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CONTINUOUS-TIME MEAN–VARIANCE EFFICIENCY:
THE 80% RULE

By Xun Li∗ and Xun Yu Zhou†

National University of Singapore and The Chinese University of Hong
Kong

This paper studies a continuous-time market where an agent,
having specified an investment horizon and a targeted terminal mean
return, seeks to minimize the variance of the return. The optimal
portfolio of such a problem is called mean–variance efficient à la
Markowitz. It is shown that, when the market coefficients are deter-
ministic functions of time, a mean–variance efficient portfolio realizes
the (discounted) targeted return on or before the terminal date with
a probability greater than 0.8072. This number is universal irrespec-
tive of the market parameters, the targeted return, and the length of
the investment horizon.

1. Introduction. In his seminal work Markowitz (1952), Markowitz
proposed the mean–variance portfolio selection model for a single invest-
ment period, where an agent seeks to maximize the risk of his investment,
measured by the variance of his return, subject to a given mean return1. The
dynamic extension of the Markowitz model, especially in continuous time,
has been studied extensively in recent years; see, e.g., Li and Ng (2000), Zhou
and Li (2000), Lim and Zhou (2002), Lim (2004), Bielecki et al (2005), and
Xia (2005). (In particular, refer to Steinbach [2001] and Bielecki et al [2005]
for elaborative discussions on the history of the mean–variance model.) In
many of these works, explicit, analytic forms of efficient portfolios have been
obtained.

In spite of being awarded a Nobel prize in 1990, the mean–variance model
has received criticisms since its inception, the main criticism being on using
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†The author was supported by RGC Earmarked Grant CUHK418605.
AMS 2000 subject classifications: Primary 90A09; secondary 93E20.
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1In Markowitz’s original setup, the model is formulated as a multi-objective optimiza-

tion problem, namely, to maximize the mean return and minimize the variance of the
return. There are multiple solutions to this problem, leading to the so-called efficient
frontier. Mathematically, each solution can be recovered by solving a single-objective op-
timization problem where the variance is to be minimized while the return is constrained
at a given level.
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2 X. LI AND X.Y. ZHOU

variance as a risk measure. This, in turn, has subsequently led to many al-
ternative models such as semi-variance or shortfall, downside risk and lower
partial moment. Another criticism is that the mean–variance model uses
mathematical expectation, in contrast with models such as VaR incorpo-
rating probability. The argument is that a model with expectation, by its
very definition, appears to work well only on average over a large number
of different sample paths, which has little relevance with a real-world in-
vestor who would experience only one sample path realization over a fixed
investment horizon.

This represents a typical dilemma in Mathematical Finance (or in any ap-
plied mathematics area for that matter): on one hand one needs to establish
models that are analytically or numerically tractable, and on the other hand
the models must be relevant to the real world. Fortunately, more often than
not, model tractability and relevance co-exist nicely. For continuous-time
portfolio selection, the mean–variance model is so mathematically simple
and elegant that it generally admits closed-form solutions. On the other
hand, we will show analytically in this paper that, although the model is be-
ing optimized in the average (expectation) sense, if one follows an efficient
portfolio generated by the mean–variance model then there is more than
80% chance that he will reach his goal (the targeted return) on or before
the prescribed terminal date. Moreover, this “goal-achieving” probability,
0.8072 to be more precise, is independent of the market parameters, the
target, or the length of the investment horizon. This astonishing 80% rule
would provide reference and guidance in investment practice: one could sim-
ply follow a mean–variance efficient strategy, stop (i.e., withdraw from the
stock market) as soon as his wealth hits the discounted value of the target
(the chance of this happening is more than 80%); otherwise just follow the
original strategy till the terminal time. This implied policy would meet the
original target with a probability more than 80%.

The 80% rule will be derived in this paper based on the known, explicit
form of an efficient strategy, the probability distribution of the hitting time
of an Itô process on a certain level, as well as some delicate optimization
techniques.

It should be noted that the main technical assumption of the 80% rule is
that the market coefficients (a.k.a. the investment opportunity set) are deter-
ministic functions of time. It remains an interesting open question whether
the result carries over to the case of stochastic coefficients and, if the answer
is no, what the corresponding probability is.

The remainder of the paper is organized as follows. In Section 2, the
continuous–time mean–variance model is formulated and its solution pre-
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sented. Section 3 is devoted to proving the main result of the paper – the
80% rule. Some discussions and suggestions of possible open problems are
given in Section 4.

2. Mean-variance model and solution. Throughout this paper (Ω,
F , P, {Ft}t≥0) is a fixed filtered complete probability space on which defined
a standard Ft-adapted m-dimensional Brownian motion {W (t), t ≥ 0} with
W (t) ≡ (W 1(t), · · · ,Wm(t))′ and W (0) = 0, and T > 0 is given and fixed
representing the terminal time of an investment. In addition, we use M ′ to
denote the transpose of any vector or matrix M , and L2

F (0, T ;<d) to denote
the set of all <d-valued, Ft-progressively measurable stochastic processes
f(t) with E

∫ T
0 |f(t)|2dt < +∞.

There is a capital market in which m + 1 basic securities (or assets) are
traded continuously. One of the securities is a risk-free bank account whose
value process S0(t) is subject to the following ordinary differential equation:

(2.1)

{
dS0(t) = r(t)S0(t)dt, t ≥ 0,

S0(0) = s0 > 0,

where r(t) > 0 is the interest rate. The other m assets are risky stocks whose
price processes S1(t), · · · , Sm(t) satisfy the following stochastic differential
equation (SDE):

(2.2)

{
dSi(t) = Si(t)

[
µi(t)dt +

∑m
j=1 σij(t)dW j(t)

]
, t ≥ 0,

Si(0) = si > 0, i = 1, 2, · · · ,m,

where µi(t) is the appreciation rate, and σij(t) is the volatility or dispersion
rate of the stocks. We assume that all the given market parameters r(t), µi(t)
and σij(t) are deterministic functions in t ≥ 0.

Consider an agent, with an initial endowment x0 > 0 and an investment
horizon [0, T ], whose total wealth at time t ∈ [0, T ] is denoted by x(t). As-
sume that the trading of shares is self-financed and takes place continuously,
and that transaction cost and consumptions are not considered. Then x(·)
satisfies (see, e.g., Karatzas and Shreve [1999])

(2.3)





dx(t) =
{
r(t)x(t) +

∑m
i=1

[
µi(t)− r(t)

]
πi(t)

}
dt

+
∑m

j=1

∑m
i=1 σij(t)πi(t)dW j(t), 0 ≤ t ≤ T,

x(0) = x0,

where πi(t), i = 1, 2 · · · ,m, denotes the total market value of the agent’s
wealth in the i-th stock. We call the process π(t) := (π1(t), · · · , πm(t))′,
0 ≤ t ≤ T , a portfolio of the agent.
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4 X. LI AND X.Y. ZHOU

Definition 2.1. A portfolio π(·) is said to be admissible if π(·) ∈
L2
F (0, T ;<m) and the SDE (2.3) has a unique solution x(·) corresponding to

π(·).

The agent’s objective is to find an admissible portfolio π(·), among all
admissible portfolios such that their expected terminal wealth Ex(T ) = z,

where z ≥ x0e
∫ T

0
r(t)dt is given a priori, so that the risk measured by the

variance of the terminal wealth

(2.4) Var x(T ) := E[x(T )−Ex(T )]2 ≡ E[x(T )− z]2

is minimized. The problem of finding such a portfolio π(·) is referred to as
the mean–variance portfolio selection problem. Mathematically, we have the
following formulation.

Definition 2.2. The mean–variance portfolio selection problem, with
respect to the initial wealth x0, is formulated as a constrained stochastic

optimization problem parameterized by z ≥ x0e
∫ T

0
r(t)dt:

(2.5)





minimize JMV(x0; π(·)) := E[x(T )− z]2,

subject to

{
x(0) = x0, Ex(T ) = z,

(x(·), π(·)) admissible.

The problem is called feasible (with respect to z) if there is at least one
admissible portfolio satisfying Ex(T ) = z. An optimal portfolio, if it ever
exists, is called an efficient portfolio with respect to z.

Remark 2.1. In the formulation above the parameter z is restricted to

be no less than x0e
∫ T

0
r(t)dt, which is the terminal payoff if all the initial

wealth is put into the bank account. Hence, as standard with the single-
period case, we are interested only in the non-satiation portion of the minimum-
variance set.

Define the covariance matrix σ(t) := (σij(t))m×m. We impose the first ba-
sic assumptions of this paper, which is essentially a uniform elliptic condition
on the covariance matrix.

Assumption (A1) σ(t)σ(t)′ ≥ δI ∀t ∈ [0, T ] for some δ > 0.

Next, we introduce the following notation

(2.6) B(t) := (µ1(t)− r(t), . . . , µm(t)− r(t)),
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and

(2.7) θ(t) ≡ (θ1(t), · · · , θm(t)) := B(t)(σ(t)′)−1.

Assumption (A2) 0 <
∫ T
0 |θ(t)|2dt < +∞.

Remark 2.2. Assumption (A1) and that
∫ T
0 |θ(t)|2dt < +∞ are to en-

sure that the market is arbitrage-free and complete, whereas that
∫ T
0 |θ(t)|2dt

> 0 is to guarantee that the mean-variance problem is feasible for any z > 0
(see Bielecki et al [2005, Theorem 3.1]).

Assumptions (A1) and (A2) will be in force from now on.
With the above notation equation (2.3) can be rewritten as

(2.8)

{
dx(t) = [r(t)x(t) + B(t)π(t)]dt + π(t)′σ(t)dW (t), 0 ≤ t ≤ T,

x(0) = x0.

The following result, first derived in Zhou and Li (2000), gives a complete
solution to the mean–variance portfolio selection problem.

Theorem 2.1. The efficient portfolio corresponding to each given z ≥
x0e

∫ T

0
r(t)dt can be uniquely represented as a feedback strategy

(2.9) πz(t) ≡ (πz
1(t), · · ·, πz

m(t))′=−[σ(t)σ(t)′]−1B(t)′[xz(t)−γe−
∫ T

t
r(s)ds],

where xz(·) is the corresponding wealth process and

(2.10) γ :=
z − x0e

∫ T

0
[r(t)−|θ(t)|2]dt

1− e−
∫ T

0
|θ(t)|2dt

≥ z > 0.

Moreover, the corresponding minimum variance can be expressed as

(2.11) Var xz(T ) =
1

e
∫ T

0
|θ(t)|2dt − 1

[
z − x0e

∫ T

0
r(t)dt

]2

, z ≥ x0e
∫ T

0
r(t)dt.

3. Probability of goal-achieving: The 80% rule. In this section we

answer the following question: given a target z > x0e
∫ T

0
r(t)dt (the one corre-

sponding to z = x0e
∫ T

0
r(t)dt is the risk-free portfolio, hence not interesting),

if one follows the efficient strategy as stipulated in Theorem 2.1, what is the
probability that the corresponding wealth reaches the discounted value of z
on or before T?
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6 X. LI AND X.Y. ZHOU

Let xz(·) be the wealth process under the efficient portfolio corresponding

to z > x0e
∫ T

0
r(t)dt as specified by Theorem 2.1. Define the first hitting time

of the wealth on the discounted value of z:

(3.1) τ z := inf
{

0 ≤ t ≤ T : xz(t) = ze−
∫ T

t
r(s)ds

}
,

where (and throughout the paper) inf ∅ := +∞.

Theorem 3.1. For any z > x0e
∫ T

0
r(t)dt,

(3.2) τ z = inf

{
0 ≤ t ≤ T :

3
2

∫ t

0
|θ(s)|2ds+

∫ t

0
θ(s)dW (s) =

∫ T

0
|θ(s)|2ds

}
.

Proof. Set y(t) := xz(t)− γe−
∫ T

t
r(s)ds. Using the wealth equation (2.8)

that xz(·) satisfies and the fact that πz(t) = −[σ(t)σ(t)′]−1B(t)′y(t), we
deduce





dy(t) = [r(t)− |θ(t)|2]y(t)dt− θ(t)y(t)dW (t), 0 ≤ t ≤ T,

y(0) = x0−ze
−

∫ T

0
r(t)dt

1−e
−

∫ T

0
|θ(t)|2dt

.

The above equation has a unique solution

y(t) = y(0) exp
(∫ t

0
[r(s)− 3

2
|θ(s)|2]ds−

∫ t

0
θ(s)dW (s)

)
, 0 ≤ t ≤ T.

Hence

xz(t)− ze−
∫ T

t
r(s)ds = y(t) + (γ − z)e−

∫ T

t
r(s)ds

=
e
−

∫ T

t
r(s)ds(

z−x0e

∫ T

0
r(s)ds)

e

∫ T

0
|θ(t)|2dt−1

[
1− e

∫ T

0
|θ(t)|2dte−

3
2

∫ t

0
|θ(s)|2ds−

∫ t

0
θ(s)dW (s)

]
.

Since
e
−

∫ T

t
r(s)ds(

z−x0e

∫ T

0
r(s)ds)

e

∫ T

0
|θ(t)|2dt−1

> 0, we conclude that xz(t)−ze−
∫ T

t
r(s)ds = 0

if and only if the term in the above bracket vanishes, or

3
2

∫ t

0
|θ(s)|2ds +

∫ t

0
θ(s)dW (s) =

∫ T

0
|θ(s)|2ds.

This proves (3.2).
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It is interesting to note that the hitting time depends entirely on the
behavior of the market as represented by θ(·) (the market price of risk), and
does not depend on the target z. The following result gives an analytical
formula for calculating the probability that the hitting occurs on or before
the terminal time.

Recall the error function of the standard normal distribution

(3.3) Erfc(x) :=
2√
π

∫ ∞

x
e−v2

dv, x ∈ <.

Theorem 3.2. The probability that an efficient wealth process xz(·), cor-

responding to z > x0e
∫ T

0
r(t)dt, reaches the discounted value of z on or before

the terminal time T is given by
(3.4)

P (τz ≤ T ) = 1
2Erfc

(
−

√∫ T

0
|θ(s)|2ds

2
√

2

)
+ 1

2e
3
∫ T

0
|θ(s)|2dsErfc

(
5

√∫ T

0
|θ(s)|2ds

2
√

2

)
.

Proof. By Theorem 3.1,

τ z ≡ τ = inf
{
0 ≤ t ≤ T : ϕ(t) =

∫ T
0 |θ(s)|2ds

}
,

where
ϕ(t) :=

3
2

∫ t

0
|θ(s)|2ds +

∫ t

0
θ(s)dW (s), 0 ≤ t ≤ T.

By virtue of a time-change technique (see, e.g., Ikeda and Watanabe [1989])
there exists a one-dimensional standard Brownian motion Ŵ (t), t ≥ 0, on
(Ω,F , P ) such that

∫ t

0
θ(s)dW (s) = Ŵ (β(t)), 0 ≤ t ≤ T,

where β(t) :=
∫ t
0 |θ(s)|2ds. Hence

ϕ(t) =
3
2
β(t) + Ŵ (β(t)), 0 ≤ t ≤ T.

Now,
P (τ ≤ T ) = P

(
sup0≤t≤T ϕ(t) ≥ β(T )

)

= P
(
sup0≤t≤β(T )(

3
2 t + Ŵ (t)) ≥ β(T )

)
.

According to Borodin and Salminen (2002), p. 250, 1.1.4, the above proba-
bility equals

P (τ ≤ T ) = 1
2Erfc

(
β(T )√
2β(T )

−
3
2

√
β(T )√
2

)
+ 1

2e3β(T )Erfc
(

β(T )√
2β(T )

+
3
2

√
β(T )√
2

)

= 1
2Erfc

(
−
√

β(T )

2
√

2

)
+ 1

2e3β(T )Erfc
(

5
√

β(T )

2
√

2

)
.
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8 X. LI AND X.Y. ZHOU

Since β(T ) =
∫ T
0 |θ(s)|2ds, the preceding expression is identical to (3.4).

Define the following function

(3.5) f(x) :=
1
2
Erfc

(
− x

2
√

2

)
+

1
2
e3x2

Erfc
(

5x

2
√

2

)
, x ≥ 0.

Theorem 3.2 states that P (τ z ≤ T ) = f

(√∫ T
0 |θ(s)|2ds

)
. We plot f in Fig.

1. By inspection f has a minimum value slightly above 0.80. We now prove
this analytically.

0 1 2 3 4 5 6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x

f(
x)

Fig 1.

Lemma 3.1. The function f defined by (3.5) satisfies

(3.6) f(x) ≥ N

(
1√
5

)
+

1
12

√
10
π

e−
1
10 ≈ 0.8072 ∀x ≥ 0.

imsart-aap ver. 2006/01/04 file: lz80_ims_aap.tex date: March 1, 2006



CONTINUOUS-TIME MEAN–VARIANCE EFFICIENCY: THE 80% RULE 9

Proof. Making use of the relation Erfc(x) ≡ 2(1 − N(
√

2x)) where

N(x) := 1√
2π

∫ x
−∞ e−

v2

2 dv is the pdf of the standard normal distribution,
we rewrite f as

(3.7) f(x) = N

(
x

2

)
+ e3x2

(
1−N

(
5x

2

))
, x ≥ 0.

We first prove that

(3.8) f(x) ≥ N

(
1
2

)
+

1√
2π

√
41− 5

4
e−

1
8 ≈ 0.8150 ∀x ≥ 1.

Indeed, employing the following estimate for the function N(·) (see p. 933,
26.2.24 of Abramowitz and Stegun [1972])

N(x) ≤ 1−
√

4 + x2 − x

2
√

2π
e−

x2

2 ∀x > 1.4,

we have

(3.9)
f(x) ≥ N(x

2 ) + e3x2
√

16+25x2−5x
4
√

2π
e−

25x2

8

= N(x
2 ) +

√
16+25x2−5x

4
√

2π
e−

x2

8 ∀x ≥ 1.

Denote

g(x) := N

(
x

2

)
+
√

16 + 25x2 − 5x

4
√

2π
e−

x2

8 , x ≥ 0.

Then its derivative is (after some manipulations)

ġ(x) =
e−

x2

8√
2π

[(
5x2

16
− 25x3

16
√

16 + 25x2

)
+

(
21x

4
√

16 + 25x2
− 3

4

)]
.

Now,
5x2

16
− 25x3

16
√

16 + 25x2
≥ 5x2

16
− 25x3

16
√

25x2
= 0 ∀x ≥ 0.

On the other hand, since x√
16+25x2

is strictly increasing in x ≥ 1,

21x

4
√

16 + 25x2
− 3

4
≥ 21

4
√

41
− 3

4
> 0 ∀x ≥ 1.

Therefore ġ(x) > 0 for x ≥ 1, i.e., g is strictly increasing in x ≥ 1. This
implies (3.8) taking note of (3.9).
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10 X. LI AND X.Y. ZHOU

Next, consider the continuous function f , which must admit a minimum
point on [0, 1]. The candidates for such a minimum point are 0, 1, or x∗ ∈
(0, 1) satisfying ḟ(x∗) = 0, or

(3.10) e3x∗2
(

1−N

(
5x∗

2

))
=

1
3
√

2πx∗
e−

x∗2
8 .

Note that such an x∗ does not need to exist on (0, 1); but if indeed it exists,
then necessarily

f(x∗) ≡ N

(
x∗

2

)
+ e3x∗2

(
1−N

(
5x∗

2

))
= N

(
x∗

2

)
+

1
3
√

2πx∗
e−

x∗2
8 .

To estimate the above value, define

h(x) := N

(
x

2

)
+

1
3
√

2πx
e−

x2

8 , x > 0.

Then ḣ(x) has a unique root x̂ = 2√
5
. Moreover, ḣ(x) < 0 for 0 < x < x̂

and ḣ(x) > 0 for x > x̂. Hence x̂ must be the global minimum of h, which
implies

(3.11) h(x) ≥ h

(
2√
5

)
= N

(
1√
5

)
+

1
12

√
10
π

e−
1
10 ≈ 0.8072 ∀x > 0.

As a result,
f(x∗) ≡ h(x∗) ≥ 0.8072.

However, f(0) = 1 and f(1) ≈ 0.8162; so we conclude that the minimum
value of f on [0, 1] is at least 0.8072. By virtue of (3.8) we arrive at

f(x) ≥ 0.8072 ∀x ≥ 0.

Theorem 3.3. We have the following lower bound

(3.12) P (τ z ≤ T ) ≥ N

(
1√
5

)
+

1
12

√
10
π

e−
1
10 ≈ 0.8072.

Proof. This is immediate from Theorem 3.2 and Lemma 3.1.

The above lower bound, N
(

1√
5

)
+ 1

12

√
10
π e−

1
10 ≈ 0.8072, has been ob-

tained analytically. Notice that it is not necessarily the tightest bound, as
it was derived based on the global minimum of h (which was obtained ana-
lytically), rather than that of f (which seems to be impossible to get ana-
lytically). However, 0.8072 is already a very good lower bound because it is
only slightly smaller than the minimum value of f as suggested by Fig. 1.
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4. Discussions. The main results derived in Section 3 are quite sur-
prising and counter-intuitive. Mean–variance portfolio selection model, as
many other stochastic optimization models, in its nature is one based on
averaging over all the possible random scenarios; so an optimal solution is
optimal only in the sense of an average. There have been debates on the
sensibility of the model in terms of how much its solutions could guide
real investment in practice. Moreover, due to the presence of the variance
in its objective, the mean–variance model is not compatible with the dy-
namic programming principle.2 Specifically, an optimal portfolio generated
initially may no longer be optimal half way through. Thus, one may tend to
consider the mean–variance model to be “unfavorable”, particularly in the
dynamic setting, in not being able to generate sound investment policies.
Now, the 80% rule demonstrates that there is a very high chance that a
mean–variance strategy would lead to the full realization of the prescribed
financial goal. Hence, while mean–variance arguably may not be the best
model for portfolio management, it could indeed generate sound solutions.

The analytically derived lower bound of the probability, approximately
0.8072, is universal independent of the target z, the market represented by
θ(·), and the time horizon T . Theorem 3.2 asserts that the exact probability
does depend on

∫ T
0 |θ(s)|2ds as an aggregation of the market and the hori-

zon. Therefore, given a market, one could carefully choose the investment
horizon T so as to further increase the “goal-achieving probability” (after all
how long an investor is going to plan his investment is a part of his overall
decision). Some insight in this aspect could be obtained from the analytical
formula (3.4) together with its graph in Fig. 1.

Having said all these, one should bear in mind that the results obtained in
this paper are theoretical ones based on a number of assumptions, including
that the stock prices are driven by Brownian motions, the market is com-
plete, the market coefficients are deterministic, and the transaction costs are
ignored. Some of these assumptions may be purely technical and some may
be essential. This, however, should not be a concern when the results are
interpreted with care and discretion, and the model is used properly as a
reference or study tool (as opposed to a trading tool) in the same spirit as
the Black–Scholes model for option pricing. In fact, from another angle this
80% rule could serve as a test on the validity of the aforementioned hypothe-
ses: if the rule fails in, say, an extensive empirical study, then it might be

2The dynamic programming principle holds if we remove the constraint on the mean
by introducing a suitable λ; nevertheless the new problem is an auxiliary problem which
is not completely equivalent to the original problem (although the latter can be solved
based on the solution to the former; see Li and Ng (2000) and Zhou and Li (2000)).
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an indication that one or more of the hypotheses are rejected by the data.
In summary, we feel that the results, including the 80% rule, can shed some
light on portfolio theory and offer guidance and reference for investment
practice.

We conclude this paper by pointing out some interesting open questions.
First of all, the model in our paper allows for bankruptcy, i.e., the wealth is
allowed to go negative (e.g., borrow from bank and continue trading by buy-
ing stock on margin). Although the 80% rule dictates that in the end there is
a high chance to reach one’s goal, there could be an equally high chance that
one has to experience bankruptcy before the goal is ever reached. It is easy to
calculate the probability of going bankrupt before the terminal time, as well
as the probability that this will happen before the goal is reached. The latter
would depend on the length of the investment horizon, T ; hence one may de-
termine T so as to minimize the probability that bankruptcy occurs earlier
than the goal-achieving. This would be an interesting problem. Nonethe-
less, an even more interesting problem is to consider the class of admissible
portfolios which exclude bankruptcy in the first place. The mean–variance
portfolio selection with bankruptcy prohibition has been solved in Bielecki
et al (2005) in a very general setting, and explicit solutions have been ob-
tained for the case of deterministic market coefficients. An open problem is
therefore what the goal-achieving probability is for such a no-bankruptcy
efficient portfolio.

Yet another, perhaps more challenging, open problem is to consider the
case where all the market coefficients are stochastic. While the corresponding
efficient portfolios have been obtained in Lim and Zhou (2001) and Lim
(2004), the estimation of hitting probability would require more delicate
stochastic analysis.
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