to different classes, the associated output layer submatrices
of irregular sizes will be used at the same time instance. This
can also result in inefficiency during training.

In order to handle these issues, an efficient bunch mode
parallelization based on spliced sentences is used. Instead of
a single sentence, each stream in the bunch now contains a se-
quence of concatenated sentences, as is illustrated in Figure 5.
Sentences in the training corpus are joined into streams that
are more comparable in length. Individual sentence bound-
aries within each stream are marked in order to appropriately
reset the recurrent history vector as required. As the streams
are more comparable in length, the insertion ofNULL tokens
at the stream end is minimized. This approach can thus sig-
nificantly reduce the synchronization overhead and improvethe
efficiency in parallelization. The non-class based, full output
layer RNNLMs (F-RNNLMs) introduced in Section 2.1 are
also used to address the second issue as mentioned above. F-
RNNLMs use the entire output layer both in training and LM
probability calculation, therefore allow the speed improvements
from parallelization techniques to be fully exploited.

4. GPU Implementation
To improve efficiency, graphics processing units (GPUs), which
have been previously employed to train neural network based
acoustic models in speech recognition [16, 17], are used to train
RNNLMs used in this paper. CUBLAS from CUDA 5.0, the
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Figure 4:Bunched RNNLM training with sentence splicing

basic linear algebra subprograms (BLAS) library optimizedfor
Nvidia GPUs, is used for fast matrix operation. As discussedin
Sections 1 and 2.2, when a large number of output layer nodes
are used, the softmax computation during gradient calculation is
very expensive. To handle this problem, a fast GPU implemen-
tation of the softmax function is used. Instead of summing the
sufficient statistics sequentially over all output layer nodes, they
are processed in one block. Shared memory is also used and to
facilitate rapid address access time. An array in each blockwith
a fixed length (1024 used in this work) is allocated in the shared
memory. Partial accumulates are stored in the array elements.
A binary tree structured summation performed over the array
reduces the execution time fromN to logN , for example, from
1024 down to 10 parallelized GPU cycles.

Table 1: Initial learning rate for different bunch size
bunch size 1 8 32 64 128 256

learning rate 0.1 0.3 0.8 1.0 2.0 2.0

In order to obtain a fast and stable convergence during
RNNLM training, the appropriate setting and scheduling of the
learning rate parameter is necessary. For the F-RNNLMs that
are trained in bunch mode, the initial learning rate is empirically
adjusted in proportion to the underlying bunch size. When the
bunch size is set to 1 and no form of parallelization is used, the
initial learning rate is set to 0.1, in common with the default
setting used in the RNNLM toolkit [19]. The initial learning
rate settings used for various other bunch sizes are also shown
in Table 1. When the bunch size is increased to 128, the initial
learning rate is set to 2.0.

5. Experiments
In this section, RNNLMs are evaluated on the CU-HTK LVCSR
system for conversational telephone speech (CTS) used in the
2004 DARPA EARS evaluation. The acoustic models were
trained on approximately 2000 hours of Fisher conversational
speech released by the LDC. A 59k recognition word list was
used in decoding. The system uses a multi-pass recognition
framework. A detailed description of the baseline system can
be found in [25]. The 3 hourdev04 data, which includes 72
Fisher conversations, was used as a test set. The baseline 4-
gram LM was trained using a total of 545 million words from
2 text sources: the LDC Fisher acoustic transcriptions,Fisher,
of 20 million words (weight 0.75), and the University Wash-
ington conversational web data [26],UWWeb, of 525 million
words (weight 0.25). TheFisher data was used to train various
RNNLMs. A 38k word input layer vocabulary and 20k word
output layer shortlist were used. RNNLMs were interpolated
with the baseline 4-gram LM using a fixed weight 0.5. This



baseline LM gave a WER of 16.7% ondev04measured using
lattice rescoring.

The baseline class based RNNLMs were trained on CPU
with the modified RNNLM toolkit [19] compiled with g++2.
The number of BPTT steps was set as 5. A computer with dual
Intel Xeon E5-2670 2.6GHz processors with a total of 16 phys-
ical cores was used for CPU-based training. The number of
classes was fixed as 200. The number of hidden layer nodes
was varied from 100 to 800. The 100-best hypotheses extracted
from the baseline 4-gram LM lattices were rescored for per-
formance evaluation. The perplexity and error rates of various
RNLLMs are shown in Table 2. The C-RNNLM with 512 hid-
den layer nodes gave the lowest WER of 15.3% and serves as
the baseline C-RNNLM in the experiments.

Table 2: Speed, PPL and WER results on class based RNNLMs
trained on CPU with different hidden nodes (class size is 200)

hidden speed train time valid
nodes (w/s) (hours)* PPL WER

100 7.6k 9.8 50.7 16.1
200 2.1k 35.6 48.6 15.8
512 0.37k 202.1 46.5 15.3
800 0.11k 679.9 45.8 15.4

The Nvidia GeForce GTX TITAN GPU was used to train
various F-RNNLMs. The spliced sentence bunch mode paral-
lelization algorithm and its GPU implementation describedin
Sections 3 and 4 were used. A range of different bunch size
settings from 8 to 256 were used. Consistent with the above C-
RNNLM baseline, all F-RNNLMs have 512 hidden layer nodes
and a comparable number of weight parameters. Their per-
formance measured in terms of training speed, perplexity and
WER are shown in the 2nd Section of Table 3. The perfor-
mance of the baseline C-RNNLM with 512 hidden nodes (pre-
viously shown in 3rd line in Table 2) is again shown in the 1st
line of Table 3. Setting the bunch size to 8, a 4 times speed
up is achieved. Improvements in perplexity and WER over the
C-RNNLM baseline are also obtained. Further improvements
in training speed can be consistently achieved by increasing the
bunch size to 128 without performance degradation. The best
performance in terms of speed and WER was obtained by using
a bunch size of 128. This gives 27 times speed up and a 0.1%
absolute reduction in WER over the C-RNNLM baseline.

Examining the breakdown of the training time suggests the
output and hidden layers account for the majority of computa-
tion during BPTT (44.8% and 39.4% respectively), due to the
heavy matrix multiplications required. The cost of the softmax
function at the output layer is comparatively minimal at 2.4%.
The remaining 13.4% is shared by other operations such as re-
setting F-RNNLM hidden vectors at the sentence start, and data
transfer between CPU and GPU. A further speed up is possible,
for example, by increasing the bunch size to 256. However, the
convergence becomes less unstable and leads to performance
degradation.

As a major contribution factor to the above speed improve-
ments, the importance of using sentence splicing in bunch mode
based GPU implementation is shown in Figure 5, where a con-
trast in speed with and without sentence splicing is drawn.

2A speedup of 1.7 times for CPU based training could be obtained
by the Intel MKL CBLAS implementation with multi-threading(com-
piled with icc version 14.0.2) over the baseline RNNLM toolkit for C-
RNNLMs with 512 hidden layer nodes and 200 classes.

Table 3: Speed, PPL and WER results on RNNLMs trained on
GPU with different bunch sizes (hidden layer size is 512)

model bunch #parameter speed time PPL WER
type size (w/s) (hours)

C-RNN - 26.9M 0.37k 202.1 46.5 15.3

F-RNN

8

26.8M

1.4k 53.4 45.7 15.2
32 4.6k 16.3 45.6 15.2
64 7.6k 9.8 45.7 15.2
128 9.9k 7.5 46.3 15.2
256 12.9k 5.7 46.5 15.4
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Figure 5:Bunched RNNLM training with sentence splicing

When using the standard bunch model training with no sen-
tence splicing, only limited speed improvements are obtained
by increasing the bunch size. This is due to the large number
of insertedNULL tokens and the resulting inefficiency, as dis-
cussed in Section 3.

The spliced sentence bunch based parallelization can also
be used for RNNLM performance evaluation on GPU. Table 4
shows the speed information measured for N-best rescoring us-
ing the baseline C-RNNLM and the F-RNNLM of Tables 3. As
expected, it is very expensive to use F-RNNLM on CPU. C-
RNNLMs can improve the speed by 43 times. A further speed
up of 9 times over the CPU C-RNNLM baseline was obtained
using the bunch mode (bunch size 512) parallelized F-RNNLM.

Table 4: Comparison of speed for N-Best scoring
model type device bunch speed (words/sec)

F-RNN
CPU N/A

0.14k
C-RNN 5.9k

F-RNN GPU
1 1.1k
64 41.3k
512 56.3k

6. Conclusions
In this paper an efficient GPU implementation of bunch mode
RNNLM training is investigated. On a large vocabulary con-
versational telephone speech recognition task, the proposed
method yields a 27 times reduction in the training time com-
pared to the standard CPU-based RNNLM toolkit [19]. Im-
provements in both perplexity and recognition performance
were also obtained over the standard class based RNNLMs us-
ing the full output RNNLM architecture.
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