

1 INTRODUCTION

• Key research areas for speech translation are:

– Speech Recognition (ASR) / audio Transcription.

– Statistical Machine Translation (SMT).

– Integration between ASR and SMT.

• System development involves:

– Developing statistical models for speech and language tasks.

– Parameter estimation from large data sets.

– Finding the best hypothesis / speech segment etc.

• Both ASR and SMT can be formulated using a Source-Channel model: Transcription Translation

Input - an utterance A Output - a transcription \widehat{W}

 $\widehat{W} = \operatorname{argmax}_{W} P(W|A)$

$$= \operatorname{argmax}_{W} \frac{P(A|W) P(W)}{P(A)}$$

 $= \operatorname{argmax}_{W} P(A|WP(W))$

Input - a foreign sentence *F* Output - an English sentence \widehat{E}

 $\widehat{E} = \operatorname{argmax}_{E} P(E|F)$

$$= \operatorname{argmax}_E \frac{P(F|E) P(E)}{P(F)}$$

$$= \operatorname{argmax}_{E} \underbrace{P(F|E)P(E)}_{E}$$

Model Language Model Both use Maximum A Posteriori search using models learned from data.

SPEECH TRANSCRIPTION

• Statistical models typically trained using: – more than 1500 hours of speech

Broadcast Speech Transcription and Translation

A. de Gispert, X. A. Liu, W. J. Byrne, M. J. F. Gales & P. C. Woodland Cambridge University Engineering Department

{ad465,xl207,wjb31,mjfg,pcw}@eng.cam.ac.uk

- more than 2500 millions of words of text
- continuous density HMMs using cepstral features
- *N*-gram language models
- maximum likelihood and discriminative training
- parameter tying and smoothing
- normalization and adaptation techniques
- combining outputs from complimentary systems
- Broadcast speech transcription system:
- Find speech and cluster into homogeneous regions
- -Search for best possible word strings for each segment using acoustic and language models
- Multiple recognition passes: lattices constrain search space in later stages
- –Unsupervised adaptation "tunes" models to speech
- -Can run system faster if "prune" search more

3 ASR AND SMT INTEGRATION

• Sentence boundary detection:

– SMT systems require well-defined sentential structures.

– Post-processing ASR system outputs to locate sentence boundaries.

Original STT outputs: 各位 好 欢迎 您 收看 中文 国际 频道 的 今日 关注 今 天 呢 我们 要 讨论 的 是 伊朗 核 问题.

Post-processed STT outputs:

Sentence 1: 各位 好 欢迎 您 收看 中文 国际 频道 的 今日 关注. Sentence 2: 今天 呢 我们 要 讨论 的 是 伊朗 核 问题.

Translating multiple recognition outputs:

- feeding ASR modelling information into translation.
- flexible decoding framework for translation.
- translate 1-best ASR (low integration)

 $0 \underbrace{1}_{0} \underbrace{1}_{1} \underbrace{1666}_{2} \underbrace{2}_{320} \underbrace{3}_{2300} \underbrace{4}_{12709} \underbrace{5}_{8} \underbrace{6}_{4053} \underbrace{7}_{19944} \underbrace{8}_{8} \underbrace{50716}_{9} \underbrace{9}_{1315} \underbrace{10}_{2} \underbrace{11}_{11}$

– translate ASR lattice (high integration)

 $1666 \underbrace{2}{320} \underbrace{4}{2300} \underbrace{5}{12709} \underbrace{6}{8} \underbrace{8}{6} \underbrace{12709}{6} \underbrace{8}{6} \underbrace{12709}{6} \underbrace{$

GENERATIVE MODEL OF SPEECH TRANSLATION

• Noisy channel model for speech translation

– Translation from target to source: search for most probable source sentence to have generated the target sentence

Target Speech	Targ Senter	et : nce	Target Phrase	$e \qquad S \\ P$	'ource Phrase		Source Sentence
\mathbf{A}	$\longleftarrow \ t_1^J$	←—	$\mathbf{v_1^R}$	←—	$\mathbf{u}_1^{\mathrm{K}}$	←—	$\mathbf{s_1^I}$
Models	$\mathbf{P}(\mathbf{A} \mathbf{t_1^J})$	$\mathbf{P}(t_1^J v_1^R$)	$\mathbf{P}(\mathbf{v_1^R} \mathbf{u_1^K})$)	$P(\mathbf{u_1^K} \mathbf{s_1^I})$	$\mathbf{P}(\mathbf{s_1^I})$
FSMs	${\cal L}$	Ω		${f \Phi}$		\mathbf{W}	G
	ASR Word Lattice	Target Phrase Segmentat Transduc	T tion I ter T	Phrase ranslatic Reorderin ransduce	on, ng Se er T	Source Phrase egmentation Transducer	Source Language Model

– The final translation is given by

$$\widehat{\mathbf{s}_1^I} = \underset{\mathbf{s}_1^I}{\text{argmax}} \{ \underset{t_1^J, \mathbf{v}_1^R, \mathbf{x}_1^K, \mathbf{u}_1^K, \mathbf{K}}{\text{max}} \mathbf{P}(\mathbf{A}, \mathbf{t}_1^J, \mathbf{v}_1^R, \mathbf{u}_1^K, \mathbf{s}_1^I) \, \} \, .$$

- Implementation with Weighted Finite State Transducers
- Translation is performed using libraries of standard FST operations
- Architectures may be limited, but easy to work on components
- No special-purpose decoder required
- Standard best-path search through the translation FST \mathcal{T}

$$\mathcal{T} = \mathbf{G} \circ \mathbf{W} \circ \mathbf{\Phi} \circ \mathbf{Q}$$

-Efficient implementation with OpenFST (www.openfst.org)

TRANSLATION SYSTEM TRAINING

- Sentence-aligned parallel corpora
- -Arabic \leftrightarrow English \sim 150M words (6M sent.)
- -Chinese \leftrightarrow English \sim 240M words (10M sent.)
- English monolingual data
- Used for first-pass and rescoring LM

-Currently \sim 5 billion words

• Standard training stages:

- Minimum Error Training
- Find optimal models weights
- -Optimize evaluation metric (BLEU) on development set
- Lattice Rescoring and MBR
- -Rescoring LM: zero cut-off 5gram
- Phrase segmentation 2-gram
- Model 1 lattice-to-string alignment
- -Minimum Bayes Risk decoding of final N-best lists

6 RESULTS

- Text and speech translation performance
- -BLEU: Automatic metric that measures similarity between hypothesis and a set of human-translated references
- Dev/Test size: \sim 60k words
- Scores: 4 references for text, 1 reference for audio

Task	Condition	DEV SET	TEST SET
Arabic→English	clean text	54.02	53.70
Chinese→English	clean text	31.07	32.24
Chinese→English	audio reference	18.60	18.10
	ASR 1best	_	16.59

• ASR lattice translation yields slight gains (without ROVER)

• Arabic-English examples

wrfD Hmzp k\$f Asm Al\$rkp Al <sra}ylyp <*a="" kan="" ma="" qd="" rfd="" tlbha="" wthdyd="">w qbl.</sra}ylyp>						
<u>R</u> ef: Hamza refused to disclose the name of the						
Israeli company and to reveal whether its						
its application was accepted or refused.						
wH*r AlwzrA' AlmjtmEwn bTlb mn flsTyn mn AstmrAr Al>n\$Tp Alnwwyp Al <sra}ylyp< td=""></sra}ylyp<>						
<u>R</u> ef: The meeting ministers warned, following a						
request by Palestine, against the continuation						
of the Israeli nuclear activities outside						

- Main challenges
- Reordering. Allowing any phrase movement is not feasible, and constraints produce wrong word order
- Fluency. Translation often omits connectors
- -Need for more structure (ie. syntax)?