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Abstract

Natural languages are known for their expressive richness. Many sentences can be used to represent the same underlying meaning.
Only modelling the observed surface word sequence can result in poor context coverage and generalization, for example, when using
n-gram language models (LMs). This paper proposes a novel form of language model, the paraphrastic LM, that addresses these
issues. A phrase level paraphrase model statistically learned from standard text data with no semantic annotation is used to generate
multiple paraphrase variants. LM probabilities are then estimated by maximizing their marginal probability. Multi-level language
models estimated at both the word level and the phrase level are combined. An efficient weighted finite state transducer (WFST)
based paraphrase generation approach is also presented. Significant error rate reductions of 0.5–0.6% absolute were obtained over the
baseline n-gram LMs on two state-of-the-art recognition tasks for English conversational telephone speech and Mandarin Chinese
broadcast speech using a paraphrastic multi-level LM modelling both word and phrase sequences. When it is further combined with
word and phrase level feed-forward neural network LMs, a significant error rate reduction of 0.9% absolute (9% relative) and 0.5%
absolute (5% relative) were obtained over the baseline n-gram and neural network LMs respectively.
© 2014 Elsevier Ltd. All rights reserved.

Keywords: Language modelling; Paraphrase; Speech recognition

1.  Introduction

Natural languages are known to have layered structures, a hidden and deeper structure that represents the meaning
and core semantic relations within a sentence, and a surface form found in normal written texts or spoken language,
as formulated in linguistic theories such as generative grammar Chomsky (1966), Jackendoff (1974). The mapping
from the meaning to the observed surface form involves a natural language generation process. As multiple surface
realizations can be used to convey identical or similar semantic information, this mapping is often one-to-many. These
different surface realizations are paraphrastic to one another. They were created by using different syntactic, lexical
and morphological rules in the generation process. Functionally these paraphrase variants represent different styles,

dialects or other speaker specific characteristics. Due to their presence, only modelling the observed surface word
sequence can result in poor context coverage, for example, when using standard n-gram language models (LMs).
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One approach to handle this problem requires directly modelling paraphrase variants when constructing the LM.
s alternative expressions of the same meaning are now considered, the resulting language model’s context coverage

nd generalization performance is expected to improve. Along this line, the use of word level synonym features Cao
t al. (2005), Hoberman and Rosenfeld (2002), Jelinek et al. (1990), Kneser and Peters (1997) has been investigated
n early research for n-gram and class n-gram based Brown et al. (1992) language models. However, there are two
ssues associated with these existing approaches. First, the paraphrastic relationship between longer span syntactic
tructures, such as phrases, is largely ignored. A more general form of modelling that can also capture a higher level
nd longer span paraphrase mapping should be more effective. Second, previous research focused on using manually
erived expert semantic labelling provided by resources such as WordNet Fellbaum (1998). As manual annotation is
sually very expensive to produce, these methods cannot be applied to large corpora or languages without suitable
ordNet-type resources. Hence, automatic, statistical paraphrase induction and extraction techniques are required.
In order to address these issues, this paper presents a novel form of language model, the paraphrastic language

odel (PLM). It provides a highly flexible and general form of paraphrase modelling that can be used at either the
ord, phrase or sentence level. The paraphrastic relationship between longer span syntactic structures can thus be

ffectively captured. A phrase level paraphrase model statistically learned from standard text data is used to generate
ultiple paraphrase variants for the training data. Language model probabilities are then estimated by maximizing the
arginal probability of these variants. By linking language generation and modelling, paraphrastic LMs exploit an

ntuitive and interpretable parameter smoothing scheme to improve generalization performance. In order to leverage
he complementary characteristics of paraphrastic LMs and feed-forward neural network LMs (NNLMs) Bengio et al.
2003), Kuo et al. (2012), Le et al. (2013), Park et al. (2010), Schwenk (2007), the combination between the two is
lso investigated.

This paper extends previous research summarized in Liu et al. (2012b, 2013c). A more complete study of using
araphrastic language models for speech recognition is presented. Various important aspects of this work, including
he theory and implementation of the statistical paraphrase learning algorithm, the generation of paraphrase lattices
nd the construction of phrase and multi-level paraphrastic LMs, are covered in detail in this paper. These are further
ugmented by a full set of experimental results presented to demonstrate the advantages of paraphrastic LMs over
xisting modelling methods. This paper shows the applicability of paraphrastic LMs to multiple languages and genres,
he scaling behaviour on varying amounts of training data, and their complementarity to other established language
odelling techniques.
The rest of the paper is organized as follows. Paraphrastic language models are introduced in Section 2. A statistical

-gram phrase pair based paraphrase extraction scheme is presented in Section 3. Paraphrase lattice generation using
 weighted finite state transducer (WFST) approach is described in Section 4. The estimation of paraphrastic LMs is
resented in Section 5. The combination between paraphrastic LMs and feed-forward neural network LMs is proposed
n Section 6. In Section 7 a range of paraphrastic LMs are evaluated on two state-of-the-art speech recognition tasks
or English conversational telephone speech and Chinese broadcast speech respectively. Section 8 is the conclusion
nd possible future work.

.  Paraphrastic  language  models

As discussed above, in order to capture the paraphrase mapping between longer span syntactic structures, a more
eneral form of modelling is required. To address this issue, the particular type of LMs proposed in this paper can
exibly model paraphrastic relationships at the word, phrase and sentence level. As LM probabilities are estimated in

he paraphrased domain, they are referred to as paraphrastic  language  models  (PLMs) in this paper. For a surface  word
equence W =<  w1,  w2, .  .  ., wi,  .  . ., wL >  of L  words in the training data, for example, “And  I generally  prefer”,
ather than maximizing the surface word sequence log-probability ln P(W) as for conventional LMs, the marginal
robability over its paraphrase  variant  sequences, {W′}, such as “And  I  just  like” or “I  mean  I want”, is maximized

iu et al. (2012b, 2013c),

F(W) =  ln

⎛
⎝ ∑

ψ,ψ′,W′
P(W|ψ)P(ψ|ψ′)P(ψ′|W′)PPLM(W′)

⎞
⎠ (1)
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where

•  PPLM(W′) is the paraphrastic LM probability to be estimated;
• P(ψ′|W′) is a word to phrase segmentation model assigning the probability of a phrase level segmentation, ψ′ =<

v′
1,  v′

2,  .  . ., v′
K >  of K  phrases, given a paraphrase word sequence W′ =<  w′

1,  w′
2, . . ., w′

i,  .  . ., w′
L′ >  of L′ words

in total.
• P(ψ|ψ′) =

∏
i

P(vi|v′
i) uses a phrase to phrase paraphrase model to compute probability of a phrase sequence

ψ =<  v1,  v2,  .  . ., vi, .  . ., vK >  being paraphrastic to another one ψ′ =<  v′
1,  v′

2, .  . ., v′
i,  . . ., v′

K >;
• P(W|ψ) is a phrase to word segmentation model that converts a phrase sequence ψ  to a word sequence W, and by

definition is a deterministic, one-to-one mapping, thus considered non-informative.

As multiple word to phrase segmentations are possible, ambiguity can occur. If there is no clear reason to favor one
phrase segmentation over another, P(ψ′|W′) may be treated as non-informative. This is the approach adopted in this
work. The input word vocabulary Vw associated with the word to phrase segmentation model, P(ψ′|W′), is a subset
of the output phrase level vocabulary Vv. By definition, this allows single word phrases to be generated in addition to
multi-word based ones.

2.1.  Paraphrastic  count  smoothing

By differentiating Eq. (1) with respect to the paraphrastic LM log probabilities, it can be shown that the sufficient
statistics for a maximum likelihood (ML) estimation of PPLM(W′) are accumulated for each paraphrase word sequence
and weighted by its posterior probability. For a particular n-gram predicting word wi following history hi, the associated
statistics C(hi, wi) are

C(hi, wi) =
∑

ψ,ψ′,W′
P(W′|ψ′)P(ψ′|ψ)P(ψ|W)CW′ (hi,  wi) =

∑
W′

P(W′|W)CW′ (hi, wi) (2)

where CW′ (hi, wi) is the count of subsequence <hi, wi> occurring in paraphrase variant W′. These sufficient statistics
are then use to estimate the paraphrastic LM probabilities {PPLM(·  |hi)}  under a positive and sum-to-one constraint.
By discounting and re-distributing statistics to alternative paraphrases of the same word sequence, paraphrastic LMs
estimated using such statistics are expected to have a richer context coverage and improved generalization performance.
This advantage can be exploited by various forms of LMs that do not explicitly capture the paraphrastic variability
in natural languages. In this paper, the estimation of paraphrastic n-gram LMs is considered and will be described in
detail in the following sections.

2.2.  Interpolation  with  conventional  LMs

At the same time as improving generalization and coverage, paraphrastic count smoothing can also increase mod-
elling confusion compared to conventional LMs trained on just the surface word sequence. One approach to balance
the specific, but poorer coverage word-based n-gram LMs with a more generic LM is to linearly interpolate the LM
probabilities. This is commonly used with class-based LMs Brown et al. (1992), Niesler and Woodland (1996), Niesler
et al. (1998) and is used in this paper with paraphrastic LMs. Let P(w̃|h̃) denote the interpolated LM probability for
any in-vocabulary word w̃  following an arbitrary history h̃  is given by

P(w̃|h̃) =  λNGPNG(w̃|h̃) +  λPLMPPLM(w̃|h̃) (3)
where λNG and λPLM are the interpolation weights assigned to the conventional LM distribution PNG(·) and the
paraphrastic LM PPLM(·). These interpolation weights are positive under a sum-to-one constraint, and can be optimized
on the perplexity of some held-out data.

The word level paraphrastic LMs investigated in this paper are in the same form as conventional back-off n-gram
models. The only difference between the two lies in the way the sufficient statistics used in LM estimation are derived.
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nstead of the normal n-gram counts computed directly from the surface word sequence, integer quantized paraphrastic
ord n-gram counts accumulated from explicitly generated paraphrase variants were used in this work to train word

evel paraphrastic LMs. These statistics were used by a conventional n-gram probability estimation and smoothing
rocedure, which makes no assumption over the underlying means used to derive the sufficient statistics. It also
uarantees the resulting LM probabilities to be positive and sum-to-one, as well as those obtained after the linear
nterpolation in Eq. (3).

The same form of linear interpolation can also be used between phrase level conventional and paraphrastic LMs.1 As
ultiple word to phrase segmentations are possible for the same word sequence in general, the exact phrase sequence

evel perplexity evaluation is non-trivial for both the conventional and paraphrastic phrase level LMs. Hence, in this
aper only the perplexity performance of word level paraphrastic LMs are evaluated.

.3.  Phrase  level  and  multi-level  paraphrastic  LMs

In order to increase the context span for paraphrastic LMs, a phrase level paraphrastic LM can also be trained. This
an be obtained by optimizing a simplified form of the criterion given in Eq. (1), where the word to phrase segmentation
odel P(ψ′|W′) is dropped,

F(W) =  ln

⎛
⎝∑

ψ,ψ′
P(W|ψ)P(ψ|ψ′)PPLM(ψ′).

⎞
⎠ (4)

hus for a particular phrase level n-gram predicting phrase ψi following its history ĥi, the associated phrase level
tatistics C(ĥi, ψi) are accumulated as

C(ĥi,  ψi) =
∑

ψ′
P(ψ′|W)Cψ′ (ĥi,  ψi) (5)

here C(ĥi,  ψi) is the count of phrase level subsequence <ĥi, ψi> occurring in phrase level segmented paraphrase
ariant ψ′. These are then used to estimated the phrase level paraphrastic n-gram LM probabilities {PPLM( · |ĥi)}  in
his paper.

In order to incorporate richer linguistic constraints, it is possible to train and form a log-linear combination of LMs
hat model different units, for example, words and phrases. LMs built at word and phrase level are combined to yield a

ulti-level LM to further improve discrimination Liu et al. (2010, 2013a,b). This requires word level lattices to be first
onverted to phrase level lattices before the log-linear combination is performed. The log-linear interpolation weights
etermine the contribution from component LMs. These were empirically set as 0.6 and 0.4 for word and phrase level
Ms, and kept fixed for all experiments of this paper.2
.4.  Outline  of  paraphrastic  LM  training  procedure

As discussed above, paraphrastic LMs directly target expressive richness related variability in natural languages. A
entral part of this generative modelling framework uses a statistically trained phrase level generative model to explicitly
roduce multiple paraphrase variants for each training data sentence. This allows automatically discounted paraphrastic
ounts to be obtained to estimate LM probabilities. The overall general procedure of constructing a paraphrastic LM
s summarized below.

1 In this paper the interpolation weights assigned to the phrase level conventional and paraphrastic LMs are determined using their probabilities
omputed on phrase segmented held-out data based on the longest available phrase segmentation.
2 In practice, this setting was found to give comparable performance to an equal log-linear weighting of word and phrase level LMs. The error

ate was found insensitive to the setting of these weights when they are varied in the region from (0.3:0.7) to (0.7:0.3).
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1: Estimation of the phrase to phrase paraphrase model P(v|v′) in Eqs. (1) and (4) for both word and phrase level
paraphrastic LM training;

2: Construct the word to phrase segmentation model P(ψ′|W′) and the phrase to word segmentation model
P(W|ψ) that produces or accepts the phrases allowed by the resulting phrase level paraphrase model P(v|v′);

3: for every sentence in the training data do
4: Generate paraphrase variants using the above word to phrase segmentation model P(ψ′|W′), the phrase level

paraphrase model P(v|v′) and the phrase to word segmentation model P(W|ψ) (for word level paraphrase
lattices only);

5: Accumulate paraphrastic n-gram counts at word level in Eq. (2), or phrase level in Eq. (5), over all generated
paraphrase variants and weighted by their posteriors;

6: end for
7: Word or phrase level paraphrastic LM training using the above accumulated sufficient statistics.

In the following sections, each step of the above paraphrastic LM training procedure is described in detail.

3.  Paraphrase  phrase  pair  extraction

A phrase level paraphrase model is used in paraphrastic LMs, as discussed in Sections 1 and 2. In order to obtain
sufficient phrase coverage, an appropriate technique to learn a large number of paraphrase phrase pairs is required.
Since it is impractical to obtain expert semantic labelling at the phrase level, statistical paraphrase extraction schemes
are needed.

3.1.  Statistical  paraphrase  phrase  pair  learning

Statistical paraphrase induction methods can be categorized into two major types, depending on the nature of the data
being used Androutsopoulos and Malakasiotis (2010), Madnani and Dorr (2010). The first category uses comparable or
parallel text data. Coarse grained alignment Barzilay and Lee (2003), or statistical machine translation based extraction
methods Brown et al. (1990) are used to learn the paraphrastic relationship among words and phrases. As these methods
assume a partial or complete semantic overlap between sentences, highly specialized training material is required.
Hence, it is expensive to obtain and use on a large scale. The second category of techniques perform paraphrase
pair extraction using standard text data Lin and Pantel (2001), Pasca and Dienes (2005). These are motivated by
distributional similarity  theory Harris (1954), which postulates that phrase pairs often sharing the same left and right
contexts are likely to be paraphrases of each other. As standard text data in large amounts can be used, wide phrase
coverage can be obtained.

3.2.  n-gram  Paraphrase  phrase  pair  extraction

In order to exploit the advantages of standard text data based statistical paraphrase induction techniques as dis-
cussed in Section 3.1, an n-gram based paraphrase induction algorithm given below is used in this paper to estimate
the paraphrase model Liu et al. (2012b). When this distributional similarity based paraphrase learning algorithm
is used, the minimum and maximum phrase length are set as Lmin = 1 and Lmax = 4, and the left and right con-
text length set as LN = 3. In practice these settings are found to produce a good balance between the coverage and
quality of the extracted paraphrases.3 Unless otherwise stated, these are thus kept fixed for all experiments in this
paper.
3 Decreasing the setting of context length LN weakens the constraint used in the paraphrase learning algorithm. This results in an increase in the
number of phrase pairs extracted but also a deterioration in their quality. No performance improvement was observed by further increasing LN, or
the maximum phrase length Lmax.
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: initialize phrase pair list V = {};
: initialize n-gram subsequence list U = {};
: for every sentence in training data do
: find and add all subsequences < cl, v, cr > such that Lcl

= LN , Lcr = LN and Lmin ≤ Lv ≤ Lmax into U.
: end for
: for every < cl, v, cr > in U do
: for every other < c′

l
, v′, c′

r > in U do
: if cl = c′

l
, cr = c′

r and v /= v′ then
: if < v → v′ > and < v′ → v > not in V then
0: add phrase pairs < v → v′ >, < v′ → v > to V;
1: end if
2: increase co-occurrence counts C(v → v′) and C(v′ → v) both by 1;
3: end if
4: end for
5: end for
6: for every phrase pair < v → v′ > in V do

7: estimate paraphrase prob p(v′|v) = C(v→v′)∑
v
C(v→v)

8: end for

The above algorithm can be extended to incorporate additional useful information. For example, it is possible to
uild domain or style dependent paraphrastic LMs via a directed paraphrasing by restricting the choice of target phrases
eing used. In common with other paraphrase induction methods, the above scheme can also produce phrase pairs
hat are non-paraphrastic, for example, producing antonyms. However, this is less of a concern for language modelling
ince the primary aim is to improve context coverage.

In general, it is possible to allow the extracted paraphrases to contain out-of-vocabulary (OOV) words that are not
odelled by the conventional LM. This can improve the resulting paraphrastic LM’s vocabulary coverage. In this

aper, a common vocabulary is used for both the standard LMs and paraphrastic LMs. This requires the above n-gram
ased paraphrase learning algorithm to be modified so that all phrase pairs that contain OOV words are discarded in
he accumulation of co-occurrence counts.

.  Paraphrase  lattice  generation

In order to train paraphrastic LMs, multiple paraphrase variants are required to compute the sufficient statistics given
n Eq. (2). As all four components of the paraphrastic LM given in Eq. (1) can be efficiently represented by WFSTs

ohri (1997), WFST based paraphrase variant generation was used in this work, rather than designing special purpose
ecoding tools. For each training data sentence, the paraphrase word lattice TW′ is generated using a sequence of WFST
omposition operations, before being projected onto the word sequence level and compressed via the determinization
peration. This is given by

TW′ =  det(πW′ (TW:W ◦ TW:ψ ◦  Tψ:ψ′ ◦ Tψ′:W′ )) (6)

here TW:W is the transducer containing the original word sequence, TW:ψ is the word to phrase segmentation trans-
ucer, Tψ:ψ′ the phrase to phrase paraphrase transducer and Tψ′:W′ the phrase to word transducer. ◦, det(·) and π(·)
enote the WFST composition, determinization and projection operations.

An example of a word to phrase segmentation transducer is shown in Fig. 1 (a), which can generate seven phrases.
hese include, the sentence start “<s>” and end symbol “</s>”, single word phrases “and”, “I”, “generally” and
prefer”, as well as a two word phrase “and  I”. Here “<e>” denotes the null symbol. When used for paraphrase lattice
eneration, in order to obtain a sufficient depth of the resulting lattices, all possible word to phrase segmentations are
llowed in Eq. (6) to be further transformed to their associated phrase level paraphrases. The phrase to word transducer
an be derived by taking the word to phrase transducer’s inverse (swapping input and output symbols). As mentioned

n Section 2, both the phrase to word, and word to phrase segmentation models are considered non-informative in this
aper for paraphrastic LM training.

An example part of a phrase to phrase paraphrase model is shown in Fig. 1 (b), where an input phrase “prefer” is
araphrased into a total of 12 single word phrases including “appreciate”, “like”, “want”, “need”, “love” and “wish”, as
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0 1/0

PR
A B

EFER:PREFER/0

PREFER:LIKE/1.071

PREFER:OUGHT/4.547

PREFER:TRY/4.637

PREFER:REALLY_APPRECIATE/4.815

PREFER:WISH/4.880

PREFER:LIKE_YOU/4.902

PREFER:WOULD_LIKE/4.965

PREFER:HATE/5.181
PREFER:WANT/1.115

PREFER:HAVE/2.578

PREFER:NEED/3.021

PREFER:APPRECIATE/3.119

PREFER:LOVE/3.194

PREFER:SAY/3.906

PREFER:WANTED/4.026

PREFER:REALLY_LIKE/4.253

<e>:<e>/0

0 2

<s>:<s>

AND:AND

I:I

GENERALLY:GENERALLY
PREFER:PREFER

</s>:</s>

1

AND:<e>

<e>:<e>

I:AND_I

3
<e>:<e>

Fig. 1. Example WFST representation of (a) part of a word to phrase segmentation model that generates seven phrases including the sentence start
“<s>” and end symbol “</s>”, single word phrases “and”, “I”, “generally”, “prefer” and a two word phrase “and I”; (b) part of a phrase to phrase

paraphrase model containing arcs accepting an input phrase “prefer”.

well as multi-word phrases such as “really  like” and “really  appreciate” and “would  like”. When using the paraphrase
phrase pair extraction method presented in Section 3, it is possible that some phrases may have no paraphrases available
in the training data. In order to ensure the resulting paraphrase lattice is fully connected, self-reflexive arcs that map the
input phrases to the same output are also included in the paraphrase transducer with zero cost. For the example shown

in Fig. 1(b), this is represented by the top arc in the transducer that maps the input phrase “prefer” to itself. It should
noted that including this self-reflexive arc will not lead to over counting in the paraphrastic counts accumulation in
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ig. 2. Example of a phrase segmented lattice for a sentence “And I generally prefer” derived using the word to phrase segmentation WFST of
ig. 1(a).

qs. (2) and (5), as both are computed using properly normalized paraphrase sequence posterior probabilities derived
rom a lattice forward-backward pass.

It is also possible to construct standard, non-paraphrastic phrase level LMs using the phrase segmentation transducer
hown in Fig. 1(a). First, a phrase level lattice Tψ containing all possible segmentations for the original word sequence

 is derived by the following WFST operations,

Tψ =  ω=̇1(det(πψ(TW:W ◦  TW:ψ))) (7)

here ω=̇1(·) denotes the operation of setting all the WFST arc weights to 1. For an example sentence “And  I  generally
refer”, the resulting phrase level segmented WFST lattice is shown in Fig. 2. In order to obtain a maximum phrase level
ontext span and linguistic constraints, the shortest path in Tψ, for the same example shown in Fig. 2, “And  I  generally
refer”, which contains the longest available phrase segmentation, is used to train a conventional, non-paraphrastic
hrase sequence level LM.

In order to improve the efficiency in paraphrase lattice generation, a relative beam of 5.0 based WFST pruning
as applied. Combined with the pruning, a bi-gram LM was used to further improve the paraphrasing efficiency and
eweight the statistics accumulated from very unlikely paraphrase sequences.4 The WFST based paraphrase generation
pproach in Eq. (6) is thus modified as

TW′ =  det(πW′ (TW:W ◦ TW:ψ ◦  Tψ:ψ′ ◦ Tψ′:W′ ) ◦  GW′ ) (8)

here GW′ is the acceptor representing the bi-gram LM estimated on the surface word sequence. In practice this was
ound to provide a good balance between improving the paraphrase generation quality and retaining sufficient depth
n the lattices.

As discussed in Section 2, phrase level paraphrastic lattices are used to accumulate the sufficient statistics in Eq. (5)
o train phrase level paraphrastic LMs. These phrase level paraphrase lattices Tψ′ can be generated using a sequence of

FST operations similar to those above used for word level paraphrase lattice generation given in Eq. (8), except that
he phrase to word segmentation transducer Tψ′:W′ is now dropped, and a fixed phrase level bi-gram LM acceptor Gψ′ ,
rained on phrase segmented texts derived using the WFST operation in Eq. (7) associated with the longest available
hrase segmentation, is used instead.

Using the above WFST based decoding approach for an example sentence “And  I  generally  prefer”, and a paraphrase
odel trained on 545 million words of conversational English data, an example paraphrase lattice after pruning is shown

n Fig. 3.
Inside the lattice, the following paraphrase variants are among those generated: “And  I  just  like”, “I  mean  I  want”,

I guess  I prefer”, “You  know  I  need”, “And  I  appreciate”, “I  probably  have”, “‘Cause  I  like”, “Well  I  need” and “So  I
ike”. As the n-gram based paraphrase extraction method presented in Section 3 can also produce phrase pairs that are
on-paraphrastic, antonyms such “hate” for word “prefer”, previously shown in the 9th arc from the top in the phrase
evel paraphrase transducer of Fig. 1(b). Hence, word sequences such as “And  you  know  I  hate” were also found in
araphrase lattice before pruning. Using the same above paraphrase model, the lattice density measured on the word
evel paraphrase lattices generated for the 20 M word Fisher data is 5.1 arcs on average for every word in the surface
ord sequence.
In order to improve phrase coverage, expert semantic labelling provided by resources such as WordNet Fellbaum
1998) can be used. The expert semantic labelling by WordNet, including synonyms, hypernyms, hyponyms and
ertainyms, were used to extract manually derived paraphrases, for example, “choose” and “favor” for word “prefer”,
n addition to those automatically learnt and shown in Fig. 1(b). The semantic similarity based HowNet Dong and Dong

4 Initial experiments show when no such bi-gram LMs were used in paraphrase lattice generation, a small performance degradation was found in
he resulting paraphrastic LM.
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Fig. 3. A paraphrase lattice for sentence “And I generally prefer”.

(2006) for the Chinese language was also used in this paper to generate expert paraphrases. Multi-character words that
share the same semantic class labelling and part-of-speech tagging are considered as paraphrases to each other. As for
both expert resources these paraphrase phrase pairs are not statistically derived, the resulting paraphrase model are
treated as non-informative, and all the arcs in the paraphrase transducer, for example, shown in Fig. 1(b), carry zero
cost. In order to reduce the statistics contribution from very unlikely paraphrase sequences, the bi-gram LM introduced
in Eq. (8) is again used in paraphrase lattice generation. Due to their different nature, statistically learned and expert
derived paraphrase pairs were used to generate separate sets of lattices, and paraphrastic LMs. These models are then
used in the interpolation with standard LMs in Eq. (3). When combined with conventional LMs using Eq. (3), their
interpolation weights are optimized on the perplexity of some held-out data, as discussed in Section 2.

5.  Estimation  of  paraphrastic  LMs
After paraphrase lattices are generated using the WFST based decoding algorithm discussed in Section 4, the n-gram
statistics given in Eqs. (2) and (5) required for paraphrastic LM estimation are accumulated from these word or phrase
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evel paraphrase lattices via a forward-backward pass. These sufficient statistics are then use to estimate back-off word
r phrase level n-gram Katz (1987) probabilities. In order to improve generalization to contexts that cannot be found
n either the training data or the associated paraphrases, appropriate parameter smoothing and discounting methods,
or example, modified KN smoothing Chen and Goodman (1999), are required.

As the standard modified KN smoothing algorithm was originally derived only for integer based n-gram counts,
t cannot be directly used on the fractional paraphrastic LM counts. To address this issue, it is possible to extend
he modified KN smoothing method itself to handle fractional statistics along the line of the work proposed in Tam
nd Schultz (2008).5 In this paper, a simplified approach was used to handle the same issue. Word or phrase level
ractional n-gram counts were quantized into integers before n-gram estimation. First, a minimum float count cut-off
f 0.001 was applied to discard all rare paraphrastic counts below such threshold. All the retained fractional counts
ere then increased by 1 before rounding to the nearest integer. The resulting integer quantized statistics were used in
-gram estimation and modified KN smoothing with the SRILM toolkit Stolcke (2002). Independent of the nature of
he underlying means used to derive the integer based n-gram sufficient statistics, being computed directly from the
urface word sequence as in conventional LMs, or from paraphrase lattices as in this work, this well established n-gram
robability estimation and smoothing procedure guarantees the resulting LM probabilities to be under the positive
nd sum-to-one constraints. In practice this approach was found to outperform alternative smoothing methods such as
itten-Bell smoothing in terms of both perplexity and error rate. The resulting paraphrastic n-gram LMs were then

inearly combined with the conventional LM using the form of interpolation given in Eq. (3).

.  Combining  paraphrastic  LMs  with  neural  network  LMs

In order to handle the data sparsity problem, language modelling techniques based on a continuous vector space
epresentation of word sequences, such as neural network LMs (NNLM), can be used. Depending on the network
rchitecture being used, these can be categorised into feed-forward n-gram based NNLMs Bengio et al. (2003), Kuo
t al. (2012), Le et al. (2013), Park et al. (2010), Schwenk (2007), and recurrent NNLMs Mikolov et al. (2010),
undermeyer et al. (2012). In this paper, the combination between paraphrastic LMs and feed-forward n-gram based
NLMs is considered Liu et al. (2013c).
Both paraphrastic LMs and feed-forward NNLMs can improve LM generalization. However, there are major differ-

nces between them that can also be exploited as complementary characteristics. First, paraphrastic LMs can be trained
sing large amounts of training data. In contrast, to reduce computational cost, feed-forward NNLMs are normally
rained using only a small in-domain data set, for example, audio transcripts, and optionally a re-sampled subset of
ut-of-domain data Schwenk (2007) available in large quantities. Secondly, paraphrastic LMs re-distribute sufficient
tatistics to variable length paraphrase variants of the same sentence. The resulting sequence level smoothing of LM
robabilities is different to the n-gram level smoothing used by NNLMs. Finally, the paraphrastic LMs considered
n this paper are based on n-gram models. Despite being more efficient than NNLMs in probability computation,
heir generalization ability remains limited for unseen contexts that cannot be found in either the training data or the
ssociated paraphrases. Hence, in order to leverage the strengths of both models, the combination between paraphrastic
Ms and NNLMs is investigated in this paper. The particular form of combination considered in this paper is a linear

nterpolation between the paraphrastic LM, the feed-forward NNLM and the conventional n-gram LM. The interpolated
M probabilities given in Eq. (3) are therefore modified as,

P(w̃|h̃) =  λNGPNG(w̃|h̃) +  λPLMPPLM(w̃|h̃) +  λNNPNN(w̃|h̃) (9)

here λNN is the interpolation weight assigned to the neural network LM. In the same fashion as in Eq. (3), component
M interpolation weights can be optimized on held-out data.
For the multi-level paraphrastic LMs discussed in Section 2, the above interpolation needs to be performed at both
he word and phrase level prior to the log-linear combination between the word and phrase level LMs. In addition to

 word level neural network LM, a neural network LM constructed using phrase level segmented training data is also

5 A fractional Kneser–Ney smoothing scheme was investigated in Tam and Schultz (2008) for correlated bi-gram latent semantic analysis (LSA)
odels. In the experimental results presented in that work, a small error rate reduction of 0.1% absolute was reported over interger counts based
itten–Bell smoothing, where the baseline bi-gram LSA model using gave an error rate of 23.8%
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Fig. 4. Architecture of a 4-gram NNLM with an OOS output node.

required. The phrase level segmented data can be obtained using the WFST operations given in Eq. (7) and 1-best
search in the resulting phrase lattices as described earlier in Section 4.

To reduce computational cost, conventional feed-forward NNLMs only model the probabilities of a small and more
frequently occurring subset of the complete vocabulary, commonly referred to as the shortlist  Schwenk (2007). The
output layer normally only contains nodes for in-shortlist words. A similar approach may also be used at the input layer
when a large vocabulary is used. Two issues arise when using this conventional NNLM architecture. First, NNLM
parameters are trained only using the statistics of in-shortlist words thus introduces an undue bias to them. Secondly, as
there is no explicit modelling of probabilities of out-of-shortlist  (OOS) words in the output layer, statistics associated
with them are also discarded in NNLM training. To handle these issues, alternative network architectures that model a
full vocabulary at the output layer can be used Park et al. (2010), Le et al. (2013). In this paper, an NNLM architecture
with an additional output node explicitly modelling the probability mass of OOS words Park et al. (2010) is used. This
ensures that all training data are used in NNLM training, and the probabilities of in-shortlist words are smoothed by the
OOS probability mass, thus obtaining a more robust parameter estimation. The architecture of a 4-gram feed-forward
NNLM of this form is illustrated in Fig. 4.

7.  Experiments  and  results

In this section, the performance of various paraphrastic language models are evaluated using two HTK-based large
vocabulary speech recognition tasks. The first was developed for English conversational telephone speech (CTS) used
in the 2004 DARPA EARS evaluation, while the second system for Mandarin Chinese broadcast speech was used in
the 2011 DARPA GALE evaluation. A series of experiments were conducted on these two tasks. These were designed
to investigate the following topics:

• the performance of the paraphrastic LM presented in Section 2 when being used to improve word level n-gram LMs;
• the performance of the multi-level paraphrastic LM proposed in Section 2 to incorporate additional phrase level

linguistic constraints;

• the scalability of paraphrastic LM training using large or small amounts of data;
• the generalization of paraphrastic LMs to different languages and tasks;
• the combination between paraphrastic LMs and neural network LMs Schwenk (2007).
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Table 1
Text size, paraphrase extraction method and the number of phrase pairs extracted from different data sources.

Source Size Extraction # phrase pairs

WordNet – Expert 480 k
Fisher 20 M Automatic 90 k
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WWeb 525 M Automatic 2.9 M

For all results presented in this paper, a matched pairs sentence-segment word error (MAPSSWE) based statistical
ignificance test was performed at a significance level α  = 0.05. All n-gram LMs considered in the experiments were
uilt using modified KN smoothing Chen and Goodman (1999).

.1.  Experiments  on  English  conversational  telephone  speech

The 2004 CU English CTS LVCSR system Evermann et al. (2005) was trained on approximately 2000 h of Fisher
onversational speech released by the LDC. A 59 k recognition word list was used in decoding. The system uses a
ulti-pass recognition framework. The initial lattice generation used gender dependent cross-word triphone acoustic
odels. These acoustic models include conversation side level normalization of PLP Woodland et al. (1996) features;
LDA Kumar (1997), Liu et al. (2003) projection; HMM parameter estimation using MPE Povey and Woodland

2002); and unsupervised MLLR Leggetter and Woodland (1995) speaker adaptation. An interpolated 3-gram word
evel baseline LM was used. The resulting lattices are then used in rescoring experiments to evaluate performance of
arious LMs. A detailed description of the baseline system can be found in Evermann et al. (2005). The 3 h dev04  data,
hich includes 72 Fisher conversation sides, was used as a test set.
The baseline LM was trained using a total of 1.0 billion words from 8 difference text sources. The two text sources

ith the highest interpolation weights, the LDC Fisher acoustic transcriptions Cieri et al. (2004), Fisher, of 20 million
ords (0.6), and the University Washington conversational web data Bulyko et al. (2003), UWWeb  of 525 million
ords (0.2), were used to build various language models. These LMs are then used for lattice rescoring and word error

ate (WER) performance evaluation. Information on the corpus size, the paraphrase extraction schemes used and the
umber of phrase pairs extracted from the these two text sources, as well as the phrase pairs extracted from WordNet,
re given in Table 1. Using the automatic n-gram paraphrase extraction scheme presented in Section 3, a total of 90 k
nd 2.9 M phrase pairs were extracted from the Fisher  and UWWeb  data respectively. The expert semantic labelling by
ordNet, including synonyms, hypernyms, hyponyms and pertainyms, was used to generate 480 k paraphrase phrase

airs.

.1.1. Experiments  on  CTS  Fisher  data
The WER performance of various LMs trained using the Fisher  data only are shown in Table 2 for dev04. The first

hree baseline LMs are non-paraphrastic. The word level 4-gram baseline LM “w4g” gave a WER of 17.6%. When
urther interpolated with a class based LM of 1000 automatically derived word clustersKneser and Ney (1993), the

w4g+clslm” model reduces the error rate by 0.2% absolute. The third baseline LM in Table 2 is a multi-level LM,
w4g ◦  p4g”, which incorporates phrase level linguistic constraints by the log-linear combination of the word, and
hrase level back-off 4-gram LMs (taking the most recent context of three phrases to predict the current phrase). It was

able 2
ER performance of LMs trained using the Fisher data only for dev04. “w4g” denotes word level 4-gram LM, “w4g+clslm” a word level 4-g LM

nterpolated with a class LM with 1000 classes, and “w4g ◦ p4g” a multi-level LM log-linearly combining word and phrase level 4-gram LMs.

M Paraphrastic dev04

4g
×

17.6
4g+clslm 17.4
4g ◦ p4g 17.5
4g √ 17.2
4g ◦ p4g 17.0



1310 X. Liu et al. / Computer Speech and Language 28 (2014) 1298–1316

Table 3
Perplexity of LMs trained using the Fisher data only for dev04. Naming convention same as Table 2.

LM Paraphrastic dev04

w4g × 56.0
w4g+clslm 54.0
w4g

√
54.9

Table 4
WER performance of LMs trained using the Fisher data only with different paraphrase learning methods for dev04. “w4g” denotes word level 4-g
LM.

LM Paraphrastic Extraction dev04

w4g
√ Automatic+Expert 17.2
Automatic 17.3

constructed by adding a total of 16 k distinct multi-word phrases found in the Fisher  data generated paraphrase phrase
table to the baseline 59 k word list, and trained on the phrase level text data obtained using a longest available word to
phrase segmentation. This is similar to the method used in Padmanabhan et al. (1998). As discussed in Section 2, word
level lattices need to be first converted to phrase level lattices when using the multi-level LM. This was implemented
using a WFST composition between the word level lattice with the phrase level segmentation transducer shown in
Fig. 1(a). After the log-linear combination between word and phrase level LMs is performed, the resulting phrase level
lattices are converted back to word level again via a WFST composition with the phrase to word transducer, to obtain
the 1-best word level hypothesis for WER evaluation. By adding additional phrase level features, this multi-level LM
gives a small improvement of 0.1% absolute over the word level 4-gram baseline LM.

In contrast, the comparable word level paraphrastic 4-gram LM, shown in the 4th line of Table 2, using the paraphrase
phrase pairs extracted from the Fisher  training data itself and WordNet, as given in Table 1, outperformed the word
level baseline 4-gram LM, and the class LM baseline, by 0.4% and 0.2% absolute respectively. As discussed in
Section 2, paraphrastic LMs re-distribute sufficient statistics to alternative variants of the same surface word sequence.
As expected, an improvement in n-gram coverage was also found using the word level paraphrastic 4-gram LM. For
example, the 3-gram hit rate on the test data reference transcription was increased by 12.4% relative over the baseline
word level 4-gram LM. At the same time the total number of n-grams was increased by more than a factor of four
from 17.5 M in baseline word level 4-gram LM to 81 M after interpolation with the comparable word level paraphrastic
4-gram LM. Applying entropy based pruning to the resulting interpolated LM and reducing its number n-grams to
approximately the same as the baseline non-paraphrastic 4-gram LM, a competitive WER of 17.3% was obtained.
This suggests paraphrastic LMs can also be used to improve LM performance for tasks with constrained computing
resources.

It is interesting that the rank order in terms of perplexity is slightly different to that for WER between the class
LM and paraphrastic 4-gram LM (see the 2nd and 3rd lines of Table 3). This may be due to two reasons. First, a
stronger constraint is used by paraphrastic LMs during parameter estimation. As discussed in Section 2, paraphrastic
LMs re-distribute statistics only to the paraphrase variants of the original sentence, and optionally non-paraphrastic
sequences that share a similar syntactic or semantic structure. Hence, the resulting LM is focused on modelling what
is considered to be acceptable by the paraphrase model for the particular language being considered. In contrast, such
a constraint is not explicitly exploited by class LMs. Many sentences, including very unlikely ones, can share the same
underlying class sequence representation. Such an increase in modelling confusion can lead to a loss in discrimination
and increase in error rate. Furthermore, the correlation between perplexity and error rate is known to be fairly weak
for current speech recognition systems.

It was also found that adding the paraphrases extracted from WordNet gave only a marginal improvement over
using only those automatically learned from the Fisher  data. For example, a comparable paraphrastic word level LM

derived using only the 90 k phrase pairs obtained from Fisher  data gave a very similar WER performance of 17.3%,
as is shown in the last line of Table 4, where the standard paraphrastic LM constructed using both automatically and
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Table 5
WER performance of LMs trained using the Fisher data and its three subsets for dev04. Naming convention same as Table 2.

LM Paraphrastic dev04

1 M 5 M 10 M 20 M

w4g × 20.3 18.7 18.0 17.6
w4g ◦ p4g

√
19.8 18.2 17.6 17.0

Table 6
WER performance of LMs trained using Fisher and UWWeb data on dev04. Naming convention same as Table 2.

LM Paraphrastic dev04

w4g
×

16.7
w4g+clslm 16.5
w4g ◦ p4g 16.5
w4g √ 16.4
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4g ◦ p4g 16.2

xpert derived paraphrases, previously shown in the 4th line of Table 2, is again shown in the 1st line of Table 4 for a
ontrast.

The marginal difference in error rate between the two paraphrastic LMs is expected as the Fisher  corpus provides
he in-domain data for the CTS task, while the expert paraphrases of WordNet are more task independent. It is also
ound that a word level paraphrastic 4-gram LM derived using a restricted paraphrase model that only allow word to
ord paraphrases, gave an error rate comparable to the class LM baseline (previously shown in the 2nd line of Table 2).
When using the paraphrastic multi-level LM, shown in the last line of Table 2, a significant WER reduction of

.5% was obtained over the baseline non-paraphrastic multi-level LM shown in the 3rd line of Table 2. The overall
mprovement over the word level 4-gram baseline LM is 0.6% absolute, which is also statistically significant.

.1.2. Experiments  on  smaller  and  larger  amounts  of  training  data
Consistent performance improvements using paraphrastic multi-level LMs were also obtained over the baseline

-gram LM when both were trained on reduced amounts of training data, where randomly selected Fisher  data subsets
f 10 M, 5 M and eventually 1 M words, were used in the experiments. For each training data subset, both the paraphrase
odels and the resulting paraphrastic LM were re-estimated on the corresponding reduced amount of data.6 These are

hown in Table 5, where the WER performance on the 20 M word full Fisher  set (also previously shown in the 1st and
th lines of Table 2), are again shown in the last column. These results confirm the good scalability of paraphrastic
Ms when trained using small amounts of data.

The same trend can also be found in a set of experiments conducted on a larger LM training set where the 525 M
ord UWWeb  data is also used in LM training as a second source via a linear interpolation with the Fisher  data

rained LM, as are shown in Table 6. As expected, adding this data source significantly improved the performance of
hree non-paraphrastic baseline LMs by 0.9–1.0% absolute, compared with the results shown in the first three lines of
able 2. The word level paraphrastic 4-gram LM, as is shown in the 4th line of Table 6, using the paraphrase phrase
airs extracted from all three data sources given in Table 1, outperformed the word level baseline LM by 0.3% absolute.
onsistent with the results presented in Table 4, the same performance was obtained if only using statistically learnt
araphrases in PLM training. In a similar manner to the experiments previously conducted using the Fisher  data only
n Table 2, the 3-gram hit rate on the test data reference transcription was also increased by 11.3% relative over the

aseline word level 4-gram LM. When using the paraphrastic multi-level LM, as is shown in the last line of Table 6,
n overall significant WER reduction of 0.5% absolute was obtained over the word level 4-gram baseline LM. It also

6 In order to obtain a good balance between the richness of automatically derived paraphrases and the robustness of paraphrase model estimation,
or the two smaller subsets of 1 M and 5 M words, a decreased left and right context length LN = 2 and a maximum phrase length Lmax = 2 were used
uring paraphrase extraction.
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Table 7
Text size, paraphrase extraction method and the number of phrase pairs extracted from different Chinese text data sources.

Source Size Extraction # phrase pairs

HowNet – Expert 3.7 M
BN+BC 20 M Automatic 80 k

GigaXin 680 M Automatic 35.9 M
GALEWeb 800 M Automatic 1.8 M

outperformed a word level 4-gram baseline LM trained using twice the amount of data, 1.0 billion words, with 6 more
text sources in addition to Fisher  and UWWeb, by 0.2%.

The results in both Tables 2, 5 and 6confirm the first three advantages of paraphrastic LMs, as discussed in the
beginning of Section 7. First, paraphrastic LMs are effective in improving the generalization performance of word level
n-gram LMs. Second, multi-level paraphrastic LMs can exploit additional useful linguistic constraints at phrase level.
Finally, it is possible to induce paraphrase phrase pairs and train paraphrastic LMs on small or large amounts of data.

7.2.  Experiments  on  mandarin  Chinese  broadcast  speech

The 2011 CU Mandarin Chinese LVCSR system Liu et al. (2012a) was then used to examine the generalization
ability of the paraphrastic LM to different languages and tasks. The system was trained on 1960 h of Mandarin Chinese
broadcast speech data released by the LDC for the DARPA GALE program.7 A 63 k recognition word list was used in
decoding. The system uses the same multi-pass recognition framework as described in Section 7.1. In the initial lattice
generation stage, MLLR Leggetter and Woodland (1995) speaker adapted gender dependent cross-word triphone MPE
Povey and Woodland (2002) acoustic models with HLDA Kumar (1997), Liu et al. (2003) projected PLP Woodland
et al. (1996) features augmented with pitch features, and an interpolated 3-gram word level baseline LM were used. A
detailed description of the baseline system can be found in Liu et al. (2012a). A 3 h test set of Chinese speech used in
the GALE program, dev09s, of mixed broadcast news (BN) and conversation (BC) genres was used.

The baseline LM was trained using a total of 5.9 billion characters from 28 difference text sources. These account
for 4 billion words after a longest first based character to word segmentation as applied. The four text sources with the
highest interpolation weights, the acoustic transcriptions, BN  (0.13) and BC  (0.31), of 20 million words in total, the
LDC GigaWord Xinhua News data, GigaXin  (0.16), of 680 million words, and the GALE web data GALEWeb  of 800
million words (0.09), were used to build various language models. These LMs are then used for lattice rescoring and
character error rate (CER) evaluation. The 4 billion word full set trained 4-gram LM gave an error rate of 10.3% on
dev09s, while a comparable 4-gram LM trained using only the above four text sources produced a competitive CER
score of 10.4% and was used as a baseline in the following experiments, as is shown in the 1st line of Table 8. Using
this baseline system the BN and BC genre specific performance on dev09s  are 5.4% and 15.2% respectively.

Information on the corpus size, the paraphrase extraction schemes used and the number of phrase pairs extracted
from the these four text sources, as well as those from HowNet Dong and Dong (2006), an expert semantic database
for the Chinese language, are given in Table 7. Using the automatic n-gram paraphrase extraction scheme presented
in Section 3, a total of 80 k, 35.9 M and 1.8 M phrase pairs were extracted from the BN+BC, GigaXin  and GALEWeb
data respectively. The expert semantic labelling by HowNet was used to generate 3.7 M paraphrase phrase pairs.

The word level paraphrastic 4-gram LM, as is shown in the 4th line of Table 8, outperformed the word level baseline
LM “w4g” (shown in the 1st line of Table 8) by 0.3% absolute. This is consistent with the trends previously shown
in Tables 2 and 6. The two multi-level LMs in Table 8 both used a total of 503 k distinct multi-word phrases found
in the BN, BC  and GigaXin  data generated paraphrase phrase table that were added to the baseline 63 k word list.

The baseline non-paraphrastic multi-level LM, shown in 3rd line of Table 8, was trained on the phrase level text data
obtained using a longest available word to phrase segmentation, in the same fashion as described in Section 7.1 for the
English CTS system. The paraphrastic multi-level LM, shown in the last line of Table 8, outperformed its comparable

7 The purpose of the GALE program is to make Arabic and Chinese broadcasts, newswire, and web logs accessible to monolingual English
speakers. Hence, the GALE program has sponsored annual competitive evaluations of machine translation systems in which speech recognition is a
necessary front-end for broadcast material. Details of much of the research performed under the GALE program can be found in Olive et al. (2011).
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Table 8
WER performance of LMs trained using BN, BC, GigaXin and GALEWeb data on dev09s. Naming convention same as Table 2.

LM Paraphrastic dev09s

w4g
×

10.4
w4g+clslm 10.3
w4g ◦ p4g 10.1
w4g √ 10.1
w4g ◦ p4g 9.9

Table 9
WER performance of LMs trained using BN, BC, GigaXin and GALEWeb data on dev09s. “w4g” denotes word level 4-gram LM, “w4g+nnw” a
word level 4-gram LM interpolated with a word level 4-gram feed-forward NNLM, and “(w4g+nnw) ◦ (p4g  + nnp)” a multi-level LM log-linearly
combining word and phrase level LMs, after a linear interpolation of 4-gram LMs with corresponding NNLMs at both word and phrase level before
a log-linear combination.

LM Paraphrastic

n-gram LM dev09s

w4g
×

10.4
w4g+nnw 10.0
(w4g+nnw) ◦ (p4g + nnp) 9.8
w4g √ 10.1
w4g+nnw 9.7
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w4g+nnw) ◦ (p4g + nnp) 9.5

on-paraphrastic baseline, shown in the 3rd line of Table 8, by 0.2% absolute. Using this paraphrastic multi-level LM,
n overall significant CER reduction of 0.5% absolute was obtained over the word level 4-gram baseline LM. It also
ignificantly outperformed the word level 4-gram baseline LM, which was trained using four times the amount of data
4 billion words) with 24 more text sources, by 0.4% absolute. These results, together with those previously shown in
able 6 for English conversational telephone speech, confirm that paraphrastic LMs improve performance for different

anguage and domains, and once again demonstrate their scalability when large amounts of training data is used.

.3.  Experiments  on  combining  paraphrastic  LMs  with  neural  network  LMs

So far in this paper, paraphrastic LMs have been used to successfully improve the performance of standard n-gram
Ms. As discussed in Section 6, it is also interesting to investigate the combination between paraphrastic LMs and
tate-of-the-art language modelling techniques, such as neural network LMs Schwenk (2007). A set of experiments
ere first conducted on the Mandarin Chinese broadcast task described previously in Section 7.2. A total of four LMs

hown in Table 8, including the baseline 4-gram word level LM, its paraphrastic counterpart, and the two multi-level
Ms, were combined with various feed-forward NNLMs using the method presented in Section 6. A word level 4-gram

eed-forward NNLM with an OOS output layer node Park et al. (2010) was trained using the 20 million words of the
N+BC acoustic transcriptions only. The size of the NNLM input and output vocabularies are 45 k and 20 k words

espectively. A phrase level 4-gram NNLM was also trained using the same data, and the same phrase segmentation
sed by the multi-level LMs of Table 8. Its input and output vocabularies contain 100 k and 20 k most frequent phrases.
or both the word and phrase level NNLMs, a total of 600 projection layer nodes (200 nodes per input word) and 400
idden layer nodes were used. The performance of the baseline and the paraphrastic 4-gram word level LMs without
ny interpolation with NNLMs, are shown in the 1st and 4th lines of Table 9 (also previously shown in the 1st and 4th
ines of Table 8).

The results in Table 9 show that the improvements from paraphrastic LMs and neural network LMs are largely

dditive. For example, the word level paraphrastic 4-gram LM outperformed the baseline 4-gram LM “w4g” by 0.3%
bsolute. The same improvement was retained when both LMs were further combined with the word level neural
etwork LM, “w4g+nnw”, as are shown in the 2nd and the 5th line of Table 9 respectively.
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Table 10
WER performance of LMs trained using Fisher and UWWeb data on dev04. “w4g” denotes a word level 4-gram LM, “w4g+nnw” a word level
4-gram LM interpolated with a word level feed-forward NNLM.

LM Paraphrastic

n-gram LM dev04

w4g × 16.7
w4g+nnw 16.3
w4g √ 16.4

w4g+nnw 16.1

Similarly on the English conversational telephone speech task presented in Section 7.1, combining the baseline word
level 4-gram LM (the 1st line in Table 6 and again, the 1st line in Table 10), and the word level 4-gram paraphrastic
LM (the 4th line in Table 6 and again, the 3rd line in Table 10), with a word level 4-gram feed-forward NNLM of a
similar architecture (single OOS output node, 38 k input and 20 k output vocabularies, 600 projection layer nodes and
400 hidden layer nodes) trained using the Fisher  transcription only, comparable WER reductions of 0.4% and 0.3%
absolute were obtained, as are shown in the 2nd and 4th lines of Table 10. These results confirm the complementarity
between paraphrastic LMs and neural network LMs as discussed in Section 6.

Over the three baseline non-paraphrastic LMs with increasing modelling complexity (first three lines of Table 9)
on the GALE Mandarin task, a consistent CER reduction of 0.3% absolute was obtained when using the comparable
paraphrastic LMs (last three lines of the Table 9). Also in line with the results shown in Tables 2, 6 and 8, further
improvements were obtained using multi-level LMs. The best performance was obtained using the paraphrastic multi-
level LM shown in the bottom line of Table 9, which used a three-way interpolation between the baseline LM,
paraphrastic LM and neural network LM at both the word and phrase level before a log-linear combination was
performed.8 Using this LM, total error rate reductions of 0.9% absolute (9% relative) and 0.5% absolute (5% relative)
were obtained over the baseline 4-gram word level LM “w4g” and the neural network LM “w4g+nnw” respectively,
both being statistically significant. The genre specific CER reductions over the baseline 4-gram word level LM “w4g”
are 0.5% absolute (9% relative) for BN and 1.2% absolute (8% relative) for BC.

8.  Conclusion

This paper investigated using paraphrastic language models for speech recognition. Phrase level paraphrase models
statistically learned from standard text with no semantic annotation were used to generate multiple paraphrase variants.
Language model probabilities are then estimated in the paraphrase domain. Phrase level linguistic constraints were
further incorporated using a multi-level LM framework. The combination between paraphrastic LMs and neural network
LMs was also investigated. Significant error rate reductions of 0.5–0.6% absolute were obtained on two state-of-the-art
large vocabulary speech recognition tasks. Experimental results suggest:

• paraphrastic LMs can be used to improve performance of n-gram LMs;
• multi-level paraphrastic LM can give further performance improvements by incorporating additional phrase level

linguistic constraints;
• it is possible to estimate paraphrastic LMs using large or small amounts of data;
• paraphrastic LMs can be applied to multiple languages and tasks;
• performance improvements from paraphrastic LMs can be retained when combined with neural network LMs.
Future research will focus on improving paraphrase extraction and directed paraphrasing for task and style adaptation.

8 A slight performance degradation of 0.1% was found using “(w4g+nnw) ◦ p4g”, a multi-level LM that used a linear interpolation between 4-gram
LMs and an NNLM at the word level only.
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