Z. Y. Long

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that the number of nominal problems required to be solved is small under various distributional information sets.

Department of Systems Engineering and Engineering Management, CUHK